首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A multistep deposition of anatase nanoparticles was employed to incorporate high amounts of titania into the mesopores of SBA-15. Anatase nanoparticles were synthesized and deposited following the Acid Catalyzed Sol Gel method. With this method, the size of the anatase nanoparticles can be controlled and therefore, the titania loading into the mesopores of SBA-15 can be controlled. Through multistep deposition of anatase nanoparticles, a further increase of titania loading into the mesoporous channels can be obtained. For the degradation of Rhodamine-6G, the samples synthesized by multistep deposition showed an enhanced photocatalytic activity.  相似文献   

2.
:以自制硅铝陶瓷介孔球为基体,经溶胶凝胶法制备TiO2溶胶并将其负载于硅铝陶瓷介孔球表面,用于甲基橙溶液的吸附和光催化降解,再利用扫描电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪和可见分光光度计对样品的表观形貌、晶体结构、吸附和光催化性能等进行表征和测定。研究结果表明:TiO2是以粗糙度较高的多层膜包覆于硅铝陶瓷介孔球表面且TiO2为锐钛矿晶型;在黑暗条件下,硅铝陶瓷介孔球和TiO2负载硅铝陶瓷介孔球对甲基橙仅起到吸附作用,且两者的吸附性能较接近;但在紫外光照条件下,TiO2负载硅铝陶瓷介孔球对甲基橙除有吸附作用外还表现出较好的光催化降解活性。  相似文献   

3.
Nanosize clusters of titania were dispersed in mesoporous MCM-41 silica matrix with the help of the incipient wet-impregnation route, using an isopropanol solution of titanium isopropoxide as precursor. The clusters thus formed were of pure anatase phase and their size depended upon the titania loading. In the case of low (< 15 wt %) loadings, the TiO2 particles were X-ray and laser-Raman amorphous, confirming very high dispersion. These particles were mostly of < or = 2 nm size. On the other hand, larger size clusters (2-15 nm) were present in a sample with a higher loading of approximately 21 wt %. These particles of titania, irrespective of their size, exhibited an absorbance behavior similar to that of bulk TiO2. Powder X-ray diffraction, N2-adsorption and transmission electron microscopy results showed that while smaller size particles were confined mostly inside the pore system, the larger size particles occupied the external surface of the host matrix. At the same time, the structural integrity of the host was maintained even though some deformation in the pore system was noticed in the case of the sample having highest loading. The core level X-ray photoelectron spectroscopy results revealed a + 4 valence state of Ti in all the samples. A positive binding energy shift and the increase of the width of Ti 2p peaks were observed, however, with the decrease in the particle size of supported titania crystallites, indicative of a microenvironment for surface sites that is different from that of the bulk.  相似文献   

4.
TiO2 nanoparticles have been successfully incorporated in the pores of mesoporous silica SBA-15 with different morphologies by a wet impregnation method. The composites were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), inductively coupled plasma (ICP) emission spectroscopy, transmission electron microscopy (TEM), N2-sorption and UV-Vis diffuse reflectance spectroscopy. The photodegradation of methyl orange (MO) was used to study their photocatalytic property. It is indicated that the morphology of SBA-15 had a great influence on the photocatalytic activity of the composites. When TiO2/SBA-15 composite was prepared by loading TiO2 nanoparticles on uniform rod-like SBA-15 of 1 μm length, it showed higher photocatalytic degradation rate than that on less regular but much larger SBA-15 support. This difference was rationalized in terms of the homogeneously distributed and shorter channels of rod-like SBA-15, which favored mass transport and improved the efficient utilization of the pore surface.  相似文献   

