首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
At present, plate heat exchangers constantly open up new application fields in the chemical, process, and allied industries due to their numerous advantages. The channel flow between individual plates is characterized by high turbulence induced at low flow velocities. Heat transfer coefficients are generally higher in plate heat exchangers than in conventional shell-and-tube heat exchangers. According to the nature of the process, physical properties of the media, and allowable pressure drops, plates with a variety of patterns are available to adapt the equipment optimally to the specific process conditions. For handling aggressive media the module welded plate heat exchanger was developed. The laser welded modular design keeps the inherent advantages of plate type heat exchanger. It can be disassembled and mechanically cleaned outside the modules. The capacity can also be subsequently modified by changing the number of plates, or the plate patterns can be altered as it can be with the gasketed units. Typical applications of module welded plate heat exchangers in the chemical industry are acid coolers, thermal oil coolers, or condensers for hydrocarbon mixtures.  相似文献   

2.
In the project described in this paper an experimental rig for a one-stage absorption heat transformer was designed and constructed. One aim of the project was to reduce the investment costs for the apparatus. This incorporates new and less expensive compact brazed plate heat exchangers for generator, evaporator, condenser and solution heat exchanger. The absorber was designed as a helical coil pipe absorber, where the weak solution trickles down as a falling film outside of the coil. The tests of the equipment involved measurements using a mixture of trifluorethanol (TFE) and tetraethyleneglycoldimethylether (E181). The process characteristics were investigated for different temperatures of the rich solution leaving the absorber. Experimental results are presented and compared with the results of a computer simulation model. Additionally the model was used to compare the COP of the heat transformation process with the mixtures lithium bromide–water (LiBr–H2O) and ammonia–water (NH3–H2O). Furthermore, the overall heat and mass transfer coefficients for the plate heat exchangers and the falling film absorber were evaluated and compared with those of shell and tube heat exchangers.  相似文献   

3.
Babak Lotfi 《传热工程》2020,41(13):1117-1142
Abstract

As a new type of fin structure in finned tube heat exchangers, dimple turbulators exhibit excellent potential for thermo-hydraulic performance enhancement. A three-dimensional numerical simulation study was conducted to investigate the influences of five kinds of innovative concave dimple turbulators (CDTs), namely – elliptical dimple, conical frustum dimple, trapezoidal prism dimple, leeward triangular dimple and upward triangular dimple (UwTD) on the thermo-hydraulic performance enhancement in a plate fin-and-elliptical tube (PFET) heat exchanger, where CDTs are textured on the fin surface transversely between the elliptical tubes. The computational results are analyzed by considering the performance evaluation criterion for the PFET heat exchangers with different types of CDT shapes. The present investigation demonstrates that the heat transfer enhancement is intimately pertained to ejection with longitudinal counter-rotating flow, strengthened secondary flow and vortex structures at the downstream rim of CDT. A parametric study on the CDTs indicated that the UwTD vortex turbulators give better thermo-hydraulic performance under the present conditions. The numerical simulation results illustrated different secondary flow structures and heat transfer characteristics of the CDTs with various shapes, which disclosed the influential mechanisms of differently shaped dimple turbulators on the heat transfer augmentation in PFET heat exchangers.  相似文献   

4.
A modified kε turbulence model is developed in this study to simulate the gas–liquid two-phase flow and heat transfer in steam surface condensers. A quasi-three-dimensional algorithm is used to simulate the fluid flow and heat transfer in steam surface condensers. The numerical method is based on the conservation equations of mass and momentum for both gas-phase and liquid-phase, and mass fraction conservation equation for non-condensable gases. The numerical simulation of an experimental steam surface condenser has been conducted using the proposed modified kε turbulence model. The results obtained from the proposed model agree well with the experimental results and the results also show an obvious improvement in the prediction accuracy comparing with previous results where a constant value for the turbulent viscosity was used.  相似文献   

5.

