首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
采用碱溶液提取/火焰原子吸收法(HJ 687—2014《固体废物六价铬的测定 碱消解/火焰原子吸收分光光度法》和HJ 1082—2019《土壤和沉积物 六价铬的测定 碱溶液提取-火焰原子吸收分光光度法》)测定了固体废物和土壤样品中六价铬含量,比对和验证了2种方法实验流程、分析方法性能及不确定度评定结果。结果表明:HJ 687—2014的方法检出限相对较高,不适合测定浓度较低的土壤;HJ 1082—2019要求按照试样制备的步骤配置工作曲线,考虑了基体干扰的影响。HJ 687—2014的检出限为0.28 mg/kg,相对标准偏差为0.69%~0.93%,样品加标回收率为95.7%~97.2%;HJ 1082—2019的检出限为0.17 mg/kg,相对标准偏差为0.6%~3.0%,样品加标回收率为76.0%~83.1%。对于同一实际样品,2种方法的测定结果相近,HJ 687—2014和HJ 1082—2019的测定结果分别为(48.1±4.2),(46.6±5.4) mg/kg。比对发现,影响HJ 687—2014和HJ 1082—2019不确定度的最主要环节分别为曲线拟合和样品消解。  相似文献   

2.
滕慧  李东  吴君如 《环境工程》2022,40(11):143-151
生态环境部发布的HJ 1082—2019《土壤和沉积物六价铬的测定碱溶液提取-火焰原子吸收分光光度法》于2020年6月正式实施,是目前国内唯一的法定土壤和沉积物Cr (Ⅵ)测定方法。然而现有研究发现,修复后的Cr (Ⅵ)污染土壤测定结果存在假阳性或负偏差的问题。针对其中与溶解性Cr (Ⅲ)、淋洗剂(柠檬酸盐)和还原剂(FeSO4、Na2S2O5、Na2S和CaSx)相关的问题进行研究,结果表明:修复过程中产生的Cr (Ⅲ)在整个修复和检测过程中均处于过饱和状态,导致检测结果出现较小正偏差,存在误判风险。土壤对Cr (Ⅲ)的吸附作用对降低检测正偏差至测定下限以下起着至关重要的作用。柠檬酸盐能显著促进Cr (Ⅲ)溶解,可能导致正偏差。修复后土壤中残留的大量还原剂会在碱消解或pH调节过程中将提取的Cr (Ⅵ)还原为Cr (Ⅲ),导致显著的负偏差。火焰原子吸收分光光度法(FAAS)检测的正偏差程度较小且存在较大不确定性,不能抵消残留还原剂产生的负偏差。  相似文献   

3.
冯新长  罗伟 《环保科技》2013,19(4):36-38
建立了微波消解-石墨炉原子吸收光谱法测定土壤中铍的方法。比较了微波消解和电热板消解两种前处理方法,优化了微波消解条件,选择了基体改良剂。方法在0~10.0μg/L范围内线性良好,检出限为0.01 mg/kg,样品平行测定的RSD为1.5%~2.2%,加标回收率为89.4%~109%。  相似文献   

4.
碱消解法测定固体废物中六价铬的研究   总被引:1,自引:0,他引:1  
用碱性消解液对固体废物进行预处理,所得消解溶液用火焰原子吸收光谱法进行测定。结果表明:该方法在0.00~8.00mg/L范围内呈良好线性关系,检出限为2.00mg/kg(样品以计2.5g计)。实际样品测定的RSD为1.37%~9.35%,加标回收率为85.5%~125%。消解溶液同时用二苯碳酰二肼分光光度法进行测定,结果显示,两种方法测定的结果没有显著差异,进一步说明了采用火焰原子吸收光谱法测定固体废物中Cr6+的准确性与可靠性。  相似文献   

5.
建立了微波消解火焰原子吸收光谱法测定牛羊粪便中的锌和铜的方法。锌和铜分别为0~1.00mg/和0~4.00mg/L,线性良好。该方法结果准确,操作简单,重现性较好。相对标准偏差2%,样品加标回收率为97%~105%。  相似文献   

6.
微波消解-原子荧光光度法测定土壤中汞   总被引:4,自引:1,他引:3  
采用微波消解、原子荧光光度法测定土壤样品中汞元素.优化了消解和仪器条件后.土壤经硝酸体系微波消解后,用原子荧光法测定消解液中的汞含量.经标准样品验证,该方法定量准确,分析速度快,精密度,回收率和准确度均符合要求.  相似文献   

7.
测定固体废物实际样品中的六价铬时,往往存在着三价铬的干扰。利用传统的酸消解前处理无法有效地去除三价铬的干扰。运用碱消解前处理虽然可以消除三价铬的干扰,但由于前处理过程中,溶出液有色且基本为黄色,对二苯碳酰二肼分光光度法造成较大干扰。故建立碱消解一火焰原子吸收分光光度法,本方法不仅解决了三价铬的干扰,并避免了溶出液对测定结果造成的误差。  相似文献   

8.
为优化原子吸收光谱法对土壤重金属元素含量的测定,针对微波消解和湿法快速消解两种前处理方法进行实验研究。结果表明,两种消解方法对分析结果都具有较高的准确性和重现性,湿法快速消解引入的本底较小,在测试效率、消解时间、试剂消耗、器皿用量、安全性等方面优于微波消解。  相似文献   

