首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Resistance and tolerance are different strategies of plants to deal with herbivore attack. Since resources are limited and resistance and tolerance serve similar functions for plants, trade-offs between these two strategies have often been postulated. In this study we investigated trade-offs between resistance and one aspect of tolerance, the ability to regrow after defoliation. In order to minimize confounding effects of genetic background and selection history, we used offspring derived from artificial selection lines of ribwort plantain (Plantago lanceolata) that differed in their levels of leaf iridoid glycosides (IGs), allelochemicals that confer resistance to generalist herbivores, to study genetic associations with regrowth ability. We tested whether high-IG plants (1) suffer allocation costs of resistance in terms of reduced shoot and root growth, (2) have reduced regrowth ability (tolerance) after defoliation compared to low-IG plants, and (3) whether such costs are more pronounced under nutrient stress. High-IG plants produced fewer inflorescences and side rosettes than low-IG plants and showed a different biomass allocation pattern, but since neither the vegetative, nor the reproductive biomass differed between the lines, there was no evidence for a cost of IG production in terms of total biomass production under either nutrient condition. High-IG plants also did not suffer a reduced capacity to regrow shoot mass after defoliation. However, after regrowth, root mass of high-IG plants grown under nutrient-poor conditions was significantly lower than that of low-IG plants. This suggests that under these conditions shoot regrowth of high-IG plants comes at a larger expense of root growth than in low-IG plants. We speculate therefore that if there is repeated defoliation, high-IG plants may eventually fail to maintain shoot regrowth capacity and that trade-offs between resistance and tolerance in this system will show up after repeated defoliation events under conditions of low resource availability.  相似文献   

2.
A role for nitrogen reserves in forage regrowth and stress tolerance   总被引:20,自引:0,他引:20  
Carbohydrate accumulation and utilization during shoot regrowth after defoliation and winter has been studied extensively in most species used as forage. However, recent work suggests that N reserves found in vegetative tissues also are important for defoliation tolerance and winter hardiness. Results suggest that these N reserves constitute an alternative N source used when N2 fixation and/or mineral N uptake are reduced. 15N labelling experiments indicate that a large proportion of herbage N is derived from N reserves mobilized from stem bases or roots to developing leaves and shoots. Amino acids and specific proteins (i.e. vegetative storage proteins, VSPs) are deposited in roots and stem bases and, in the case of VSPs, are degraded rapidly after defoliation. Identification and characterization of VSPs will increase our understanding of the role N reserves play in stress tolerance and may lead to innovative approaches for improving forage persistence and productivity.  相似文献   

3.
刈牧对草原植物的影响   总被引:7,自引:0,他引:7  
在草原科学发展的早期 ,人们认识了重要植物的生长营养需要和生活史特性 ,对草原管理基本理论的发展起到了重要作用[1 ] 。此后 ,为了更有效地管理草原和食草家畜 ,以使刈牧对草原植物的有害影响降到最低限度 ,并维持植物和家畜的持续生产 ,人们开始将植物对刈牧响应的知识与不同的过程结合起来。70年代中期 ,随着放牧最优化假设的提出 ,植物 -食草动物相互作用的模拟研究盛况空前[2 ,3] 。这种假设认为最大植物生产力产生于最优的刈牧强度 ,而不是不刈牧的植物。但这种假设在生态学家和自然资源管理学家之间产生了许多分歧[3~ 6] 。此时 ,…  相似文献   

4.
The developmental reaction norm (DRN) represents the set of ontogenetic trajectories that can be produced by a genotype exposed to different environmental conditions. Genetic variation in the DRN for growth traits and in the patterns of biomass allocation is critical to phenotypic evolution in heterogeneous environments. The DRN and patterns of biomass allocation were investigated in 11 clones of the caespitose, corm-forming, perennial grass Phleum pratense in relation to competitive stress imparted by Lolium perenne in a 16 week glasshouse experiment. A separate experiment assessed the ability of basal buds flanking a corm to sprout and the relationship of corm mass to sprout mass for the same clones. Corm fresh mass varied among clones and was significantly correlated with the dry mass of the tillers that sprouted from basal buds. In the competition experiment, clones in competitive environments varied significantly from those in non-competetive environments in terms of their DRNs for number of tillers and shoot dry mass. Thus, selection of DRNs would favour different genotypes in the two environments and at different times. Significant negative genetic correlations were detected for tiller number and mean tiller mass in the noncompetitive, but not the competitive, environment. Biomass allocation to stem bases was significantly greater for clones under competitive stress. Allocation to storage tissues such as corms may be adaptive if it enhances persistence in the competitive field environments typically occupied by caespitose grasses. Root and shoot allocation showed a significant clone by competition interaction. For P. pratense, genotypic variation in growth trajectories plays an important role in determining variation in individual performance, a condition necessary for the continued evolution of the DRN.  相似文献   

