首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylcholine synthesis by rat type II pneumonocytes was altered either by depleting the cells of choline or by exposing the cells to extracellular lung surfactant. Effects of these experimental treatments on the activity of a regulatory enzyme, CTP:phosphocholine cytidylyltransferase, were investigated. Although choline depletion of type II pneumonocytes resulted in inhibition of phosphatidylcholine synthesis, cytidylyltransferase activity (measured in cell homogenates in either the absence or presence of added lipids) was greatly increased. Activation of cytidylyltransferase in choline-depleted cells was rapid and specific, and was quickly and completely reversed when choline-depleted cells were exposed to choline (but not ethanolamine). Choline-dependent changes in enzymic activity were apparently not a result of direct actions of choline on cytidylyltransferase and they were largely unaffected by cyclic AMP analogues, oleic acid, linoleic acid or cycloheximide. The Km value of cytidylyltransferase for CTP (but not phosphocholine) was lower in choline-depleted cells than in choline-repleted cells. Subcellular redistribution of cytidylyltransferase also was associated with activation of the enzyme in choline-depleted cells. When measured in the presence of added lipids, 66.5 +/- 5.0% of recovered cytidylyltransferase activity was particulate in choline-depleted cells but only 34.1 +/- 4.5% was particulate in choline-repleted cells. An increase in particulate cytidylyltransferase also occurred in type II pneumonocytes that were exposed to extracellular surfactant. This latter subcellular redistribution, however, was not accompanied by a change in cytidylyltransferase activity even though incorporation of [3H]choline into phosphatidylcholine was inhibited by approx. 50%. Subcellular redistribution of cytidylyltransferase, therefore, is associated with changes in enzymic activity under some conditions, but can also occur without a resultant alteration in enzymic activity.  相似文献   

2.
Results of previous investigations support the proposition that, in type II pneumonocytes, CMP is involved in integration of the synthesis of phosphatidylcholine and phosphatidylglycerol for lung surfactant. In the present investigation, the amount of CMP in rat type II pneumonocytes was altered directly and resultant changes in the synthesis of phosphatidylglycerol were examined. Type II pneumonocytes were made permeable to CMP by treatment with Ca2+-free medium, and phosphatidylglycerol synthesis was then assessed by measurement of the incorporation of a radiolabelled precursor, [14C]glycerol 3-phosphate, that was not effectively utilized by cells that resisted permeabilization. Incorporation of [14C]glycerol 3-phosphate into phosphatidylglycerol (but not into other lipids) was stimulated greatly by CMP (half-maximal stimulation at approx. 0.1 mM). CMP stimulated the incorporation of [14C]glycerol 3-phosphate into both the phosphatidyl moiety and the head group of phosphatidylglycerol. Incorporation of [14C]palmitate into phosphatidylglycerol was also stimulated by CMP. myo-Inositol, at concentrations found in foetal-rat serum (0.2-2.0 mM), inhibited CMP-dependent incorporation of [14C]glycerol 3-phosphate into phosphatidylglycerol and promoted, instead, CMP-dependent incorporation into phosphatidylinositol. These data, when extrapolated to foetal type II pneumonocytes, are consistent with the view that the developmental increase in the synthesis of phosphatidylglycerol for surfactant by foetal lungs is promoted by the increase in intracellular CMP and the declining availability of myo-inositol that were found previously to be associated with this period of development.  相似文献   

