首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Fine‐scale underwater telemetry affords an unprecedented opportunity to understand how aquatic animals respond to environmental changes. We investigated the movement patterns of an aquatic top predator, Eurasian perch (Perca fluviatilis), using a three‐dimensional acoustic telemetry system installed in Kleiner Döllnsee (25 ha), a small, shallow, mesotrophic natural lake. Adult piscivorous perch (= 16) were tagged and tracked in the whole lake at a minimum of 9‐s intervals over the course of one year. Perch increased swimming activity with higher water temperature and light intensity. Air pressure, wind speed and lunar phase also explained perch movements, but the effects were substantially smaller compared to temperature and light. Perch showed a strong diel pattern in activity, with farther swimming distances and larger activity spaces during the daytime, compared to the night‐time. To investigate the influence of prey distribution, we sampled the prey fish in both littoral and pelagic zones in both day and night monthly using gill nets. We found that the prey fish underwent diel horizontal migration, using the littoral zone during the day and the pelagic zone during the night. However, perch showed the opposite patterns, suggesting either that the prey fish avoided predation risk or that the horizontal diel migration of perch was driven by other mechanisms. Our results collectively suggest that the movement ecology of piscivorous perch is mainly governed by a foraging motivation as a function of abiotic variables, especially temperature and light.  相似文献   

2.
Abstract  – Brown trout ( Salmo trutta L.) and Arctic charr ( Salvelinus alpinus (L.)) use whitefish ( Coregonus lavaretus (L.)) as their main prey in the subarctic Lake Muddusjärvi. Brown trout dwelled in littoral and pelagic habitat, whereas Arctic charr lived only in epibenthic habitat. Both species shifted to whitefish predation at a length of 20–30 cm. At this size, brown trout fed on larger whitefish than Arctic charr. Whitefish occur in three sympatric forms, differing in their habitat, ecology and morphology. Both the predators preyed primarily upon the small-sized, densely rakered whitefish form (DR), which was the most numerous whitefish form in the lake. DR used both epibenthic and pelagic habitat, whereas two sparsely rakered whitefish forms dwelled (LSR and SSR) only in epibenthic habitat: LSR in littoral and SSR in profundal areas. Sparsely rakered whitefish forms had minor importance in predator diet.  相似文献   

3.
The diversity of predatory species plays a key role in ecosystem functioning but our understanding of the mechanisms underlying their coexistence is limited, particularly in freshwater ecosystems. Northern pike Esox lucius, European perch Perca fluviatilis and pikeperch Sander lucioperca are three widespread predatory species in European lakes, where they often coexist. As potential competitors, we hypothesised that partitioning habitat is a determinant of species coexistence. This was tested by quantifying the variability of their habitat use in tracking adult individuals in the Bariousses reservoir (France, 86.6 ha, mean depth 7.1 m). Specifically, we investigated their distribution along the littoral–pelagic and depth axes along the daily cycle and across seasons. From littoral to pelagic waters were first found pike, then perch and finally pikeperch. Pike was the closest to the surface while pikeperch was the deepest. This general pattern was, however, variable across seasons with the three species located in the upper layer in summer during reservoir stratification. Individuals were more evenly distributed along the littoral–pelagic axis and closer to the bottom when water was mixing (autumn, winter). In summer, perch used more intensively in the pelagic zone during the daytime. Other species did not show any diel change of habitats. Our results highlighted that species coexistence is associated with habitat partitioning among these three predators, with perch showing a more variable behaviour regarding habitat characteristics. Now more than ever, in the context of global change which modifies habitats, it is of crucial importance to understand the coexistence mechanisms of species that shape ecosystems.  相似文献   