5.
1. Leaf area was removed from Solidago altissima in either a dispersed pattern (half of every leaf removed) or a concentrated pattern (every other leaf removed) and effects on leaf gas exchange, vegetative growth and flowering were examined relative to undefoliated controls. Gas exchange was measured for leaves remaining after defoliation and for regrowth leaves that developed post-damage (at 7, 16 and 26 days post-defoliation).
2. Area-based photosynthetic rates of leaves remaining after defoliation were not affected by either dispersed or concentrated damage, but damage of both types enhanced area-based photosynthesis of regrowth leaves at 16 days post-defoliation and to a lesser extent at 26 days post-defoliation.
3. Dispersed damage, but not concentrated damage, stimulated mass-based photosynthesis of undamaged leaves remaining after defoliation. Undamaged leaves remaining after defoliation and regrowth leaves on damaged plants had higher specific leaf area (leaf area/leaf mass) than comparable leaves on control plants. Mass-based photosynthesis was more strongly elevated by defoliation than area-based photosynthesis because of this increase in specific leaf area.
4. Plants with dispersed damage recovered more quickly from defoliation; they had higher relative growth rates in the first week post-defoliation than plants with concentrated damage. Both types of defoliation caused similar reductions in flower production.
5. These results add to accumulating evidence that dispersed damage is generally less detrimental to plants than concentrated damage and suggest that physiological changes in leaves may be part of the reason.  相似文献   

6.
Young plants of a rhizomatous grass Calamagrostis epigejos (L.) Roth were grown from seed in nutrient solutions containing nitrogen in concentrations 0.1, 1.0, and 10 mM. After six weeks of cultivation the plants were defoliated and changes in growth parameters and in content of storage compounds were measured in the course of regrowth under highly reduced nitrogen availability. Plants grown at higher nitrogen supply before defoliation had higher amount of all types of nitrogen storage compounds (nitrates, free amino acids, soluble proteins), which was beneficial for their regrowth rate, in spite of lower content of storage saccharides. Amino acids and soluble proteins from roots and stubble bases were the most important sources of storage compounds for regrowth of the shoot. Faster growth of plants with higher N content was mediated by greater leaf area expansion and greater number of leaves. In plants with lower contents of N compounds number of green leaves decreased after defoliation significantly and senescing leaves presumably served as N source for other growing organs. Results suggest that internal N reserves can support regrowth of plants after defoliation even under fluctuating external N availability. Faster regrowth of C. epigejos with more reserves was mediated mainly by changes in plant morphogenesis.  相似文献   

7.
An experiment was designed to evaluate the role of N and C reserves on regrowth of Lolium perenne cv. Bravo following defoliation. By using two nitrogen fertilization levels together with three photoperiodic conditions, plants with variable contents of water-soluble carbohydrates (43-216 mg g-1 DW in stubble) and contrasting amounts of nitrogen (7-49 mg g-1 DW) were obtained. Plants were severely defoliated and regrowth was followed for 28 d under the same environmental conditions. The yield of leaf dry matter at the end of the regrowth period was not related to the initial level of carbohydrate reserves. However, levels of fructan in leaf sheaths and in elongating leaf bases strongly influenced the shoot yield during the first 2 d following defoliation. Fructan exohydrolase activity increased 2-3-fold in sheaths and 3.5-5-fold in elongation leaf bases, suggesting that not only fructans from sheaths but also fructans from immature cells may be used as substrates for growth. In contrast, no direct relationship was found between shoot production and nitrogen or soluble protein accumulation in source organs during early regrowth. A significant correlation existed with the initial amount of soluble proteins in sheaths and in elongating leaf bases after only 6 d of regrowth.  相似文献   

