首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 386 毫秒
1.
 The meshless method based on the local boundary integral equation (LBIE) is a promising method for solving boundary value problems, using an local unsymmetric weak form and shape functions from the moving least squares approximation. In the present paper, the meshless method based on the LBIE for solving problems in linear elasticity is developed and numerically implemented. The present method is a truly meshless method, as it does not need a “finite element mesh”, either for purposes of interpolation of the solution variables, or for the integration of the energy. All integrals in the formulation can be easily evaluated over regularly shaped domains (in general, spheres in three-dimensional problems) and their boundaries. The essential boundary conditions in the present formulation can be easily imposed even when the non-interpolative moving least squares approximation is used. Several numerical examples are presented to illustrate the implementation and performance of the present method. The numerical examples show that high rates of convergence with mesh refinement for the displacement and energy norms are achievable. No post-processing procedure is required to compute the strain and stress, since the original solution from the present method, using the moving least squares approximation, is already smooth enough.  相似文献   

2.
 The meshless local Petrov-Galerkin (MLPG) method is an effective truly meshless method for solving partial differential equations using moving least squares (MLS) interpolants and local weak forms. In this paper, a MLPG formulation is proposed for free and forced vibration analyses. Local weak forms are developed using weighted residual method locally from the dynamic partial differential equation. In the free vibration analysis, the essential boundary conditions are implemented through the direct interpolation form and imposed using orthogonal transformation techniques. In the forced vibration analysis, the penalty method is used in implementation essential boundary conditions. Two different time integration methods are used and compared in the forced vibration analyses using the present MLPG method. The validity and efficiency of the present MLPG method are demonstrated through a number of examples of two-dimensional solids. Received 9 October 2000  相似文献   

3.
A finite volume meshless local Petrov–Galerkin (FVMLPG) method is presented for elastodynamic problems. It is derived from the local weak form of the equilibrium equations by using the finite volume (FV) and the meshless local Petrov–Galerkin (MLPG) concepts. By incorporating the moving least squares (MLS) approximations for trial functions, the local weak form is discretized, and is integrated over the local subdomain for the transient structural analysis. The present numerical technique imposes a correction to the accelerations, to enforce the kinematic boundary conditions in the MLS approximation, while using an explicit time-integration algorithm. Numerical examples for solving the transient response of the elastic structures are included. The results demonstrate the efficiency and accuracy of the present method for solving the elastodynamic problems.  相似文献   

4.
A modified meshless local Petrov–Galerkin (MLPG) method is presented for elasticity problems using the moving least squares (MLS) approximation. It is a truly meshless method because it does not need a mesh for the interpolation of the solution variables or for the integration of the energy. In this paper, a simple Heaviside test function is chosen to overcome the computationally expensive problems in the MLPG method. Essential boundary conditions are imposed by using a direct interpolation method based on the MLPG method establishes equations node by node. Numerical results in several examples show that the present method yielded very accurate solutions. And the sensitivity of the method to several parameters is also studied in this paper.  相似文献   

5.
A local symmetric weak form (LSWF) for linear potential problems is developed, and a truly meshless method, based on the LSWF and the moving least squares approximation, is presented for solving potential problems with high accuracy. The essential boundary conditions in the present formulation are imposed by a penalty method. The present method does not need a “finite element mesh”, either for purposes of interpolation of the solution variables, or for the integration of the “energy”. All integrals can be easily evaluated over regularly shaped domains (in general, spheres in three-dimensional problems) and their boundaries. No post-smoothing technique is required for computing the derivatives of the unknown variable, since the original solution, using the moving least squares approximation, is already smooth enough. Several numerical examples are presented in the paper. In the example problems dealing with Laplace & Poisson's equations, high rates of convergence with mesh refinement for the Sobolev norms ||·||0 and ||·||1 have been found, and the values of the unknown variable and its derivatives are quite accurate. In essence, the present meshless method based on the LSWF is found to be a simple, efficient, and attractive method with a great potential in engineering applications.  相似文献   

6.
The meshless local Petrov–Galerkin (MLPG) method is an effective truly meshless method for solving partial differential equations using moving least squares (MLS) interpolants. It is, however, computationally expensive for some problems. A coupled MLPG/finite element (FE) method and a coupled MLPG/boundary element (BE) method are proposed in this paper to improve the solution efficiency. A procedure is developed for the coupled MLPG/FE method and the coupled MLPG/BE method so that the continuity and compatibility are preserved on the interface of the two domains where the MLPG and FE or BE methods are applied. The validity and efficiency of the MLPG/FE and MLPG/BE methods are demonstrated through a number of examples. Received 6 June 2000  相似文献   