3.
The effect of an analogue of cAMP on the uptake and metabolism of choline in the heart was studied in isolated cardiac cells. The cells were obtained from 7-day-old chick embryos and maintained in culture. The effects of cAMP were studied using the dibutyryl cAMP analogue and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. After a 2-h incubation with [3H]choline, about 85% of the label was recovered in phosphocholine, with most of the rest in phospholipid. During a subsequent chase incubation, [3H]phosphocholine was transferred to phosphatidylcholine with little accumulation in CDP-choline. This suggests the rate-limiting step for the conversion of phosphocholine to phosphatidylcholine in these cells is the synthesis of CDP-choline. cAMP decreased the incorporation of choline into phosphatidylcholine, but did not change the flux of metabolites through the step catalyzed by CTP:phosphocholine cytidylyltransferase. cAMP had little effect on choline uptake at low (1-25 microM) extracellular choline concentrations, but significantly (p less than 0.05) decreased choline uptake at higher (37.5-50 microM) extracellular choline concentrations. Thus, cardiac cells take up and metabolize choline to phosphocholine, with CTP:phosphocholine cytidylyltransferase being the rate-limiting step in phosphatidylcholine biosynthesis. cAMP decreases [3H]choline uptake and its subsequent incorporation into phosphocholine and phospholipid. However, the metabolism of choline within the cell is unaffected.  相似文献   

4.
The effect of both lipolytic and antilipolytic hormones on the turnover of phosphatidylcholine in freshly isolated rat adipocytes was investigated. Treatment of adipocytes with agonists such as glucagon or isoprenaline that stimulate lipolysis through a cyclic AMP-dependent mechanism caused an increase in the incorporation of [Me-3H]choline into phosphatidylcholine. Pulse-chase studies indicated that the stimulation was due to an increase in the conversion of choline into phosphatidylcholine, which was both time- and dose-dependent. The stimulatory effect of isoprenaline was inhibited in a dose-dependent manner by oxytocin or insulin. Oxytocin inhibited the incorporation of [Me-3H]choline into phosphatidylcholine in both the presence and the absence of isoprenaline, whereas in the absence of isoprenaline insulin increased the incorporation of [Me-3H]choline into phosphatidylcholine. The effects of isoprenaline, oxytocin and insulin on the incorporation of [3H]choline into phosphatidylcholine were paralleled by changes in the activity of CTP:phosphocholine cytidylyltransferase.  相似文献   

5.
Short time effect of oleate and 1-O-alkyl-2-O-methyl-rac-glycero-3-phosphocholine (AMGPC) on choline incorporation into phosphatidylcholines were studied in HL-60 cells. The non lytic concentration of 50 microM oleate induced a three-fold increase in [3H]choline incorporation into phosphatidylcholine. This stimulation was accompanied by a translocation of the CTP:phosphocholine cytidylyltransferase (EC 2.7.7.15) from cytosol to membranes. By contrast, the ether-lipid AMGPC inhibited [3H]choline incorporation into phosphatidylcholine by 60% at 10 microM. AMGPC had no effect on choline kinase or choline phosphotransferase activities. When AMGPC was added separately to an homogenate, a particulate or a cytosolic fraction, cytidylyltransferase inhibition was observed only in the homogenate. However on particulates recovered from homogenates treated with increasing concentrations of AMGPC, membranous cytidylyltransferase activity decreased dose-dependently. Thus AMGPC had no effect on cytidylyltransferase activity itself but inhibited its translocation from cytosol to membrane. At variance with the well-established positive effect on cytidylyltransferase translocation induced by fatty acids, this is the first demonstration that AMGPC can inhibit cytidylyltransferase translocation in cell-free system.  相似文献   

6.
The effect of cAMP analogues on phosphatidylcholine formation via the CDP-choline pathway was investigated in cultured monolayers of rat hepatocytes. Treatment with chlorophenylthio-cAMP or the cAMP phosphodiesterase inhibitor, aminophylline, reduced the total uptake of [methyl-3H]choline by 32 and 26% (p less than 0.01), respectively. Chlorophenylthio-cAMP inhibited the incorporation of [methyl-3H]choline into phosphatidylcholine by 2.5-fold (p less than 0.001) and reduced the rate of phosphatidylcholine biosynthesis by approximately 40%. Aminophylline, 8-bromoadenosine 3':5'-monophosphate and N6,O2'-dibutyryladenosine 3':5'-monophosphate also inhibited [methyl-3H]choline incorporation into phosphatidylcholine. Although choline kinase and phosphocholinetransferase activities were stimulated by chlorophenylthio-cAMP treatment, CTP: phosphocholine cytidylyltransferase activity was reduced 46% (p less than 0.01). The results indicate that cytidylyltransferase may be phosphorylated and inhibited by cAMP-dependent protein kinases.  相似文献   