4.
Introduced fishes may have major impacts on community structure and ecosystem function due to competitive and predatory interactions with native species. For example, introduced lake trout (Salvelinus namaycush) has been shown to replace native salmonids and induce major trophic cascades in some North American lakes, but few studies have investigated trophic interactions between lake trout and closely related native Arctic charr (S. alpinus) outside the natural distribution of the former species. We used stomach content and stable isotope analyses to investigate trophic interactions between introduced lake trout and native Arctic charr in large subarctic Lake Inarijärvi in northern Finland. Both salmonids had predominantly piscivorous diets at >280 mm total length and were mainly caught from the deep profundal zone. However, lake trout had a more generalist diet and showed higher reliance on littoral prey fish than Arctic charr, whose diet consisted mainly of pelagic planktivorous coregonids. According to length at age and condition data, lake trout showed slightly faster growth but lower condition than Arctic charr. The results indicate that introduced lake trout may to some extent compete with and prey upon native Arctic charr, but currently have only a minor if any impact on native fishes and food web structure in Inarijärvi. Future monitoring is essential to observe potential changes in trophic interactions between lake trout and Arctic charr in Inarijärvi, as well as in other European lakes where the two salmonids currently coexist.  相似文献   

5.
Abstract Predation is an important force structuring aquatic communities, but predator–prey interactions are complex and regulated by multiple factors. Invasive fishes may interact with native fishes to alter predator–prey preferences and community dynamics. For example, common carp, Cyprinus carpio L., is an invasive species that can become abundant and negatively affect aquatic ecosystems. Juvenile common carp are occasionally found in predator diets, but predator preferences for common carp compared with alternative prey remains unknown. Prey selection and feeding behaviour of five piscivores (flathead catfish, Pylodictis olivaris (Rafinesque); largemouth bass, Micropterus salmoides (Lacepède); smallmouth bass, M. dolomieu Lacepède; walleye, Sander vitreus (Mitchill); and northern pike, Esox lucius L.) foraging on juvenile common carp and two alternative prey (fathead minnow, Pimephales promelas Rafinesque, and yellow perch, Perca flavescens Mitchill) at variable densities and habitats were evaluated. Common carp and fathead minnow were generally selected for or neutrally selected across predator species, habitat types and prey assemblages. By contrast, yellow perch was generally selected against. Common carp were easily captured but difficult to manipulate and ingest compared with other prey. These results reveal that common carp are vulnerable to a variety of predators, suggesting control of this detrimental invader may be possible through biomanipulation.  相似文献   

6.
Through the recent increases in abundance, pikeperch (Sander lucioperca) has not only become a valuable target for recreational and commercial fishing, but also the most important top predator in many lakes. Generally oligotrophic Lake Höytiäinen (283 km2) sustains one of the most economically valuable pikeperch stocks in Finland, and its annual fisheries yield (up to 5.5 kg/ha) is exceptionally high among Finnish lakes. Here, we followed seasonal movements of fish using conventional tagging, and studied short‐term and long‐term diet of pikeperch by stomach content and stable isotope analyses to examine if the movements were motivated by prey availability. A clear seasonal migration pattern was observed: in summer, 80% of the tag recoveries were obtained from the shallow and mesotrophic northern and western areas, whereas in autumn and winter, the deep and oligotrophic southern area dominated in the recaptures. The diet of pikeperch consisted of the most abundant fish species in the lake, perch (Perca fluviatilis) and roach (Rutilus rutilus), as well as insects. Stable isotope analysis indicated a shift from a dominance of pelagic food sources to littoral food sources during the growing season of pikeperch. Our results suggest that the pikeperch migrations facilitate efficient material transfer from the mesotrophic part while the deeper and oligotrophic part offers a favourable overwintering environment.  相似文献   