5.
Xue M  Huang L  Wang JQ  Wang Y  Gao L  Zhu JH  Zou ZG 《Nanotechnology》2008,19(18):185604
A series of visible-light-driven mesoporous structured MnO(2)/TiO(2) nanocrystal photocatalysts have been synthesized through a modified sol-gel method, and the N(2) adsorption-desorption isotherm confirms that the mesoporous materials possess large pore size (up to 9.2?nm) and a narrow pore size distribution. X-ray powder diffraction (XRD) analyses and complementary x-ray photoelectron spectroscopy (XPS) measurements reveal that the doping of the transition metal Mn inhibits the growth of TiO(2) anatase nanocrystals and the Mn species are highly dispersed on the surface of TiO(2). The ultraviolet (UV)-vis spectrum demonstrates the excellent adsorption properties of MnO(2)/TiO(2) over the whole region of visible light, which enables this novel photocatalysis material to possess remarkable activity in the photocatalytic degradation of methylene blue under visible light radiation. Moreover, a 'coating mechanism' based on the nucleation of titania nanocrystals along with the interaction between the dopant precursors and titania clusters has been suggested.  相似文献   

6.
氧化硅对二氧化钛纳米晶相变和晶粒生长的抑制作用   总被引:36,自引:0,他引:36  
通过让正硅酸乙酯先水解,用溶胶-凝胶法制备了织构均匀的二氧化硅/二氧化钛复合粉体。用紫外-可见吸收光谱、傅里叶红外,透射电镜、X射线衍射和比表面仪对复合粉体进行了表征,发现添加少量的二氧化硅有效地抑最二氧化钛晶粒生长和锐钛矿向金红石的相变,选择性溶解能除去复合粉体中90%以上的氧化硅,得到高比表面积,骨架为锐钛矿相的介孔二氧化钛,复合粉体中二氧化硅主要形成了连通的网络结构,这种网络结构在800℃仍有很好的稳定性。  相似文献   

7.
Highly ordered mesoporous silica, Santa Barbara Amorphous-15 (SBA-15), and titanium-substituted mesoporous silica (TiSBA-15) materials were successfully synthesized, characterized, and evaluated. The textual and structural properties of the prepared materials with various titanium contents were characterized by inductively coupled plasma-mass spectrometer (ICP-MS), powder X-ray diffraction (XRD) patterns, nitrogen physisorption isotherms, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). A limited content of titanium could be effectively substituted into the framework of SBA-15 without provoking structure change. The adsorptive performance was examined by methylene blue (MB) adsorbed on prepared materials. The isotherm models were analyzed to describe the adsorption behavior of prepared materials. The adsorption isotherms were well-fitted with Langmuir and Freundlich models in the simulation of the adsorption behavior of dyes. The SBA-15 and TiSBA-15 materials were found to be effective adsorbents for MB from aqueous solutions. The photodegradation of MB and total organic carbon (TOC) analysis on solid composites were used to evaluate the catalytical performance of Ti-containing mesoporous silica. The synergistic effect of adsorptive and photocatalytical ability of prepared TiSBA-15 was identified. The regeneration and cyclic performance were also proved. These results revealed that TiSBA-15 could be one effective alternative material for dye removal.  相似文献   

8.
We describe three methods of post-synthesis modification of the SBA-15 mesoporous molecular sieve with titanium: impregnation with Ti(OEt)4 in an ethanolic solution, grafting with titanocene dichloride, and modification with colloidal titania. The products were characterized using X-ray diffraction (XRD) and N2 adsorption as well as Fourier-transform infrared and 29Si NMR spectroscopies. All three methods yield materials containing 1.4--4.7 wt.% titanium and with high surface areas. The absorbance at 960 cm−1 in SBA-15 modified with colloidal titania and SBA-15 grafted with titanocene indicates the formation of Ti–O bonds. All products showed significant activity towards the degradation of p-chlorophenol. UV-vis absorption spectra of SBA-15 samples modified with titanium indicate that the variation in the photocatalytic activity is governed by isolated titanium sites.  相似文献   