The complex interfacial phenomena involved in two-phase gas-liquid flow have defied mathematical simplification and modeling. However, these systems are used in heat exchangers, condensers, chemical processing plants, nuclear reactor systems, and fuel cells. The present work considers a 1 mm-square minichannel and adiabatic flows corresponding to practical PEM fuel cell conditions. Pressure drop data is collected over mass fluxes of 4.0–12.0 kg/m2s for air and 0.5–21.6 kg/m2s for water, corresponding to superficial gas and liquid velocities of 3.19–10.06 m/s and 0.0005–0.022 m/s, respectively. The experiments are repeated with water-surfactant mixtures of different concentrations in order to quantify the surface tension effects, as it is recognized that surface tension is an important parameter for two-phase flow in minichannels. The accuracy of various two-phase pressure drop models is evaluated, and a new model for laminar-laminar two-phase flow pressure drop is developed.  相似文献   

6.
Stable dropwise condensation (DWC) of saturated steam has been achieved on an aluminum alloy Al 6951 disc with an average surface finish of about 0.15 μm by means of ion beam implantation technology with an ion dose of 1016 N+ cm?2 and an implantation energy of 20 keV. Measurements of the condensation heat transfer coefficient at steam pressures of 1200 and 1400 mbar were carried out as a function of surface subcooling on vertical plates of the same material which is commonly used for heat transfer equipment. Probably due to alloy inhomogeneities, only on about 50% of the plate surface DWC could be achieved, resulting in a maximum enhancement factor of 2.0 for DWC in comparison with theoretical values calculated by a corrected form of the Nusselt film theory. The heat transfer coefficient increases with increasing steam pressure and decreases with increasing surface subcooling. Furthermore, it was shown that condensation heat transfer cannot be enhanced if the ion implantation does not induce DWC. For the investigations, two different condensers have been used, one for the stability tests on discs and one for the heat transfer measurements on plates.  相似文献   

7.
Yiping Dai  Dongshuai Hu  Yi Wu  Yike Gao  Yue Cao 《传热工程》2017,38(11-12):990-999
ABSTRACT

The applications of zeotropic mixtures and multi-evaporator systems are two viable options to improve the performance of the organic Rankine cycle (ORC). This paper conducts the thermo-economic comparison of a basic ORC with R245fa/R600a and a parallel double-evaporator organic Rankine cycle (PDORC) with R245fa. Four indicators are used to evaluate the system performance: net power, cycle efficiency, area of heat exchangers, and area of heat exchangers per net power output. Submodels of condensers and evaporators are established specially for pure organic fluids and zeotropic mixtures. The performance optimization using genetic algorithm is conducted to compare the two systems quantitatively. The optimization indicates a zeotropic mixture is more profitable than a pure work fluid in a basic ORC with a worthy additional investment of heat exchanger. Though PDORC can increase net power obviously, it would decrease the thermo-economic performance of ORC.  相似文献   

8.
Successful numerical simulation on heat transfer and fluid flow performances of plate heat exchangers is vital. Their complex structures often make the numerical calculation quite difficult and time-consuming. Conclusions drawn by the present work are promising for greatly simplifying the simulation. Different types of plates consisting of different numbers of periods are analyzed and it is concluded that the Nusselt number remains constant for different periods of different plates under different inlet velocities. The central friction coefficients behave the same as Nusselt number. For the first and last periods, the respective friction coefficient also remains for different plates. A small plate fraction with four periods is enough for performance prediction of any-sized plates.  相似文献   

9.
《Applied Thermal Engineering》2003,23(10):1209-1225
Experiments on the evaporative heat transfer and pressure drop in the brazed plate heat exchangers were performed with refrigerants R410A and R22. The plate heat exchangers with different 45°, 35°, and 20° chevron angles are used. Varying the mass flux of refrigerant (13–34 kg/m2 s), the evaporating temperature (5, 10 and 15 °C), the vapor quality (0.9–0.15) and heat flux (2.5, 5.5 and 8.5 kW/m2), the evaporation heat transfer coefficients and pressure drops were measured. The heat transfer coefficient increases with increasing vapor quality and decreasing evaporating temperature at a given mass flux in all plate heat exchangers. The pressure drop increases with increasing mass flux and quality and with decreasing evaporating temperature and chevron angle. It is found that the heat transfer coefficients of R410A are larger than those of R22 and the pressure drops of R410A are less than those of R22. The empirical correlations of Nusselt number and friction factor are suggested for the tested PHEs. The deviations between correlations and experimental data are within ±25% for Nusselt number and ±15% for friction factor.  相似文献   