7.
Processes influencing fish recruitment are often highly complex and inherently difficult to understand. Invasive species may complicate recruitment through habitat and food web modifications resulting in competitive bottlenecks. Common carp Cyprinus carpio have been distributed worldwide, and their introductions have resulted in destructive effects on aquatic ecosystems and food web dynamics. Common carp are highly fecund, and high densities of age‐0 carp may occur in some years that may reduce invertebrate prey resources and adversely affect native age‐0 fishes. We used enclosures and field observations to examine potential effects of age‐0 common carp on growth and survival of age‐0 yellow perch Perca flavescens and bluegill Lepomis macrochirus. Yellow perch and bluegill were stocked into enclosures with and without common carp (31 fish/m3) using a substitution experimental design, and fish growth and survival and invertebrate prey resources were assessed. Common carp reduced growth of yellow perch but not bluegill and did not affect survival of either species in mesocosms. Next, we used patterns of common carp, bluegill, and yellow perch abundance and total length across 38 lake‐years to evaluate potential interspecific interactions in natural systems. Age‐0 common carp abundance was not negatively related to size or abundance of bluegill or yellow perch. However, adult common carp and age‐0 yellow perch abundance were inversely related, suggesting a potential competitive bottleneck. Thus, age‐0 common carp may suppress growth of yellow perch when prey is limited, but adult common carp may have larger effects than early life stages on native juvenile fishes.  相似文献   

8.
Abstract – The horizontal distribution of fish in lakes varies with species, age, predation risk, vegetation coverage and water clarity. Although sporadic data are available for specific lakes, little is known about how habitat distribution generally changes along a gradient in nutrients and clarity. Here we analyse littoral and pelagic fish catch data for 34 Danish lakes (covering 94 lake years) with contrasting total phosphorus (TP) concentrations and mean depth levels (but mainly eutrophic and shallow). Electrofishing was conducted during day along the shore or along the edge of the reed belt if such existed. Gill nets were set overnight for 18 h in open water. We calculated a littoral proportion as: LITPRO = (100 × number caught by electrofishing in the near‐shore area)/(number caught by electrofishing in the near‐shore area and nets in the open water). At all summer TP concentrations LITPRO was high for several ‘littoral’ species such as gudgeon (Gobio gobio), rudd (Scardinius erythrophtalmus) and pike (Esox lucius) and low for more typical pelagic species like pikeperch (Sander lucioperca), ruffe (Gymnocephalus cernuus) and smelt (Osmerus eperlanus). However, for many of these species including the dominant roach (Rutilus rutilus) and perch (Perca fluviatilis) LITPRO increased with TP or lake water chlorophyll a (CHLA) for fish >10 cm, suggesting a more littoral distribution with increasing turbidity. Exceptions are pikeperch and bream (Abramis brama). For bream, LITPRO increased significantly with mean lake depth only. For fish ≤10 cm LITPRO showed only a weak relationship to TP, CHLA or depth. In accordance with the TP‐dependent distribution, major changes occurred in the fish community structure during the monitoring period following nutrient loading reduction. A comparison of LITPRO from the first part of the monitoring period (1989–1993) with a subsequent period (1997–2003) for four abundant species showed a significant decline in LITPRO over time for large‐ and small‐sized roach and perch and large rudd. This suggests a fast response in fish distribution to improved water quality. It further demonstrates that fish monitoring in lakes should cover both littoral and pelagic habitats to describe the recovery process.  相似文献   

9.
Abstract— Fry of the Arctic charr, Salvelinus alpinus , were experimentally stocked into a small fish-free lake to test the hypothesis that the size-dependent habitat shift from the epibenthic to the pelagic habitat is genetically determined. The charr originated from a nearby lake inhabiting predatory brown trout Salmo trutta. The cohort of stocked charr was investigated for three years. The Arctic charr started to exploit the pelagic habitat in their first summer at a size of 7–9 cm in contrast to about 15 cm in the donor lake. In the next two summers, the pelagic fraction of the cohort increased. The main fraction lived in epibenthic areas, utilizing the same prey as pelagic charr. Water temperature moderated the habitat use of juveniles such that they avoided warm (>16°C) waters and resided in cool, deep areas. The result was consistent with the hypothesis of a tradeoff between feeding benefit and the predation risk producing spatial segregation of Arctic charr and demonstrated that the fish can facultatively respond to predation risk and adjust the size at which they migrate to the pelagic zone to feed on zooplankton.  相似文献   

