首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
This article presents an experimental investigation on the subcooled flow boiling heat transfer characteristics of CO2 in a horizontal tube with inner diameter of 6.16 mm below ?30°C. The effects of mass and heat fluxes and saturation temperature on the heat transfer coefficient are discussed. Large deviations are noted between the predictions from previous empirical correlations and the current CO2 experimental data. Hence a new empirical correlation is developed, which agrees within ±30% with the current CO2 experimental data. It is expected that the data presented in this study would be beneficial to industry and designers of compact heat exchangers for CO2 at low temperatures.  相似文献   

2.
A new flow boiling heat transfer model and a new flow pattern map based on the flow boiling heat transfer mechanisms for horizontal tubes have been developed specifically for CO2. Firstly, a nucleate boiling heat transfer correlation incorporating the effects of reduced pressure and heat flux at low vapor qualities has been proposed for CO2. Secondly, a nucleate boiling heat transfer suppression factor correlation incorporating liquid film thickness and tube diameters has been proposed based on the flow boiling heat transfer mechanisms so as to capture the trends in the flow boiling heat transfer data. In addition, a dryout inception correlation has been developed. Accordingly, the heat transfer correlation in the dryout region has been modified. In the new flow pattern map, an intermittent flow to annular flow transition criterion and an annular flow to dryout region transition criterion have been proposed based on the changes in the flow boiling heat transfer trends. The flow boiling heat transfer model predicts 75.5% of all the CO2 database within ±30%. The flow boiling heat transfer model and the flow pattern map are applicable to a wide range of conditions: tube diameters (equivalent diameters for non-circular channels) from 0.8 to 10 mm, mass velocities from 170 to 570 kg/m2 s, heat fluxes from 5 to 32 kW/m2 and saturation temperatures from −28 to 25 °C (reduced pressures from 0.21 to 0.87).  相似文献   

3.
Corresponding to the updated flow pattern map presented in Part I of this study, an updated general flow pattern based flow boiling heat transfer model was developed for CO2 using the Cheng–Ribatski–Wojtan–Thome [L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside horizontal tubes, Int. J. Heat Mass Transfer 49 (2006) 4082–4094; L. Cheng, G. Ribatski, L. Wojtan, J.R. Thome, Erratum to: “New flow boiling heat transfer model and flow pattern map for carbon dioxide evaporating inside tubes” [Heat Mass Transfer 49 (21–22) (2006) 4082–4094], Int. J. Heat Mass Transfer 50 (2007) 391] flow boiling heat transfer model as the starting basis. The flow boiling heat transfer correlation in the dryout region was updated. In addition, a new mist flow heat transfer correlation for CO2 was developed based on the CO2 data and a heat transfer method for bubbly flow was proposed for completeness sake. The updated general flow boiling heat transfer model for CO2 covers all flow regimes and is applicable to a wider range of conditions for horizontal tubes: tube diameters from 0.6 to 10 mm, mass velocities from 50 to 1500 kg/m2 s, heat fluxes from 1.8 to 46 kW/m2 and saturation temperatures from ?28 to 25 °C (reduced pressures from 0.21 to 0.87). The updated general flow boiling heat transfer model was compared to a new experimental database which contains 1124 data points (790 more than that in the previous model [Cheng et al., 2006, 2007]) in this study. Good agreement between the predicted and experimental data was found in general with 71.4% of the entire database and 83.2% of the database without the dryout and mist flow data predicted within ±30%. However, the predictions for the dryout and mist flow regions were less satisfactory due to the limited number of data points, the higher inaccuracy in such data, scatter in some data sets ranging up to 40%, significant discrepancies from one experimental study to another and the difficulties associated with predicting the inception and completion of dryout around the perimeter of the horizontal tubes.  相似文献   