7.
A new meshless method for solving nonlinear boundary value problems, based on the local boundary integral equation (LBIE) method and the moving least squares approximation, is proposed in the present paper. The total formulation and a rate formulation are developed for the implementation of the present method. The present method does not need domain and boundary elements to deal with the volume and boundary integrals, which will cause some difficulties for the conventional boundary element method (BEM) or the field/boundary element method (FBEM), as the volume integrals are inevitable in dealing with nonlinear boundary value problems. This is the same for the element free Galerkin (EFG) method which also needs element-like cells in the entire domain to evaluate volume integrals. The “companion fundamental solution” introduced in Zhu, Zhang and Atluri (1998) is used so that no derivatives of the shape functions are needed to construct the stiffness matrix for the interior nodes, as well as for those nodes with no parts of their local boundaries coinciding with the global boundary of the domain of the problem, where essential boundary conditions are specified. It is shown that the satisfaction of the essential as well as natural boundary conditions is quite simple, and algorithmically very efficient, in the present nonlinear LBIE approach. Numerical examples are presented for several problems, for which exact solutions are available. The present method converges fast to the final solution with reasonably accurate results for both the unknown variable and its derivatives. No post processing procedure is required to compute the derivatives of the unknown variable (as in the conventional FBEM), since the solution from the present method, using the moving least squares approximation, is already smooth enough. The numerical results in these examples show that high rates of convergence for the Sobolev norms ∥·∥0 and ∥·∥1 are achievable, and that the values of the unknown variable and its derivatives are quite accurate.  相似文献   

8.
利用薄板控制微分方程的等效积分对称弱形式和对变量(挠度)采用移动最小二乘近似函数进行插值,研究了无网格局部Petrov-Galerkin方法在薄板屈曲问题中的应用。它不需要任何形式的网格划分,所有的积分都在规则形状的子域及其边界上进行,并用罚因子法施加本质边界条件。数值算例表明,无网格局部Petrov-Galerkin法不但能够求解弹性静力学问题,而且在求解弹性稳定性问题时仍具有收敛快,稳定性好,精度高的特点。  相似文献   

9.
A meshless local Petrov-Galerkin method (MLPG) [[Atluri and Zhu (1998)] for the analysis of cracks in isotropic functionally graded materials is presented. The meshless method uses the moving least squares (MLS) to approximate the field unknowns. The shape function has not the Kronecker Delta properties for the trial-function-interpolation, and a direct interpolation method is adopted to impose essential boundary conditions. The MLPG method does not involve any domain and singular integrals to generate the global effective stiffness matrix if body force is ignored; it only involves a regular boundary integral. The material properties are smooth functions of spatial coordinates and two interaction integrals [Rao and Rahman (2003a,b)] are used for the fracture analysis. Two numerical examples including both mode-I and mixed-mode problems are presented to calculated the stress intensity factors (SIFs) by the proposed method. Example problems in functionally graded materials are presented and compared with available reference solutions. A good agreement obtained show that the proposed method possesses no numerical difficulties.  相似文献   

10.
A Meshless Local Petrov-Galerkin (MLPG) method has been developed for solving 3D elasto-dynamic problems. It is derived from the local weak form of the equilibrium equations by using the general MLPG concept. By incorporating the moving least squares (MLS) approximations for trial and test functions, the local weak form is discretized, and is integrated over the local sub-domain for the transient structural analysis. The present numerical technique imposes a correction to the accelerations, to enforce the kinematic boundary conditions in the MLS approximation, while using an explicit time-integration algorithm. Numerical examples for solving the transient response of the elastic structures are included. The results demonstrate the efficiency and accuracy of the present method for solving the elasto-dynamic problems; and its superiority over the Galerkin Finite Element Method.  相似文献   