10.
Habitat use, food composition and growth of stocked and native brown trout, Salmo trutta L., were studied in the subarctic Lake Muddusjärvi in northern Finland. Stocked brown trout and native brown trout preferred littoral and pelagic areas. Trout were stocked in October. In June stocked trout fed primarily on invertebrates while native fish were piscivorous. From July onwards the composition of the diet of both stocked and native trout was similar and consisted almost entirely of small‐sized whitefish. Brown trout were already piscivorous at a length of about 20 cm. The mean length of prey consumed was about 12 cm. Mean length‐at‐age was similar from the second year in the lake despite of the larger size of stocked fish during the first year in the lake.  相似文献   

11.
Non‐native piscivores can alter food web dynamics; therefore, evaluating interspecific relationships is vital for conservation and management of ecosystems with introduced fishes. Priest Lake, Idaho, supports a number of introduced species, including lake trout Salvelinus namaycush, brook trout S. fontinalis and opossum shrimp Mysis diluviana. In this study, we used stable isotopes (δ13C and δ15N) to describe the food web structure of Priest Lake and to test hypotheses about apparent patterns in lake trout growth. We found that isotopic niches of species using pelagic‐origin carbon did not overlap with those using more littoral‐origin carbon. Species using more littoral‐origin carbon, such as brook trout and westslope cutthroat trout Oncorhynchus clarki lewisi, exhibited a high degree of isotopic niche overlap and high intrapopulation variability in resource use. Although we hypothesised that lake trout would experience an ontogenetic diet shift, no such patterns were apparent in isotopic signatures. Lake trout growth rates were not associated with patterns in δ15N, indicating that variation in adult body composition may not be related to adult diet. Understanding trophic relationships at both the individual and species levels provides a more complete understanding of food webs altered by non‐native species.  相似文献   

12.
Much uncertainty exists around how fish communities in shallow lakes will respond to climate change. In this study, we modelled the effects of increased water temperatures on consumption and growth rates of two piscivores (northern pike [Esox lucius] and largemouth bass [Micropterus salmoides]) and examined relative effects of consumption by these predators on two prey species (bluegill [Lepomis macrochirus] and yellow perch [Perca flavescens]). Bioenergetics models were used to simulate the effects of climate change on growth and food consumption using predicted 2040 and 2060 temperatures in a shallow Nebraska Sandhill lake, USA. The patterns and magnitude of daily and cumulative consumption during the growing season (April–October) were generally similar between the two predators. However, growth of northern pike was always reduced (?3 to ?45% change) compared to largemouth bass that experienced subtle changes (4 to ?6% change) in weight by the end of the growing season. Assuming similar population size structure and numbers of predators in 2040–2060, future consumption of bluegill and yellow perch by northern pike and largemouth bass will likely increase (range: 3–24%), necessitating greater prey biomass to meet future energy demands. The timing of increased predator consumption will likely shift towards spring and fall (compared to summer), when prey species may not be available in the quantities required. Our findings suggest that increased water temperatures may affect species at the edge of their native range (i.e. northern pike) and a potential mismatch between predator and prey could exist.  相似文献   

13.
14.
In subarctic lake systems, fish species like brown trout are often important predators, and their niche performance is a key characteristic for understanding trophic interactions and food web functioning at upper trophic levels. Here, we studied summer habitat use and stomach contents of brown trout under both allopatric and sympatric conditions in six subarctic lakes to reveal its trophic role, and population‐ and individual‐level niche plasticity. In allopatry, brown trout mainly used the littoral habitat, but also less commonly used the pelagic zone. In sympatry with stickleback, there was always a considerable habitat overlap between the two species. In contrast, sympatric populations of brown trout and Arctic charr generally revealed a distinct habitat segregation. In the sympatric systems, in general, there was a distinct resource partitioning between the trout and charr, whereas the observed diet overlap between trout and stickleback was much larger. Trout modified their individual dietary specialisation between the littoral and pelagic zone, always being lower in the pelagic. Piscivorous behaviour of trout was only found in sympatric systems, possibly contributing to a competitive advantage of trout over charr and stickleback. Hence, the trophic level of trout was strongly related to the fish community composition, with a higher trophic level in sympatric systems where piscivorous behaviour was frequent. These changes in the trophic level of trout linked with the observed food resource partitioning might be an important mechanism in the ecosystem functioning of subarctic lakes to allow coexistence among sympatric‐living fish species.  相似文献   