4.
The flow pattern based flow boiling heat transfer and two-phase pressure drop models for CO2, recently developed by Cheng et al. [L. Cheng, G. Ribatski, J. Moreno Quibén, J.R. Thome, New prediction methods for CO2 evaporation inside tubes: Part I – A two-phase flow pattern map and a flow pattern based phenomenological model for two-phase flow frictional pressure drops, Int. J. Heat Mass transfer 51 (2008) 111–124; L. Cheng, G. Ribatski, J.R. Thome, New prediction methods for CO2 evaporation inside tubes: Part II – An updated general flow boiling heat transfer model based on flow patterns, Int. J. Heat Mass transfer 51 (2008) 125–135], have been used to predict the thermal performance of CO2 in a silicon multi-microchannel evaporator (67 parallel channels with a width of 0.223 mm, a height of 0.68 mm and a length of 20 mm) for cooling of a microprocessor. First, some simulation results of CO2 flow boiling heat transfer and two-phase pressure drops in microscale channels are presented. The effects of channel diameter, mass flux, saturation temperature and heat flux on flow boiling heat transfer coefficients and two-phase pressure drops are next addressed. Then, simulations of the base temperatures of the silicon multi-microchannel evaporator using R236fa and CO2 were performed for the following conditions: base heat fluxes from 20 to 100 W/cm2, a mass flux of 987.6 kg/m2s and a saturation temperature of 25 °C. These show that the base temperatures using CO2 are much lower than those using R236fa. Compared to R236fa, CO2 has much higher heat transfer coefficients and lower pressure drops in the multi-microchannel evaporator. However, the operation pressure of CO2 is much higher than that of R236fa. Based on the analysis and comparison, CO2 appears to be a promising coolant for microprocessors at low operating temperatures but also presents a great technological challenge like other new cooling technologies.  相似文献   

5.
Experiments were carried out on the flow pattern, heat transfer, and pressure drop of flow boiling of pure CO2 and CO2‐oil mixtures in horizontal smooth and micro‐fin tubes. The smooth tube is a stainless steel tube with an inner diameter of 3.76 mm. The micro‐fin tube is a copper tube with a mean inner diameter of 3.75 mm. The experiments were carried out at mass velocities from 100 to 500 kg/(m2·s), saturation temperature of 10 °C, and the circulation ratio of lubricating oil (PAG) was from 0 to 1.0 mass%. Flow pattern observations mainly showed slug and wavy flow for the smooth tube, but annular flow for the micro‐fin tube. Compared with the flow patterns in the case of pure CO2, an increase in frequency of slug occurrence in the slug flow region, and a decrease in the quantity of liquid at the top of the tube in the annular flow region were observed in the case of CO2‐oil mixtures. With pure CO2, the flow boiling heat transfer was dominated by nucleate boiling in the low vapor quality region, and the heat transfer coefficients for the micro‐fin tube were higher than those of the smooth tube. With CO2‐oil mixtures, the flow boiling heat transfer was dominated by convective evaporation, especially in the high vapor quality region. In addition, the heat transfer coefficient decreased significantly when the oil circulation ratio was larger than 0.1 mass%. For the pressure drop characteristics, in the case of pure CO2, the homogeneous flow model agreed with the experimental results within ±30% for the smooth tube. The pressure drops of the micro‐fin tube were 0–70% higher than those predicted with the homogeneous flow model, and the pressure drops increased for the high oil circulation ratio and high vapor quality conditions. The increases in the pressure drops were considered to be due to the increase in the thickness of the oil film and the decrease in the effective flow cross‐sectional area. © 2010 Wiley Periodicals, Inc. Heat Trans Asian Res; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20287  相似文献   

6.
This paper presents a comprehensive review on the flow boiling heat transfer of CO2–lubricant mixtures. Some of the immiscible lubricants in CO2 include alkyl naphthalene/alkylbenzne (AN/AB) and polyalphaolefin (PAO), while polyalkylene glycol (PAG) is partially miscible, and polyol ester (POE) is completely miscible. The effect of oil concentration, vapour quality, heat and mass fluxes and saturation temperature is addressed. One database has been created by collecting the experimental data from the open literature on the flow boiling heat transfer of CO2–lubricant mixtures, along with empirical correlations. A simple simulation model has been developed in EES software package to compare the empirical correlations with the CO2–lubricant mixtures experimental database. Most empirical correlations fail to predict the flow boiling heat transfer coefficient in good agreement with the experimental data. Hence, further research is needed to develop appropriate correlations for the flow boiling heat transfer of CO2–lubricant mixtures.  相似文献   