10.
Flow maldistribution in plate heat exchangers causes deterioration of both thermal and hydraulic performance. The situation becomes more complicated for two-phase flows during condensation where uneven distribution of the liquid to the channels reduces heat transfer due to high liquid flooding. The present study evaluates the thermal performance of falling film plate condensers with flow maldistribution from port to channel considering the heat transfer coefficient inside the channels as a function of channel flow rate. A generalized mathematical model has been developed to investigate the effect of maldistribution on the thermal performance as well as the exit quality of vapor. A wide range of parametric study is presented, which shows the effects of the mass flow rate ratio of cold fluid and two-phase fluid, flow configuration, number of channels and correlation for the heat transfer coefficient. The analysis presented here also suggests an improved method for heat transfer data analysis for plate condensers.  相似文献   

11.
Condensation pressure drop of carbon dioxide in brazed plate heat exchangers was investigated, and is presented in this paper. Carbon dioxide is known as an environmental friendly refrigerant with an Ozone Depletion Potential (ODP) equal to zero and Global Warming Potential (GWP) equal to unity, and has favorable thermodynamic and transport properties though it requires higher operating pressures (~15–30 bar). Brazed-type plate heat exchangers that can withstand high pressure are a good choice for such applications. This paper presents the procedure, data collection, and results for three brazed plate heat exchangers with different inner geometries. The test exchangers showed good performance at high system pressures with reasonable pressure drops (less than 8%). The collected experimental data that covered real world operating conditions are valuable for the design of cascade condensers with carbon dioxide as the low-side refrigerant.  相似文献   

12.
The present article reports on the results of experimental research carried out on compact plate heat exchangers, currently used as evaporators and condensers in refrigeration loops. The research was aimed at getting information on the thermal efficiency of the heat exchangers, under reference commercial conditions, when using new ozone-friendly refrigerants to replace CFCs and HCFCs. Specifically, the influence of some thermal-hydraulic parameters on the heat flux and the overall heat transfer coefficient are investigated for evaporators, using R134a, R407C, and R410A, three fluids proposed to replace R22, and HCFC, currently the most common refrigerant used in residential and commercial air conditioning equipment. Moreover, in this article a new thermodynamic method has been applied with the purpose of defining the saturation temperature and investigating the other main parameters for mixtures in the two-phase region for the fluids R407C and R410A, which are blends of, respectively, three and two pure refrigerants.  相似文献   

13.
Plate type heat exchangers are widely used in process industries for gas/gas applications. Typically, these exchangers prove to be very efficient, especially as air preheaters in process furnaces or in equipment used in environmental protection (e.g., in units for thermal disposal of wastes).

For economic reasons, there is a need for a new optimization approach for plate type heat exchanger design and operation. The objective function is to achieve a minimal total annual cost of heat exchangers. Pressure drop and heat transfer are interdependent, and both of them strongly influence capital and operating costs of any heat transfer system. In designing a heat exchanger, it is necessary to determine the optimal dimensions of the apparatus with the given conditions of the equipment operation.

The goal is to obtain the most economically optimal design. An economic assessment allows a comparable estimation of various alternatives. The total annual cost consisting of fixed and variable costs of the heat exchanger was selected as a criterion that summarizes different factors of influence into one objective function. Major cost components of a heat exchange system are as follows: capital, operating and maintenance costs of air and flue gas fans, and capital and maintenance costs of the plate type heat exchanger.

The application of the developed optimization approach is demonstrated through practical industrial examples.  相似文献   

14.
Abstract

Each stack of microstructured stainless steel and aluminum plates was coated and brazed in vacuum. As a supporter of the catalyst, the coating layer was formed by the sol-gel method and anodizing, respectively. Though the number of brazed plates extended to one hundred, the thickness of the coating layer on the coated plate was relatively uniform, and the leakage of assembly was effectively minimized. The critical variables for brazing were both the thickness and shape of filler metal. Consequently, the brazing method had a good resolution for 200μ m, three-dimensional, multilayer structures. Through these results, coating to support catalysts in highly stacked layers by brazing can be applied to microcatalytic heat exchangers where the reaction and heat transfer occur simultaneously.  相似文献   