7.
The mechanism of the inhibition of phosphatidylcholine biosynthesis by the phospholipid analogue, hexadecylphosphocholine, was investigated in Madin-Darby canine kidney cells. In the presence of 50 mumol/liter hexadecylphosphocholine, there was a translocation of CTP:choline-phosphate cytidylyltransferase (EC 22.7.7.15) activity from the membranes to the cytosol of the cells. Since we recently demonstrated that hexadecylphosphocholine also inhibits protein kinase C in vitro, [methyl-3H]choline labeling experiments were repeated with phorbol ester-desensitized cells. In these cells the same inhibitory effect of hexadecylphosphocholine was measured. As a consequence of inhibition, the [methyl-3H]choline incorporation into the phosphocholine pool was increased time-dependently. In addition, there was no evidence for a difference between the choline uptake of control and hexadecylphosphocholine-treated cells. Likewise, the amount of diacylglycerol, a known activator of the translocation process, was not reduced. Finally, we showed that the inhibitory effect of hexadecylphosphocholine on CTP:choline-phosphate cytidylyltransferase translocation cannot be explained by the detergent properties of this phospholipid analogue. Therefore, we suggest a direct inhibitory effect of hexadecylphosphocholine on the translocation of CTP:choline-phosphate cytidylyltransferase.  相似文献   

8.
CTP:phosphocholine cytidylyltransferase was located in both the cytosolic and particulate fractions from Chinese hamster ovary cells. The activity of the cytosolic form of the enzyme was greatly enhanced by incubation with sonicated preparations of several different lipids, although incubations with either phosphatidylcholine or 1,2-sn-diolein did not increase activity. The activation of the cytidylyltransferase in Chinese hamster ovary cells treated with phospholipase C from Clostridium perfringens occurred with a concomitant shift in the subcellular distribution of the enzyme from cytosolic to particulate fractions. This shift was rapid and did not require protein synthesis. Removal of phospholipase C from the cell cultures resulted in a return to basal levels of incorporation of [3H]choline into phosphatidylcholine, a decrease in the activity of cytidylyltransferase, and a loss of the membrane-bound form of the enzyme. Similar experiments with LM cells, which are resistant to exogenous phospholipase C, showed no change in subcellular distribution of cytidylyltransferase, suggesting that the activation of CTP:phosphocholine cytidylyltransferase required a change in membrane phospholipid composition. The results presented are discussed in terms of a mechanism of regulation of phosphatidylcholine production involving monitoring of membrane phospholipid composition.  相似文献   

9.
When type II pneumonocytes were exposed to purified lung surfactant that contained 1-palmitoyl-2-[3H]palmitoyl-glycero-3-phosphocholine, radiolabelled surfactant was apparently taken up by the cells since it could not be removed by either repeated washing or exchange with non-radiolabelled surfactant, but was released when the cells were lysed. After 4 h of exposure to [3H]surfactant, more than half of the 3H within cells remained in disaturated phosphatidylcholine. Incorporation of [3H]choline, [14C]palmitate and [14C]acetate into glycerophospholipids was decreased in type II cells exposed to surfactant and this inhibition, like surfactant uptake, was half-maximal when the extracellular concentration of surfactant was approx. 0.1 mumol of lipid P/ml. Inhibition of incorporation of radiolabelled precursors by surfactant occurred rapidly and reversibly and was not due solely to dilution of the specific radioactivity of intracellular precursors. Activity of dihydroxyacetone-phosphate acyltransferase, but not glycerol-3-phosphate acyltransferase, was decreased in type II cells exposed to surfactant and this was reflected by a decrease in the 14C/3H ratio of total lipids synthesized when cells incubated with [U-14C]glycerol and [2-3H]glycerol were exposed to surfactant. Phosphatidylcholine, phosphatidylglycerol and cholesterol, either individually or mixed in the molar ratio found in surfactant, did not mimic purified surfactant in the inhibition of glycerophospholipid synthesis. In contrast, an apoprotein fraction isolated from surfactant inhibited greatly the incorporation of [3H]choline into lipids and this inhibitory activity was labile to heat and to trypsin. It is concluded that the apparent uptake of surfactant by type II cells in vitro is accompanied by an inhibition of glycerophospholipid synthesis via a mechanism that involves a surfactant apoprotein.  相似文献   