11.
Meshless methods for solving boundary value problems have been extensively popularized in recent literature owing to their flexibility in engineering applications, especially for problems with discontinuities, and because of the high accuracy of the computed results. A meshless method for solving linear and non-linear boundary value problems, based on the local boundary integral equation method and the moving least squares (MLS) approximation, is discussed in the present article. In the present article, the implementation of the LBIE formulation for linear and non-linear problems with the linear part of the differential operator being the Helmholtz type, is developed. For non-linear problems, the total formulation and a rate formulation are developed for the implementation of the presently proposed method. The present method is a true meshless one, as it does not need domain and boundary elements to deal with the volume and boundary integrals, for linear as well as non-linear problems. The “companion solution” is employed to simplify the present formulation and reduce the computational cost. It is shown that the satisfaction of the essential as well as natural boundary conditions is quite simple, and algorithmically very efficient in the present LBIE approach, even when the non-interpolative MLS approximation is used. Numerical examples are presented for several linear and non-linear problems, for which exact solutions are available. The present method converges fast to the final solution with reasonably accurate results for both the unknown variable and its derivatives in solving non-linear problems. No post processing procedure is required to compute the derivatives of the unknown variable [as in the conventional boundary element method and field/boundary element method, as the solution from the present method, using the MLS approximation, is already smooth enough. The numerical results in these examples show that high rates of convergence with mesh refinement for the Sobolev norms 6·60 and 6·61 are achievable, and that the values of the unknown variable and its derivatives are quite accurate.  相似文献   

12.
利用基于滑动Kriging插值的无网格局部Petrov-Galerkin (MLPG) 法来求解二维结构动力问题,Heaviside分段函数作为局部弱形式的权函数并采用精细积分法来离散时间域。基于滑动Kriging插值构造的形函数满足Kronecker Delta性质,因此可以直接施加本质边界条件。刚度矩阵形成过程中只涉及到边界积分,而没有涉及到区域积分和奇异积分。计算结果表明:基于滑动Kriging插值的MLPG法具有模拟简单、计算精度高等优点。  相似文献   

13.
基于Kirchhoff均匀各向异性板控制方程的等效积分弱形式和对挠度函数采用移动最小二乘近似函数进行插值, 进一步研究无网格局部Petrov-Galerkin方法在纤维增强对称层合板弯曲问题中的应用。该方法不需要任何形式的网格划分, 所有的积分都在规则形状的子域及其边界上进行,其问题的本质边界条件采用罚因子法来施加。通过数值算例和与其他方法的结果比较, 表明无网格局部Petrov-Galerkin法求解层合薄板弯曲问题具有解的精度高、收敛性好等一系列优点。   相似文献   

14.
In this article a numerical solution of the time dependent, coupled system equations of magnetohydrodynamics (MHD) flow is obtained, using the strong-form local meshless point collocation (LMPC) method. The approximation of the field variables is obtained with the moving least squares (MLS) approximation. Regular and irregular nodal distributions are used. Thus, a numerical solver is developed for the unsteady coupled MHD problems, using the collocation formulation, for regular and irregular cross sections, as are the rectangular, triangular and circular. Arbitrary wall conductivity conditions are applied when a uniform magnetic field is imposed at characteristic directions relative to the flow one. Velocity and induced magnetic field across the section have been evaluated at various time intervals for several Hartmann numbers (up to 105) and wall conductivities. The numerical results of the strong-form MPC method are compared with those obtained using two weak-form meshless methods, that is, the local boundary integral equation (LBIE) meshless method and the meshless local Petrov–Galerkin (MLPG) method, and with the analytical solutions, where they are available. Furthermore, the accuracy of the method is assessed in terms of the error norms L 2 and L , the number of nodes in the domain of influence and the time step length depicting the convergence rate of the method. Run time results are also presented demonstrating the efficiency and the applicability of the method for real world problems.  相似文献   

15.
A new meshless method based on a regular local integral equation and the moving least‐squares approximation is developed. The present method is a truly meshless one as it does not need a ‘finite element or boundary element mesh’, either for purposes of interpolation of the solution variables, or for the integration of the ‘energy’. All integrals can be easily evaluated over regularly shaped domains (in general, spheres in three‐dimensional problems) and their boundaries. No derivatives of the shape functions are needed in constructing the system stiffness matrix for the internal nodes, as well as for those boundary nodes with no essential‐boundary‐condition‐prescribed sections on their local boundaries. Numerical examples presented in the paper show that high rates of convergence with mesh refinement are achievable, and the computational results for the unknown variable and its derivatives are very accurate. No special post‐processing procedure is required to compute the derivatives of the unknown variable, as the original result, from the moving least‐squares approximation, is smooth enough. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
A meshless local Petrov-Galerkin (MLPG) method is applied to solve static and dynamic bending problems of linear viscoelastic plates described by the Reissner–Mindlin theory. To this end, the correspondence principle is applied. A weak formulation for the set of governing equations in the Reissner–Mindlin theory with a unit test function is transformed into local integral equations on local subdomains in the mean surface of the plate. Nodal points are randomly spread on the mean surface of the plate and each node is surrounded by a circular subdomain to which local integral equations are applied. A meshless approximation based on the moving least-squares (MLS) method is employed in the numerical implementation.  相似文献   