9.
A facile route was presented to fabricate mesoporous anatase titania spheres at low temperature; the titania precursor sphere was prepared through a template-free process and then treated by the boiling water. X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM) were adopted to characterize the morphology and crystal structure of the products. The adsorption properties and photocatalytic activities were also investigated. The results indicated that the porous structure and anatase nanocrystals were gradually formed from the surface to the interior of the titania precursor spheres with increasing treatment time. Moreover, there was little change in the size of the spheres during boiling water treatment, thus the size of the mesoporous anatase titania spheres could be easily tailored by controlling the diameter of precursor spheres. The as-prepared product showed excellent adsorption capacity and photocatalytic activity than the commercial P25 due to its high specific surface area.  相似文献   

10.
Mesoporous titania nanorod/titanate nanotube composites were prepared using TiF4 and H(3)BO(3) as the precursors. The prepared samples were characterized with TEM, SEM, XRD, HRTEM, and nitrogen adsorption-desorption isotherms. The photocatalytic activities were evaluated by photocatalytic oxidation of acetone in a gas phase and photocatalytic discolorization of methyl orange aqueous solution in an aqueous phase, respectively. The results indicated that the photocatalytic activity of the mesoporous titania nanorod/titanate nanotube composites exceeded that of P25 by a factor of about 2.5 times for the photocatalytic oxidation of acetone. This could be attributed to the fact that the former had a larger specific surface area and a higher pore volume. Moreover, the mesoporous titania nanorod/titanate nanotube composites, which could be readily separated after photocatalytic reaction in an aqueous phase, exhibited highly photocatalytic activity for the degradation of methyl orange aqueous solution.  相似文献   

11.
以水热沉积法在介孔SBA-15上固载TiO2纳米粒子制得光催化剂TiO2@SBA-15,探讨了TiO2负载量对催化效果的影响.以包括N2吸附-脱附、紫外漫反射光谱(DRS)等手段在内的多种技术手段表征了催化剂的结构.研究结果表明适宜负载量的锐钛矿晶型TiO2纳米粒子可均匀分散在载体SBA-15上,N2吸附-脱附进一步表明载体介孔结构得以保持.适宜TiO2负载量的催化剂20 mg紫外光照25 min可将100 mL的10 mg·L-1亚甲基蓝降解完全.  相似文献   

12.
以TiCl4为钛前驱体,采用沉淀法制备了氮掺杂和纯TiO2. X射线衍射(XRD)和N2吸附-脱附等温线表征结果表明:所制催化剂以锐钛矿相为主,具有介孔结构. X射线光电子能谱(XPS)证实掺杂的氮以系列NOx存在. 由紫外-可见漫反射吸收光谱(UV-Vis)可知:氮掺杂TiO2 ( N-TiO2 )在400~550nm的可见光区出现新的吸收带. 4-氯苯酚(4-CP)降解实验表明,N-TiO2的紫外和可见光催化活性均高于纯TiO2. N-TiO2具有较高紫外光活性的原因可归于催化剂中含有的NOx. NOx在不改变TiO2禁带宽度的情况下,拓展了它的感光范围,激发更多的光生电子和空穴参与反应,并可降低电子和空穴的复合几率,从而提高了催化剂的紫外光活性.  相似文献   

13.
Mesoporous Fe (III) doped TiO2 nanoparticles with an anatase phase were prepared by using a stable precursor potassium hexafluorotitanate as Ti source for the first time and its physical as well as photocatalytic properties were compared with that of Fe doped titania prepared from the most common Ti source titanium isopropoxide. FeSO4·7H2O and Fe (NO)3·9H2O were used for doping titania with Fe (III). Physicochemical properties of the samples were characterized by XRD, XPS, FTIR, Raman spectroscopy, N2 adsorption–desorption isotherms, UV–vis diffuse reflectance spectroscopy. EDX confirms the presence of Fe. DRS and TEM reveals that doping has taken place. It was found that Fe-doped nanostructured titania prepared from potassium hexafluorotitanate was much more effective in the photocatalytic decomposition of bromocresol green than undoped nanostructured titania as well as commercial titania.  相似文献   