8.
BACKGROUND AND AIMS: The regrowth dynamics after defoliation of the invasive grass Calamagrostis epigejos were studied. As nitrogen (N) reserves have been shown to play an important role during plant regrowth, the identity, location and relative importance for regrowth of N stores were determined in this rhizomatous grass. METHODS: Plant growth, nitrate uptake and root respiration were followed during recovery from defoliation. Water soluble carbohydrates, nitrate, free amino acids and soluble proteins were analysed in the remaining organs. KEY RESULTS: Nitrate uptake and root respiration were severely reduced during the first days of regrowth. Roots were the main net source of mobilized N. The quantitatively dominant N storage compounds were free amino acids. Free amino acids and soluble proteins in the roots decreased by 55 and 50%, respectively, and a substantial (approximately 38%) decrease in stubble protein was also observed. Although the relative abundance of several soluble proteins in roots decreased during the initial recovery from defoliation, no evidence was found for vegetative storage protein (VSP). Furthermore, rhizomes did not act as a N storage compartment. CONCLUSIONS: Production of new leaf area was entirely reliant, during the first week after defoliation, on N stores present in the plant. Mobilized N originated mainly from free amino acids and soluble proteins located in roots, and less so from proteins in stubble. Presence of VSP in the roots was not confirmed. The data suggest that rhizomes played an important role in N transport but not in N storage.  相似文献   

9.
The contribution of nitrogen reserves to regrowth following defoliation was studied in white clover plants (Trifolium repens cv. Huia). This was found to be closely linked to the morphological pattern of development of the aerial parts during the same period. Low temperature (6 degrees C) and short day exposure (8 h photoperiod) were used to induce dwarf development, i.e. to increase branching rate and to enhance new sites of leaf production during a period of regrowth. Treated plants exhibited a large reduction in leaf area and a large increase in leaf pool size for the first 10 d of a subsequent regrowth under standard culture conditions (16 h daylight; 22/18 degrees C day/night). The contribution of nitrogen from storage compounds in organs remaining after defoliation (sources) to regrowing tissues (sinks) was assessed by 15N pulse-chase labelling during regrowth following shoot removal. The mobilization of nitrogen reserves from storage tissues of regrowing clover was closely linked to the pattern of differentiation of the newly developed organs. It appeared that regrowth was supported less by endogenous N for the first 10 d after defoliation in treated plants, compared with control plants grown continuously in standard conditions. It is assumed that dwarf plants exhibit a lower dependence upon the mobilization of soluble proteins previously accumulated in roots and uncut stolons. The relationship between leaf development rate and N-uptake recovery following defoliation is discussed.  相似文献   

10.
11.
We quantified the biomass allocation patterns to leaves, stems and roots in vegetative plants, and how this is influenced by the growth environment, plant size, evolutionary history and competition. Dose-response curves of allocation were constructed by means of a meta-analysis from a wide array of experimental data. They show that the fraction of whole-plant mass represented by leaves (LMF) increases most strongly with nutrients and decreases most strongly with light. Correction for size-induced allocation patterns diminishes the LMF-response to light, but makes the effect of temperature on LMF more apparent. There is a clear phylogenetic effect on allocation, as eudicots invest relatively more than monocots in leaves, as do gymnosperms compared with woody angiosperms. Plants grown at high densities show a clear increase in the stem fraction. However, in most comparisons across species groups or environmental factors, the variation in LMF is smaller than the variation in one of the other components of the growth analysis equation: the leaf area : leaf mass ratio (SLA). In competitive situations, the stem mass fraction increases to a smaller extent than the specific stem length (stem length : stem mass). Thus, we conclude that plants generally are less able to adjust allocation than to alter organ morphology.  相似文献   

12.
Infra-red gas analysis and a quantitative radiocarbon tracertechnique were used to measure photosynthesis, and the export,distribution and utilization of current assimilate in the regrowthof leaf tissue and the growth of stem and root of partially-defoliateduniculm barley plants. After defoliation, which removed allleaf tissue above the ligule of leaf 3, the rate of photosynthesisof the remaining two older leaves fell to 90–95 per centof that of control leaves, but they exported more of their assimilatedcarbon to meristems elsewhere in the plant during the first48 h after the defoliation. The level of export from the twoolder leaves began to decline when new leaf tissue regrew fromthe shoot apex, and fell below that of the control leaves 4days after defoliation. The two older leaves supplied the assimilateused in the regrowth of new leaf tissue immediately after defoliation:previously they had exported most of their assimilate to root.There was no evidence that ‘reserves’ were mobilizedto meet the needs of regrowth at leaf meristems or, indeed,of the growth in stem and root; current photosynthesis suppliedsufficient assimilate to account for all observed growth. Ingeneral, the plants responded to defoliation with a rapid andmarked re-allocation of assimilate from root to leaf meristems,with the result that root growth was severely retarded but newleaf tissue grew at 70–100 per cent of the rate observedin control plants.  相似文献   