15.
Compact heat exchangers are very popular due to their effectiveness, small footprint and low cost. In order to protect heat exchangers in dirty applications, coatings can be applied to the heat transfer surfaces to extend effectiveness and minimize fouling. Coating selection is extremely important since the wrong coating can decrease unit effectiveness, cause more fouling, and/or erode the surface.An experimental investigation of coating effectiveness in compact plate heat exchangers is presented. New, cleaned and coated plate heat exchangers are considered in this study. Heat exchangers have been exposed to untreated lake water for various time periods. Transient effectiveness results compare the rate of fouling for coated and uncoated heat exchangers. Additional results compare deposit weight gain at the end of the test period and transient observations of heat transfer surface appearance. All heat exchanger combinations showed some deposit accumulation for the period considered.Results indicate that the thermal performance of the unit decreases with time, resulting in an undersized heat exchanger. For the conditions considered here, uncoated plates accumulate deposits up to 50% faster than coated plates and show a decrease in performance of up to 40%. Surface coating, exposure time, fluid velocity and concentration of particles can affect fouling.  相似文献   

16.
Experimental investigation is conducted to study the performance of evaporative condensers/coolers. The analysis includes development of correlations for the external heat transfer coefficient and the system efficiency. The evaporative condenser includes two finned-tube heat exchangers. The system is designed to allow for operation of a single condenser, two condensers in parallel, and two condensers in series. The analysis is performed as a function of the water-to-air mass flow rate ratio (L/G) and the steam temperature. Also, comparison is made between the performance of the evaporative condenser and same device as an air-cooled condenser. Analysis of the collected data shows that the system efficiency increases at lower L/G ratios and higher steam temperatures. The system efficiency for various configurations for the evaporative condenser varies between 97% and 99%. Lower efficiencies are obtained for the air-cooled condenser, with values between 88% and 92%. The highest efficiency is found for the two condensers in series, followed by two condensers in parallel and then the single condenser. The parallel condenser configuration can handle a larger amount of inlet steam and can provide the required system efficiency and degree of subcooling. The correlation for the system efficiency gives a simple tool for preliminary system design. The correlation developed for the external heat transfer coefficient is found to be consistent with the available literature data.  相似文献   

17.
Over last two decades, plate heat exchangers (PHEs) have presented themselves as a viable alternative to the conventional shell and tube heat exchangers in the process and power industries. The thermal theory available for plate heat exchangers in the literature largely works on the assumption of equal flow in each channel. However, it is well known that the distribution of fluid from port to channel in PHE is far from being uniform. The present study brings about this port to channel flow distribution effect on the thermal behavior of multipass plate heat exchangers. The variation of the heat transfer coefficient due to flow variation from channel to channel has also been taken into consideration. Heat exchangers with both equal and unequal passes of the fluids have been studied. The results indicate that the flow maldistribution severely affects the performance of plate heat exchangers, and multipassing can act as an important tool to reduce the deterioration in performance due to maldistribution. The results show that with a low number of passes, the increase of velocity of fluid may be counterproductive in terms of heat transfer enhancement. Also, adding plates in order to increase the heat transfer surface may not be effective due to an increase in flow maldistribution. The correlations for 1-1, 1-2, 2-2, and 2-3 pass plate heat exchangers with the maldistribution index as a parameter are also presented.  相似文献   

18.

Plate heat exchangers were first developed about 100 years ago but have won increasing interest during the last two decades, primarily due to the development of methods of manufacturing brazed plate heat exchangers. This type of heat exchanger offers very good heat transfer performance in single-phase flow as well as in evaporation and condensation. Part of the reason is the small hydraulic diameters, typically being less than 5 mm. Other advantages of plate heat exchangers are the extremely compact design and the efficient use of the construction material. In spite of their long use, the calculation methods for predicting heat transfer and pressure drop are not widely known. It is the purpose of this article to present such calculation methods for single-phase flow and for flow boiling and to discuss some of the specifics of this type of heat exchangers.  相似文献   

19.
The developments in design theory of plate heat exchangers, as a tool to increase heat recovery and efficiency of energy usage, are discussed. The optimal design of a multi-pass plate-and-frame heat exchanger with mixed grouping of plates is considered. The optimizing variables include the number of passes for both streams, the numbers of plates with different corrugation geometries in each pass, and the plate type and size. To estimate the value of the objective function in a space of optimizing variables the mathematical model of a plate heat exchanger is developed. To account for the multi-pass arrangement, the heat exchanger is presented as a number of plate packs with co- and counter-current directions of streams, for which the system of algebraic equations in matrix form is readily obtainable. To account for the thermal and hydraulic performance of channels between plates with different geometrical forms of corrugations, the exponents and coefficients in formulas to calculate the heat transfer coefficients and friction factors are used as model parameters. These parameters are reported for a number of industrially manufactured plates. The described approach is implemented in software for plate heat exchangers calculation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号