7.
Carbon dioxide (CO 2 /R-744) is receiving renewed interest as a refrigerant, in many cases for systems with microchannel heat exchangers that have high pressure capability, efficient heat transfer, and compact design. A good understanding of two-phase flow of evaporating CO 2 in microchannels is needed to analyze and predict heat transfer. A special test rig was built in order to observe two-phase flow patterns using a horizontal glass tube with ID 0.98 mm. Flow visualization experiments were conducted for temperatures 20°C and 0°C and for mass flux ranging from 100 to 580 kg m?2 s?1 . The observations showed a dominance of intermittent (slug) flow at low x and wavy annular flow with entrainment of droplets at higher x. The aggravated dryout problem reported from heat transfer experiments at high mass flux could be explained by increased entrainment. The flow pattern observations did not fit generalized maps or transition lines showed in the literature.  相似文献   

8.
The present study presents new flow boiling heat transfer results of R-134a flowing inside a 13.84 mm internal diameter, smooth horizontal copper tube. The heat transfer measurements were made over a wide range of test conditions: saturation temperatures of 5, 15 and 20 °C, (corresponding to reduced pressures of 0.08, 0.12 and 0.14), vapor qualities ranged from 0.01 to 0.99, mass velocities of 300 and 500 kg/m2 s, and heat fluxes of 7.5 and 17.5 kW/m2. The experimental results clearly show that a local minimum heat transfer coefficient systematically occurs within slug flow pattern or near the slug-to-intermittent flow pattern transition. The vapor quality xmin at which the local minimum occurs seems to be primarily sensitive to mass velocity and heat flux. Thus, it is influenced by the competition between nucleate and convective boiling mechanisms that control macroscale flow boiling. The experimental results were compared to four types of predictive methods: (a) strictly convective, (b) superposition, (c) strictly empirical and (d) flow pattern based. Generally, all the methods tend to underpredict the experimental data and the higher errors occur in two particular regions: low and high vapor qualities. These vapor qualities correspond to slug and annular patterns, respectively. For slug flow, methods that require the identification of nucleate boiling related regions tend to predict the heat transfer coefficient accurately. This emphasizes that for slug flows, heat transfer is not a simple juxtaposition of nucleate and convective boiling contributions, but that the integration of these two heat transfer mechanisms is also a function of flow parameters. The comparisons between experimental and predicted data show that the best overall results are obtained with superposition and flow pattern based methods.  相似文献   

9.
In this study, the local characteristics of pressure drop and heat transfer were investigated experimentally for carbon dioxide condensation in a multi-port extruded aluminum test section, which had 10 circular channels each with 1.31 mm inner diameter. The CO2 was cooled with cooling water flow inside the copper blocks that were attached at both sides of the test section. The temperatures at the outer surface of the test section were measured with 24 K-type thermocouples embedded in the upper and lower surfaces along the length. Local heat fluxes were measured with 12 heat flux sensors to estimate the local enthalpies, temperatures and heat transfer coefficients. Bulk mean temperatures of CO2 at the inlet and outlet of the test section were measured with 2 K-type thermocouples. The measurements were performed for the pressure ranged from 6.48 to 7.3 MPa, inlet temperature of CO2 from 21.63 to 31.33℃, heat flux from 1.10 to 8.12 kW/m2, mass velocity from 123.2 to 315.2 kg/m2s, and vapor quality from 0 to 1. The results indicate that pressure drop is very small along the test section, heat transfer coefficient in the two-phase region is higher than that in the single-phase, and mass velocity has important effect on condensation heat transfer characteristics. In addition, experimental data were compared with previous correlations and large discrepancies were observed.  相似文献   