14.
Nanoporous silica/titania nanoparticles composites with relatively large TiO2 content are successfully synthesized by aerosol-assisted co-assembly. By the hybridization of titania with nanoporous silica having high surface area, both the adsorption capability and the reaction rates for the photocatalytic decomposition of methylene blue (MB) are dramatically improved in comparison with unmodified titania nanoparticles without nanoporous silica. Through the quantitative evaluation of the amount of adsorbed and photo-decomposed organic molecule throughout the reaction process, the role of nanoporous silica layers on titania surface is clarified. Rational design of future hybrid photocatalyst with precisely controlled nanostructure will be possible by optimization of our synthetic procedure and careful study of the adsorption and photocatalytic properties.  相似文献   

15.
SBA-15 mesoporous materials were successfully prepared by the conventional hydrothermal method and used as the support for TiO2 loaded SBA-15 photocatalysts. The synthesized materials were characterized by XRD, PL, FT-IR, BET and TEM. We also examined the activity of these materials as photocatalysts for the decomposition of methylene blue. The loading of titanium dioxide on the framework of SBA-15 makes the pore diameter and the pore volume decrease and decreases the surface area compared to that of SBA-15. For the TiO2 loaded SBA-15 photocatalysts, the IR absorption at approximately 960 cm(-1) is commonly accepted as the characteristic vibration of the Ti-O-Si bond. The PL peaks appears at about 410 nm at a loading ratio of less than 5% but moves to 430 nm at higher loading ratios. It was also shown that the excitonic PL signal is proportional to the photocatalytic activity for the decomposition of methylene blue. The photocatalytic activity increases with increasing TiO2 loading ratio, shows a maximum value at 7% TiO2/SBA-15, and then decreases at 10% TiO2/SBA-15.  相似文献   

16.
Titania–silica, titania–alumina, and titania–zirconia mixed oxides (1:1 molar ratio) were prepared by a microwave-induced solution combustion synthesis technique. The prepared materials were characterized by thermogravimetry/differential thermal analysis, X-ray diffraction (XRD), Raman spectroscopy, BET surface area, X-ray photoelectron spectroscopy (XPS), ultraviolet–visible diffuse reflectance spectroscopic (UV–Vis DRS), and Fourier transform infrared (FTIR) techniques to assess their physicochemical properties. Their photocatalytic activity for the degradation of phenol in aqueous solution under sunlight was studied. XRD and Raman studies revealed the presence of titania in the form of anatase phase in all the mixed oxides synthesized. The XRD studies further suggested that titania–zirconia contains an additional (Ti,Zr)O2 phase. UV–Vis DRS results reveal that all samples exhibit absorption maxima near visible region. FTIR results revealed the presence of Ti–O–Si linkages in the titania–silica sample, which are responsible for its higher activity in the photocatalytic degradation of phenol under sunlight.  相似文献   

17.
TiO2/SiO2/Fe3O4 composite was synthesized by sol-gel technique for silica and titania coatings on magnetite core to enable recovery after photocatalytic degradation. Carbon coating was also carried out by calcination of TiO2/SiO2/Fe3O4 under nitrogen atmosphere in presence of PVA as a source of carbon to enhance the adsorption of organic compounds on catalyst surface and to get better activity. All prepared samples were characterized using EDX, CN analyzer, XRD, BET and SEM. Degradation of methyl orange dye was used to assess the photocatalytic performance of the prepared samples. Calcination temperature was found to affect rate of reaction because of the formation of rutile phase at high calcination temperature. Carbon coated samples unexpectedly exhibited lower rate of reaction at almost all calcination temperatures.  相似文献   