15.
Muskellunge (Esox masquinongy Mitchill), northern pike (Esox lucius L.) and walleye (Sander vitreus Mitchill) often coexist in lake communities, yet uncertainty exists about the potential for interspecific competition among these top predators. Stable isotope data were used to assess niche overlap and diets of these predators in Elk Lake (Minnesota, U.S.A). δ13C indicated primary production sources (e.g. pelagic v. littoral) and δ15N indicated trophic position; the bivariate distribution of these isotopes defined the species’ isotopic niche. Niche overlap probabilities were calculated and stable isotope mixing models were used to quantify diet proportions. Muskellunge and northern pike niches overlapped little (<10%), while walleye overlapped muskellunge (15%–60%) and northern pike (33%–53%) more extensively. Muskellunge diets focused (50%) on cisco (Coregonus artedi Lesueur), walleye primarily assimilated non-cisco prey fish (80%), and northern pike diets were dominated by non-cisco prey fish (45%) and invertebrates (40%). The presence of a cisco population and the flexibility of northern pike to use invertebrate resources may decrease potential competition among these predators. However, cisco are threatened by climate change and eutrophication, and our results suggest that extirpation of cisco may cause major changes in potential competitive interactions among these top predators. Moreover, cisco were unique among prey species in their ability to exploit pelagic energy, such that loss of cisco will likely alter energy flow in lake food webs where they currently exist.  相似文献   

16.
Understanding the forces that drive habitat selection of species in communities is important in both ecology and evolution. In nature, species face variation in competition, predation and physical characters among habitats. Vendace (Coregonus albula (L.)) is a specialised zooplanktivorous fish predominantly using deeper water in lakes during summer, while roach (Rutilus rutilus (L.)) uses mainly the shallow littoral zone as well as the upper layer of the pelagic zone. To understand mechanisms behind habitat use of these species, I first conducted a predation experiment to investigate their sensitivity to predation by perch (Perca fluviatilis L.). Second, I performed a foraging experiment using different temperature and light treatments. I then used metabolic calculations to estimate energetic costs when foraging. I found no difference between species regarding sensitivity to predation. Vendace was the most efficient forager on zooplankton but also swam faster spending more energy compared to roach. Roach had a comparatively high metabolic rate in the lowest temperature, where their foraging efficiency was lowest. The energy gain ratio at 6°C was highest for vendace, while it was lowest for roach. In the highest temperature (18°C) and the lowest light level (1 lux), both species were similar in their energy gain ratio. The relative energy gain ratio provides a mechanism to explain habitat distribution for the two species. An increased understanding of the role of metabolism in combination with biotic interactions and habitat use may help to foresee effects of environmental change for different species.  相似文献   

17.
Abstract –  We used a longline tethering method to examine the relationship between prey refugia, prey body morphology and the location and magnitude of predation mortality within an individual lake and among three lakes that differed in coarse woody habitat (CWH) and aquatic macrophyte abundances. Predation events were lowest in the macrophyte and/or CWH refuges, peaked at or just beyond the refuge edge and declined in pelagic portions of the lakes. Predation risk at the refuge edge and just beyond was positively correlated with the abundance of littoral refuge. In contrast, predation events within the refuge and in the pelagic zone were negatively correlated with littoral refuge abundance. Deep-bodied and spiny prey morphologies were less vulnerable to predation than fusiform prey lacking fin spines. The structural complexity of littoral zones and prey fish body morphology may influence the outcome of predator–prey interactions and ultimately determine fish species assemblages in lakes.  相似文献   