10.
Carbon dioxide is gaining renewed interest as an environmentally safe refrigerant. In order to improve the energy efficiency of R744 systems, an accurate knowledge of heat transfer coefficients is fundamental.In this paper experimental heat transfer coefficients during flow boiling of R744 in a smooth, horizontal, circular, 6.00 mm inner diameter tube are presented. We obtained 217 experimental points in 18 operating conditions commonly encountered in dry-expansion evaporators investigating the effect of the mass flux within the range from 200 to 349 kg/m2 s, the saturation temperature within the range from ?7.8 to 5.8 °C, the heat flux within the range from 10.0 to 20.6 kW/m2 and the vapor quality within the range from 0.02 to 0.98.An interpretation of the experimental trends based on the local circumferential distribution of heat transfer coefficients, the flow regimes and the thermophysical properties is proposed.Besides the measured data are compared with those predicted by the Cheng et al. [L. Cheng, G. Ribatski, J.R. Thome, New prediction methods for CO2 evaporation inside tubes: Part II – An updated general flow boiling heat transfer model based on flow patterns, International Journal of Heat and Mass Transfer 51 (2008) 125–135] and Yoon et al. [R. Yun, Y. Kim, M.S. Kim, Y. Choi, Boiling heat transfer and dryout phenomenon of CO2 in a horizontal smooth tube, International Journal of Heat and Mass Transfer 46 (2003) 2353–2361] correlations to determine the best predictive method for the tested operating conditions.  相似文献   

11.
An experimental investigation on two-phase flow boiling heat transfer with refrigerants of R-22, R-134a, R-410A, C3H8 and CO2 in horizontal circular small tubes is presented. The experimental data were obtained over a heat flux range of 5–40 kW m?2, mass flux range of 50–600 kg m?2 s?1, saturation temperature range of 0–15 °C, and quality up to 1.0. The test section was made of stainless steel tubes with inner diameters of 0.5, 1.5 and 3.0 mm, and lengths of 330, 1000, 1500, 2000 and 3000 mm. The experimental data were mapped on Wang et al. (1997) [5] and Wojtan et al. (2005) [6] flow pattern maps. The effects of mass flux, heat flux, saturation temperature and inner tube diameter on the heat transfer coefficient are reported. The experimental heat transfer coefficients were compared with some existing correlations. A new boiling heat transfer coefficient correlation that is based on a superposition model for refrigerants in small tubes is presented with 15.28% mean deviation and ?0.48% average deviation.  相似文献   

12.
Experimental two-phase frictional pressure drop and flow boiling heat transfer results are presented for a horizontal 2.32-mm ID stainless-steel tube using R245fa as working fluid. The frictional pressure drop data was obtained under adiabatic and diabatic conditions. Experiments were performed for mass velocities ranging from 100 to 700 kg m?2 s?1, heat flux from 0 to 55 kW m?2, exit saturation temperatures of 31 and 41°C, and vapor qualities from 0.10 to 0.99. Pressures drop gradients and heat transfer coefficients ranging from 1 to 70 kPa m?1 and from 1 to 7 kW m?2 K?1 were measured. It was found that the heat transfer coefficient is a strong function of the heat flux, mass velocity, and vapor quality. Five frictional pressure drop predictive methods were compared against the experimental database. The Cioncolini et al. (2009) method was found to work the best. Six flow boiling heat transfer predictive methods were also compared against the present database. Liu and Winterton (1991), Zhang et al. (2004), and Saitoh et al. (2007) were ranked as the best methods. They predicted the experimental flow boiling heat transfer data with an average error around 19%.  相似文献   

13.
In a new waste heat recovery system, waste heat is recovered from steam condensers through cooling by liquid CO2 instead of seawater, taking advantage of effective boiling heat transfer performance; the heat is subsequently used for local heat supply. The steam condensing – liquid CO2 boiling heat transfer performance in a steam condenser with a shell and a helical coil non-fin tube was studied both numerically and experimentally. A heat transfer numerical model was constructed from two models developed for steam condensation and for liquid CO2 boiling. Experiments were performed to verify the model at a steam pressure range of 3.2–5 kPa and a CO2 saturation pressure range of 5–6 MPa. Overall heat transfer coefficients obtained from the numerical model agree with the experimental data within ±5%. The numerical estimations show that the boiling local heat transfer coefficient reaches a maximum value of 26 kW/m2 K. This value is almost one order higher than that of a conventional water-cooled condenser.  相似文献   