17.
In this paper a numerical approach based on the truly meshless methods is proposed to deal with the second-order two-space-dimensional telegraph equation. In the meshless local weak–strong (MLWS) method, our aim is to remove the background quadrature domains for integration as much as possible, and yet to obtain stable and accurate solution. The MLWS method is designed to combine the advantage of local weak and strong forms to avoid their shortcomings. In this method, the local Petrov–Galerkin weak form is applied only to the nodes on the Neumann boundary of the domain of the problem. The meshless collocation method, based on the strong form equation is applied to the interior nodes and the nodes on the Dirichlet boundary. To solve the telegraph equation using the MLWS method, the conventional moving least squares (MLS) approximation is exploited in order to interpolate the solution of the equation. A time stepping scheme is employed to approximate the time derivative. Another solution is also given by the meshless local Petrov-Galerkin (MLPG) method. The validity and efficiency of the two proposed methods are investigated and verified through several examples.  相似文献   

18.
A meshless local Petrov-Galerkin (MLPG) method that uses radial basis functions rather than generalized moving least squares (GMLS) interpolations to develop the trial functions in the study of Euler-Bernoulli beam problems is presented. The use of radial basis functions (RBF) in meshless methods is demonstrated for C1 problems for the first time. This interpolation choice yields a computationally simpler method as fewer matrix inversions and multiplications are required than when GMLS interpolations are used. Test functions are chosen as simple weight functions as in the conventional MLPG method. Patch tests, mixed boundary value problems, and problems with complex loading conditions are considered. The radial basis MLPG method yields accurate results for deflections, slopes, moments, and shear forces, and the accuracy of these results is better than that obtained using the conventional MLPG method.Lockheed Martin Space Operations  相似文献   

19.
Numerical solutions obtained by the meshless local Petrov–Galerkin (MLPG) method are presented for transient thermoelastic deformations of functionally graded (FG) beams. The MLPG method is a truly meshless approach, and neither the nodal connectivity nor the background mesh is required for solving the initial-boundary-value problem. In this study, the MLPG weak formulations associated with the governing equations of the transient-state thermal equilibrium and quasi-static mechanical equilibrium are given. The penalty method is adopted to efficiently enforce the essential boundary conditions, and the test function is chosen to equal the weight function of the moving least squares approximation. An example is demonstrated for an FG beam with thermoelastic moduli varying exponentially through the thickness direction under a nonuniformly convective heat supply. Results obtained from the MLPG method are found to agree well with those by the analytical solution. The nonhomogeneity of the material properties on the thermo-mechanical response of the FG beam is investigated. It is shown that temperature and deformation fields of FG beams in a transient state differ substantially from those at the steady state. Besides that, the rate of change of the heat supply on the transient responses is also delineated.  相似文献   

20.
In this paper, a version of meshless local Petrov–Galerkin (MLPG) method is developed to obtain three-dimensional (3D) static solutions for thick functionally graded (FG) plates. The Young's modulus is considered to be graded through the thickness of plates by an exponential function while the Poisson's ratio is assumed to be constant. The local symmetric weak formulation is derived using the 3D equilibrium equations of elasticity. Moreover, the field variables are approximated using the 3D moving least squares (MLS) approximation. Brick-shaped domains are considered as the local sub-domains and support domains. In this way, the integrations in the weak form and approximation of the solution variables are done more easily and accurately. The proposed approach to construct the shape and the test functions make it possible to introduce more nodes in the direction of material variation. Consequently, more precise solutions can be obtained easily and efficiently. Several numerical examples containing the stress and deformation analysis of thick FG plates with various boundary conditions under different loading conditions are presented. The obtained results have been compared with the available analytical and numerical solutions in the literature and an excellent consensus is seen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号