18.
Resource polymorphism is a widespread phenomenon in post‐glacial fishes where multiple morphotypes of a species occur sympatrically and exhibit distinct resource use. Availability of open niches and high levels of within and among species competition are thought to drive differences in morphology and may provide insights into early stages of speciation. Hovsgol grayling (Thymallus nigrescens) are endemic to Lake Hovsgol, a lake colonised by fish following the Pleistocene, and are threatened with habitat loss due to climate change and illegal harvest. Previous analysis of Hovsgol grayling diet inferred through C and N stable isotopes suggested the presence of littoral and pelagic foraging groups. We hypothesised that morphology of the two foraging groups would reflect predictions of functional morphology, indicating the presence of resource polymorphism. To test this hypothesis, we evaluated evidence from C and N stable isotopes, stomach contents, fish ages, capture location and morphology. Two foraging groups of Hovsgol grayling were identified through stomach content and C and N stable isotope analysis. Individuals with greater zooplankton consumption were more frequently captured in the pelagic zone, exhibited higher gill raker counts, larger orbit (eye) sizes, longer paired fins, narrower head width, larger maxilla and smaller size at age than the group with greater reliance on benthic invertebrate prey. These differences were generally consistent with those described in other fish species exhibiting littoral–pelagic resource polymorphism. Our study provides the first example of littoral–pelagic resource polymorphism in the salmonid subfamily Thymallinae and highlights the potential influence of competition on fish evolution.  相似文献   

19.
Abstract – Bull trout, a species of char listed as threatened under the US Endangered Species Act, have been displaced from portions of their historic range following the introduction of nonnative lake trout. It has been suggested that competitive exclusion as a result of trophic overlap between bull trout and lake trout may be the causal mechanism associated with displacement of bull trout. This study used stable isotope data to evaluate trophic relationships among native bull trout, nonnative lake trout and other fishes in seven lakes in Glacier National Park (GNP), Montana. Bull trout and lake trout had greater δ15N values relative to other fishes among lakes (δ15N ≥ 3.0‰). Lake trout had greater δ15N values relative to bull trout (δ15N = +1.0‰). Bull trout had greater δ13C values relative to lake trout in six of the seven lakes examined. Although both bull trout and lake trout had greater δ15N values relative to other fishes within lakes in GNP, differences in δ15N and δ13C between bull trout and lake trout suggest that they are consuming different prey species or similar prey species in different proportions. Therefore, displacement of bull trout as a direct result of complete overlap in food resource use is not anticipated unless diet shifts occur or food resources become limiting. Additionally, future studies should evaluate food habits to identify important prey species and sources of partial dietary overlap between bull trout and lake trout.  相似文献   

20.
Abstract – Resource partitioning between Atlantic salmon parr, brown trout and Arctic charr was studied throughout the ice-free season in a north Norwegian lake. Juvenile salmon and trout (≤160 mm) utilized the littoral zone and juvenile charr the profundal, while adult trout and charr (>160 mm) were found in both. Juvenile salmon and trout had a similar diet, although trichopteran larvae were more important for the trout and chironomid pupae and three-spined sticklebacks for the salmon parr. Small salmon and trout parr (≤120 mm) had a higher diet overlap than larger parr (121–160 mm). The feeding habits of adult trout were similar to that of juvenile trout, but the former took larger prey items. At the population level, both salmon and trout were generalistic feeders with a broad diet, but at the individual level, both species had specialized on a single or a few prey categories. Juvenile charr were segregated from salmon and trout in both habitat and food utilization; they had a narrow diet consisting of chironomids and zooplankton, possibly reflecting their confinement to the profundal habitat which have a low diversity of potential prey. Larger charr also took zoobenthos and sticklebacks in the littoral zone. Note  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号