14.
An experimental study was conducted to investigate how the addition of small amounts of a surfactant influences the heat transfer characteristics in a thin boiling liquid film flowing in a diverging open channel. Heat transfer experiments were conducted with fluid inlet temperatures from 40 °C to 92 °C. The flow field on the plate included thin film supercritical flow upstream of a hydraulic jump and thick film subcritical flow downstream of a hydraulic jump. Nusselt numbers for the non-boiling heat transfer without surfactant addition scaled linearly with the film Reynolds number. The boiling heat transfer produced higher Nusselt numbers with a weaker dependence on the Reynolds number. Experimental results showed that a boiling surfactant solution created a thick foam layer with high heat transfer rates and Nusselt numbers that are very weakly dependent on the inlet flow rate or the inlet Reynolds number.  相似文献   

15.
Evaporation heat transfer characteristics of carbon dioxide (CO2) in a horizontal tube are experimentally investigated. The test tube has an inner diameter of 6.0 mm, a wall thickness of 1.0 mm, and a length of 1.4 m. Experiments are conducted at saturation temperatures of 5 and 10 °C, mass fluxes from 170 to 320 kg/m2 s and heat fluxes from 10 to 20 kW/m2. Partial dryout of CO2 occurs at a lower quality as compared to the conventional refrigerants due to a higher bubble growth within the liquid film and a higher liquid droplet entrainment, resulting a rapid decrease of heat transfer coefficients. The effects of mass flux, heat flux, and evaporating temperature are explained by introducing unique properties of CO2, flow patterns, and dryout phenomenon. In addition, the heat transfer coefficient of CO2 is on average 47% higher than that of R134a at the same operating conditions. The Gungor and Winterton correlation shows poor prediction of the boiling heat transfer coefficient of CO2 at low mass flux, while it yields good estimation at high mass flux.  相似文献   

16.
Ammonia (NH3 or R717) is an important refrigerant whose flow boiling heat transfer needs to be determined in many engineering applications. There have been some studies evaluating the correlations of flow boiling heat transfer coefficients for NH3. However, the number of the correlations evaluated or the number of data points used was limited, which resulted in inconsistent results. This work presents a comprehensive study of the applicability of existing correlations of flow boiling heat transfer coefficients to NH3. From seven independent laboratories, a database consisting of 1157 experimental data points of NH3 flow boiling heat transfer is compiled. The experimental parameter ranges cover mass flux from 10 to 600 kg/m2s, heat flux from 2.0 to 240 kW/m2, vapor quality from 0.002 to 0.997, saturation pressure from 0.19 to 1.6 MPa, and channel inner diameter from 1.224 to 32 mm. Based on the NH3 database, 37 correlations are evaluated and analyzed. The results show that the best correlation has a mean absolute deviation of 40.9%, indicating the need for developing a more accurate correlation for NH3 flow boiling heat transfer. Several topics worthy of further studies are identified.  相似文献   

17.
Specific heat and thermal conductivity are important thermal properties of high-temperature heat transfer fluids and thermal storage materials for supercritical solar power plants. In the present work, nanofluids composed of ternary carbonate Li2CO3-K2CO3-Na2CO3 (4:4:2, mass ratio) and 1.0 wt.% carbon nanotubes (CNT) were prepared to obtain high-temperature heat transfer and storage media with enhanced specific heat and thermal conductivity. The dispersion of CNTs in the nanofluids was tuned by changing the evaporation temperature (100, 140, 180 and 220 °C) and adding surfactants such as sodium dodecyl benzene sulfonate (SDBS), sodium dodecyl sulfate (SDS), or gum Arabic (GA). The results showed that GA and SDS facilitate good dispersion of CNT in nanofluids at the evaporation temperatures of 140 °C and 180 °C, resulting in the formation of more needle-like nanostructures. The higher increase in the specific heat and thermal conductivity of the nanofluids with SDS at 500 °C was 78.3% and 149.2%, respectively. Additionally, the specific heat of as-prepared ternary carbonate nanofluids exhibits a good thermal stability after 30 cycles of thermal shock experiments.  相似文献   