9.
采用HNO3—HCl—HF消化体系,采用微波消解法消解沉积物样品,用原子吸收光谱法对海洋沉积物标准物质及样品中Pb、Cd、Cu、Zn、Cr进行了实样检测,并对样品前处理方法和检测条件进行了探讨与优化。结果表明,本试验方法简便、快捷、准确可靠,测定结果的加标回收率和相对标准偏差均在较理想的范围内。  相似文献   

10.
利用M280685土壤干燥箱干燥土壤、微波消解、原子吸收分光光度法,在短时间内完成大量土壤样品中重金属的测定。利用该法测定土壤中的重金属平行双样测定合格率,质控样品均能达到土壤环境监测技术规范(HJ/T166-2004)相应的要求。  相似文献   

11.
研究了微波消解-GFAAS法测定土壤样品中总铅的方法。土壤样品加入HNO3+HF,经微波消解体系消解后,在恒温加热器上赶酸并除硅,石墨炉原子吸收光谱法(GFAAS)测定土壤样品中的总铅。测定数据经过与国标(GB/T 17141-1997)消解方法的比对,以及对不同土壤及土壤标准物质的测试。结果表明,两者无显著性差异,且此法重复性好,试剂用量少,安全易控制,结果可靠。  相似文献   

12.
为了科学地诊断出存在的环境问题,实现对生态环境的保护,以重点生态功能区雷山县为例,结合地形、地貌与气候等数据,以格网为评价单元,构建生态系统敏感性评价指标体系。采用层次分析法、区域综合法及格网GIS技术,对评价体系中各指标进行10 m×10 m尺度下的格网化表达,运用栅格数据的空间叠加方法及生态系统敏感性评价模型,综合评价雷山县生态系统敏感性空间格局。结果表明:雷山县生态系统敏感性较高,其中非敏感区和轻度敏感区面积较小,仅占总面积的5%和13.4%;其次是中度敏感区和极度敏感区,分别占总面积的26.3%和17%;高度敏感区面积最大,占总面积的38.3%。  相似文献   

13.
火焰原子吸收法测定水中的总铬   总被引:1,自引:0,他引:1  
用火焰原子吸收光谱法测定水中总铬,乙炔流量100L/h、燃烧头高度为9mm、狭缝宽度0.2 nm时,灵敏度和重现性最好.1 mg/L铬溶液中盐酸含量5%、氯化铵含量0.5%时,吸光度较高,相对标准偏差最低.该方法操作简便,灵敏度好,精确度和准确度高,便于推广,适合水中总铬的测定.  相似文献   

14.
土壤中重金属测定前处理方法的对比研究   总被引:1,自引:0,他引:1  
对土壤样品的前处理分别采用全自动样品消解仪及微波消解仪进行消解.按照国标法测定土壤样品中的铅、镉、铜、锌、镍、锰.根据消解情况及测定土壤中重金属含量对消解方法进行对比分析.结果显示采用全自动样品消解仪消解土壤样品,操作简单、方便,最大程度保障了实验人员的安全,并且消解效果良好,避免了土壤样品赶酸过程导致蒸干,重金属含量测定结果准确可信.微波消解法消耗的试剂量较少,样品受污染的风险小,引入的试剂误差小.  相似文献   

15.
阴极pH控制对污染土壤电动修复效率的影响   总被引:8,自引:0,他引:8  
就电动修复污染土壤过程中阴极电解产生的OH-对修复效率的影响进行了实验室研究. 实验选用重铬酸钾作为污染物,配制砂土和高岭土中初始w(Cr(Ⅵ))为100和500 mg/kg,施加恒定直流电压1 V/cm,运行48 h. 选用不同土壤和控制条件,实验共进行了10组. 分析了实验过程中电流变化以及实验完成后土壤pH分布和铬的迁移分布,并对每组实验Cr(Ⅵ)的去除率和电能消耗进行了计算. 结果表明:对阴极电解产生的pH进行控制可以明显提高Cr(Ⅵ)的去除率,同时电能耗变化不大;多种控制方式中,以盐酸的中和控制最为有效,可使去除率达到90.8%,但引起的土壤酸化问题应进一步进行研究;对电动过程中Cr(Ⅵ)的迁移转化应做深入研究.   相似文献   

16.
NaOH-Na_2CO_3混合消解测定铬渣中六价铬   总被引:1,自引:0,他引:1  
魏松  李瑾  肖亚琼 《环境科学与管理》2011,36(5):152-153,161
采用NaOH-Na2CO3、MgCl2和H3PO4缓冲溶液混合消解体系对铬渣进行处理,建立了铬渣中六价铬的测定方法。结果表明,此方法在0 mg/L~0.200 mg/L范围内线性良好,检出限为0.15 mg/kg(以0.5 g样品计),铬渣样品的RSD为5.5%,加标回收率为91.7%~106.3%。方法操作较为简便,精密度与准确度均符合要求。  相似文献   

17.
建立了行星式球磨仪制样一微波消解一石墨炉原子吸收光谱法测定土壤中铅的方法。标准曲线在0—10.01μg/L范围内线性良好,以称样0.5g、定容体积50ml计,方法检出限为0.10mg/kg,土壤样品测定的RSD〈4%,加标回收率为91.4%~102%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号