13.
The study of carbohydrate metabolism in perennial ryegrass (Lolium perenne L. cv. Bravo) during the first 48 h of regrowth showed that fructans from elongating leaf bases were hydrolysed first whereas fructans in mature leaf sheaths were degraded only after a lag of 1.5 h. In elongating leaf bases, the decline in fructan content occurred not only in the differentiation zone (30–60 mm from the leaf base), but also in the growth zone. Unlike other soluble carbohydrates, the net deposition rate of fructose remained positive and even rose during the first day following defoliation. The activity of fructan exohydrolase (FEH; EC 3.2.1.80) was maximal in the differentiation zone before defoliation and increased in all segments, but peaked in the growth zone after defoliation. These data strongly indicate that fructans stored in the leaf growth zone were hydrolysed and recycled in that zone to sustain the refoliation immediately after defoliation. Despite the depletion of carbohydrates, leaves of defoliated plants elongated at a significantly higher rate than those of undefoliated plants, during the first 10 h of regrowth. This can be partly attributed to the transient increase in water and nitrate deposition rate. The results are discussed in relation to defoliation tolerance. Received: 16 June 2000 / Accepted: 17 October 2000  相似文献   

14.
The relative significance of the use of stored or currently absorbed C for the growth of leaves or roots of Lolium perenne L. after defoliation was assessed by steady-state labelling of atmospheric CO2. Leaf growth for the first two days after defoliation was to a large extent dependent on the use of C reserves. The basal part of the elongating leaves was mainly new tissue and 91% of the C in this part of the leaf was derived from reserves assimilated prior to defoliation. However, half of the sucrose in the growth zone was produced from photosynthesis by the emerged leaves. Fructans that were initially present in elongating leaf bases were hydrolysed (loss of 93 to 100%) and the resulting fructose was found in the new leaf bases, suggesting that this pool may be used to support cell division and elongation. Despite a negative C balance at the whole-plant level, fructans were synthesized from sucrose that was translocated to the new leaf bases. After a regrowth period of 28 d, 45% of the C fixed before defoliation was still present in the root and leaf tissue and only 1% was incorporated in entirely new tissue.  相似文献   

15.
Bud viability after various defoliation frequency treatments was determined in the perennial bunchgrass Poa ligularis under arid field conditions from 2002 to 2005. Bud respiratory activity was examined on various stem base hierarchies using the tetrazolium test, as validated with the vital stain Evan’s blue. The hypothesis of this work was that the total and viable axillary bud numbers on stem bases of all study stem base hierarchies are reduced as defoliation frequency increases. Interpretation of the results differed when they were expressed as a percentage rather than on a number per stem base basis. The total number of axillary buds per stem base was similar in all defoliation frequencies. When the results were expressed on a percentage basis, the order on stem bases having metabolically active buds was daughter tillers > stem bases with green tillers > stem bases without green tillers in all defoliation frequencies. The reverse order was found when considering dead buds. How the results are expressed thus deserves our attention when reporting results on bud viability in perennial grasses. An increased defoliation frequency increased the percentage of dead and dormant buds after the third or fourth defoliation of P. ligularis during the 1st study year. These percentages of bud viability, however, increased after the first defoliation during the 2nd study year. Bud viability was affected not only by the cumulative effects of defoliation but also by climatic variables throughout the seasons. However, our results show that P. ligularis can be defoliated up to twice a year without affecting bud viability, and thus its potential capacity for regrowth after defoliation.  相似文献   

16.
季节放牧下内蒙古温带草原羊草根茎叶功能性状的权衡   总被引:1,自引:0,他引:1  
潘琰  龚吉蕊 《植物学报》2017,52(3):307-321
放牧是草地主要利用方式之一,不同季节放牧通过影响草地功能性状间的权衡从而影响牧后再生及补偿性生长。通过测定内蒙古温带草原优势种羊草(Leymus chinensis)的株高、节间距和分蘖数等软性状及气体交换、抗氧化酶系统和根茎叶渗透调节物质的含量等硬性状,分析了不同季节放牧处理下羊草功能性状的变化及其权衡关系。结果表明,3年短期放牧处理下,类连续放牧(T1)比春季放牧样地(T2)羊草表现出更强的避牧性与耐牧性。类连续放牧与春季放牧样地羊草软性状及光合特性表现出一致性,6月放牧干扰降低了羊草的净光合速率(P_n),8月放牧干扰通过增加电子传递速率(ETR)及光系统Ⅱ(PSⅡ)分配于光化学反应(P)的比值等增大P_n。但春季放牧样地羊草株高较高,且光合产物较多分配于叶片,导致大量有机物质被啃食,不利于牧草再生。而类连续放牧羊草将较多的有机物质分配于根茎,有利于牧草根系吸水及牧后再生。因此,3年短期放牧处理下,类连续放牧更有利于牧草再生及草原的可持续利用。  相似文献   