18.
In this study, experiments were performed to examine characteristics of flow boiling heat transfer and pressure drop of a low global warming potential refrigerant R32 flowing in a horizontal copper circular tube with 1.0 mm inside diameter for the development of a high-performance heat exchanger using small-diameter tubes or minichannels for air conditioning systems. Axially local heat transfer coefficients were measured in the range of mass fluxes from 30 to 400 kg/(m2·s), qualities from 0.05 to 1.0, and heat fluxes from 2 to 24 kW/m2 at the saturation temperature of 10°C. Pressure drops were also measured in the rage of mass fluxes from 30 to 400 kg/(m2·s) and qualities from 0.05 to 0.9 at the saturation temperature of 10°C under adiabatic condition. In addition, two-phase flow patterns were observed through a sight glass fixed at the tube exit with a digital camera. The characteristics of boiling heat transfer and pressure drop were clarified based on the measurements and the comparison with data of R410A obtained previously. Also, measured heat transfer coefficients were compared with two existing correlations.  相似文献   

19.
This paper presents some preliminary experimental measurements collected during flow boiling heat transfer of low global warming potential refrigerant R1234yf in an asymmetrically heated rectangular plain channel. The asymmetrical heating is the common boundary condition that occurs in many different applications, for instance, in almost all the electronic devices, which are now pushing the cooling demands to more and more greater requirements. From this standpoint, the analysis of the flow boiling heat transfer of efficient and eco-friendly refrigerants can open new frontiers to the electronic thermal management. The experimental measurements were carried out at the Department of Industrial Engineering of the University of Padova by imposing two different heat fluxes, 50 and 100 kW m?2, at a constant saturation temperature of 30°C; the refrigerant mass velocity was varied between 50 and 200 kg m?2 s?1, while the vapor quality varied from 0.2 to 0.95. The developed measuring technique permits to estimate the flow boiling heat transfer coefficient and the critical value of vapor quality at the onset of the dryout.  相似文献   

20.
Battery thermal management system (BTMS) is of great significance to keep battery of new energy vehicle (NEV) within favorable thermal state, which attracts extensively attention from researchers and automobile manufacturers. As one BTMS scheme, pumped two-phase system displays excellent cooling capacity owing to large amount of latent heat usage, while there is limited research efforts focusing on the feasibility of the BTMS scheme. This paper experimentally investigates thermal performance of a pumped two-phase BTMS heated by a dummy battery with relative high heat fluxes. The effects of heat fluxes, flow rates and cold source temperatures on thermal performance have been studied and conclusions have been drawn accordingly. The results show that the thermal performance of the system is generally enhanced with the increase of the refrigerant flow rates. When the heat flux and cold source temperature are 0.11 W/cm2 and 10°C, respectively, tavg and △tmax are decreased by 3.4°C and 0.5°C, respectively, when the refrigerant flow rate is increased from 0.20 to 1.67 L/min. Meanwhile, heat transfer coefficient is also improved with an increase of the flow rates, while the enhancements become less obvious under high heat flux. In addition, the tavg and △tmax of cold plate surface are increased when the heat flux is elevated, while the tavg at the low flow rate is increased slightly. However, the increase of △tmax is more obvious at the low flow rate, compared to that at high flow rate. When the heat flux is increased from 0.11 to 0.60 W/cm2, tavg is increased by 3.8°C under the flow rate of 0.2 L/min, while that at the flow rate of 1.67 L/min is almost doubled. Meanwhile, the heat transfer coefficient is increased monotonously at the low flow rate, while that at the high flow rate is first decreased and then increased. Besides, lower surface temperatures can be obtained with low cold source temperatures. However, cold source temperatures affect temperature uniformity less.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号