18.
通过将TiO2粉末和聚乙二醇混合,随后在氮气气氛下热处理合成了炭包覆TiO2.利用粉末X射线衍射、紫外-可见漫反射光谱、透射电子显微镜和氮吸附对炭包覆TiO2复合物样品进行了表征,并研究了其对浓度为~1.2×10-5苯的光催化活性.结果表明:炭包覆量受热处理温度和聚乙二醇用量的影响,随着温度的升高和聚乙二醇量的减少而减少;TiO2的结晶度随着温度的升高而提高,但是炭包覆对TiO2晶体的生长有抑制作用.炭包覆锐钛矿样品比纯TiO2表现出对苯更高的光催化活性,这是由于炭吸附作用导致锐钛矿颗粒周围的苯浓度增加以及包覆炭可导致电荷的有效分离;另一个原因是锐钛矿相结晶度的提高.因此,要获得对苯具有高光催化活性的炭包覆TiO2需要综合考虑碳含量和锐钛矿晶体结构.
Abstract:
Carbon-coated TiO2 was synthesized by mixing TiO2 powders and polyethylene glycol,followed by heat treatment in nitrogen atmosphere. All samples were characterized by powder X-ray diffraction,UV diffuse reflectance spectroscopy,high-resolution transmission electron microscopy,and nitrogen adsorption. The photocatalytic activity of carbon-coated TiO2 for benzene degradation was investigated with a benzene concentration of ~ 1.2 × 10-5. Results showed that the residual carbon content was influenced greatly by heat treatment temperature (HTT)and the amount of PEG,which decreased and increased with increasing the temperature and the amount of PEG,respectively. The crystallinity of TiO2 was improved when the HTT increased. However,the carbon residue had an inhibition effect on the crystal growth of TiO2. The carbon-coated anatase samples were shown to exhibit higher photocatalytic activities than the pristine TiO2 because of the adsorption enrichment of benzene by carbon around the anatase particles and of the effective charge separation due to the electronic conduction of carbon. Another important factor affecting photocatalytic activity was the crystallinity of the anatase phase. High photocatalytic activity for benzene requires a balance between the carbon content and the anatase crystalline structure.  相似文献   

19.
Nanoglued binary titania (TiO2)-silica (SiO2) aerogel, as a novel type of photocatalyst, has been synthesized on glass substrates. Using an about-to-gel SiO2 sol as nanoglue, anatase TiO2 aerogel was immobilized into a three-dimensional mesoporous network of the SiO2. Factorial designs were employed to optimize both TiO2 aerogel and binary TiO2-SiO2 aerogel synthesis. Characterization of the as-prepared TiO2 and binary samples by surface area, porosity, and surface chemical composition showed that the photocatalysts were high-surface-area nanoporous materials, with a Ti4+ valency. The binary aerogel exhibited high photocatalytic activity for the degradation of methylene blue (MB) under simulated solar light; the reaction followed the pseudo first-order Langmuir-Hinshelwood (L-H) kinetic model. Fluorescence spectroscopy revealed that the hydroxyl (*OH) radical was formed during the illumination of the binary TiO2-SiO2 aerogel in a solution of probe molecules, which corroborates the probable mechanism of hydroxyl radical oxidation of contaminants in photocatalytic reactions.  相似文献   

20.
Highly photoactive nanocrystalline mesoporous Fe-doped TiO(2) powders were prepared by the ultrasonic-induced hydrolysis reaction of tetrabutyl titanate (Ti(OC(4)H(9))(4)) in a ferric nitrate aqueous solution (pH 5) without using any templates or surfactants. The as-prepared samples were characterized by thermogravimetry and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), N(2) adsorption-desorption measurements, UV-visible adsorbance spectra (UV-vis) and X-ray photoelectron spectroscopy (XPS). The photocatalytic activities were evaluated by the photocatalytic oxidation of acetone in air. The results showed that all the Fe-doped TiO(2) samples prepared by ultrasonic methods were mesoporous nanocrystalline. A small amount of Fe(3+) ions in TiO(2) powders could obviously enhance their photocatalytic activity. The photocatalytic activity of Fe-doped TiO(2) powders prepared by this method and calcined at 400 degrees C exceeded that of Degussa P25 (P25) by a factor of more than two times at an optimal atomic ratio of Fe to Ti of 0.25. The high activities of the Fe-doped TiO(2) powders could be attributed to the results of the synergetic effects of Fe-doping, large BET specific surface area and small crystallite size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号