17.
Tolerance to herbivory is an adaptation that promotes regrowth and maintains fitness in plants after herbivore damage. Here, we hypothesized that the effect of competition on tolerance can be different for different genotypes within a species and we tested how tolerance is affected by competitive regime and damage type. We inflicted apical or leaf damage in siblings of 29 families of an annual plant Raphanus raphanistrum (Brassicaceae) grown at high or low competition. There was a negative correlation of family tolerance levels between competition treatments: plant families with high tolerance to apical damage in the low competition treatment had low tolerance to apical damage in the high competition treatment and vice versa. We found no costs of tolerance, in terms of a trade‐off between tolerance to apical and leaf damage or between tolerance and competitive ability, or an allocation cost in terms of reduced fitness of highly tolerant families in the undamaged state. High tolerance bound to a specific competitive regime may entail a cost in terms of low tolerance if competitive regime changes. This could act as a factor maintaining genetic variation for tolerance.  相似文献   

18.
Although it is well established that carbon reserves contributeto shoot regrowth of leguminous forage species, little informationis available on nitrogen reserves except in Medicaqo sativaL. and Trifolium subterraneum L. In this study, reserves werelabelled with 15N to demonstrate the mobilization of endogenousnitrogen from roots and stolons to regrowing leaves and newstolons during 24 d of regrowth in white clover (Thfolium repensL.). About 55% and 70%, respectively, of the nitrogen contentsof these organs were mobilized to support the regrowth of leaves.During the first 6 d, nitrogen in regrowing leaves came mainlyfrom N reserves of organs remaining after defoliation. Afterthese first 6 d of regrowth, most of the shoot nitrogen wasderived from exogenous nitrogen taken up while the contributionof nitrogen reserves decreased. After defoliation, the buffer-solubleprotein content of roots and stolons decreased by 32% duringthe first 6 d of regrowth. To identify putative vegetative storageproteins, soluble proteins were separated using SDS-PAGE ortwo-dimensional electrophoresis. One protein of 17.3 kDa instolons and two proteins of 15 kDa in roots seemed to behaveas vegetative storage proteins. These three polypeptides, initiallyfound at high concentrations, decreased in relative abundanceto a large extent during early regrowth and then were accumulatedagain in roots and stolons once normal growth was re-established. Key words: White clover, regrowth, 15N-labelled, vegetative storage proteins, electrophoresis  相似文献   

19.
The potato leafhopper, Empoasca fabae (Harris), is a key pest of alfalfa, Medicago sativa L., in part because of the leafhopper's ability to disrupt upward translocation within phloem tissues. To determine if leafhopper injury also disrupts basal translocation necessary for regrowth and perenniality of alfalfa, we used radiolabeled 14CO2 to measure the basal transport of photoassimilates in injured and healthy plants. In one experiment, less 14C was transported to lower stem tissue of leafhopper-injured plants in comparison to the same tissue of healthy plants in early vegetative and early reproductive stages of alfalfa development. In a second experiment, less 14C was transported to lower stem, crown, and root tissues of injured plants in comparison to the same tissues of healthy, early reproductive plants. The disruption of basal transport caused by potato leafhopper may impact carbon storage and mobilization subsequent to defoliation, winter survival, and nitrogen fixation.  相似文献   

20.
Summary Two perennial tussock grasses of savannas were compared in a glasshouse study to determine why they differed in their ability to withstand frequent, heavy grazing; Cenchrus ciliaris is tolerant and Themeda triandra is intolerant of heavy grazing. Frequent defoliation at weekly intervals for six weeks reduced shoot biomass production over a subsequent 42 day regrowth period compared with previously undefoliated plants (infrequent) in T. triandra, but not in C. ciliaris. Leaf area of T. triandra expanded rapidly following defoliation but high initial relative growth rates of shoots were not sustained after 14 days of regrowth because of reducing light utilising efficiency of leaves. Frequently defoliated plants were slower in rate of leaf area expansion and this was associated with reduced photosynthetic capacity of newly formed leaves, lower allocation of photosynthate to leaves but not lower tiller numbers. T. triandra appears well adapted to a regime where defoliation is sufficiently infrequent to allow carbon to be fixed to replace that used in initial leaf area expansion. In contrast, C. ciliaris is better adapted to frequent defoliation than is T. triandra, because horizontally orientated nodal tillers are produced below the defoliation level. This morphological adaptation resulted in a 10-fold higher leaf area remaining after defoliation compared with similarly defoliated T. triandra, which together with the maintenance of moderate levels of light utilising efficiency, contributed to the higher leaf area and shoot weight throughout the regrowth period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号