10.
Type II pneumonocytes isolated from adult rat lung were incubated in a serum-free medium containing [14C]glycerol and the incorporation of 14C into glycerophospholipids was measured. After 24 h, more than 80% of the 14C incorporated into total lipids or into phosphatidylcholine and approx. 90% of the 14C incorporated into phosphatidylglycerol after 24 h was recovered in the glycerophosphoester moieties of these molecules. Supplementation of the incubation medium with foetal-bovine serum (10%, v/v) did not alter the incorporation of [14C]glycerol by type II pneumonocytes after 24 h into either a total lipid extract or phosphatidylcholine. In the presence of foetal-bovine serum, however, the incorporation of 14C into phosphatidylglycerol was decreased and the incorporation of 14C into phosphatidylinositol was increased. In the absence of foetal-bovine serum, the incorporation of 14C into phosphatidylglycerol was decreased progressively as the concentration of myo-inositol in the incubation medium was increased. The range of concentration (0.04-0.50 mM) over which myo-inositol had the greatest influence on [14C]glycerol incorporation into phosphatidylglycerol by type II pneumonocytes in vitro encompassed the concentration range measured in foetal-rat serum late in gestation. At 4 days before birth, the concentration of myo-inositol in foetal-rat serum was 0.36 mM and decreased to 0.23 mM 1 day before birth. The concentration of myo-inositol in adult rat serum increased from 0.03 mM to 0.06 mM during pregnancy. Isolated rat type II pneumonocytes were found to take up myo-inositol by a saturable process. A half-maximal rate of myo-inositol uptake occurred at a concentration of myo-inositol of 0.29 mM. The results of this investigation are consistent with the hypothesis that late in gestation there is a decreasing availability of myo-inositol to the foetal lungs and that this favours the biosynthesis of phosphatidylglycerol for surfactant at the expense of phosphatidylinositol biosynthesis.  相似文献   

11.
The influence of chlorpromazine and trifluoperazine on phosphatidylcholine biosynthesis in HeLa cells was investigated. HeLa cells were prelabeled with [Me-3H]choline for 1 h. The cells were subsequently incubated with various concentrations of drugs. Both compounds were potent inhibitors of phosphatidylcholine biosynthesis, with 50% inhibition by 5 micron of either drug. Analysis of the radioactivity in the soluble precursors indicated a block in the conversion of phosphocholine to CDPcholine catalyzed by CTP:phosphocholine cytidylyltransferase (CTP:cholinephosphate cytidylyltransferase, EC 2.7.7.15). Inhibition by these drugs was slowly reversed after incubation for more than 2 h, or was immediately abolished when 0.4 mM oleate was included in the cell medium or when the drug-containing medium was removed. The subcellular location of the cytidylyltransferase was unaffected by either drug, nor did the drugs alter the rate of release of cytidylyltransferase from HeLa cells by digitonin treatment. The drugs had a direct inhibitory effect on cytidylyltransferase activity in HeLa cell postmitochondrial supernatants. Half-maximal inhibition was achieved with 30 microM trifluoperazine and 50 microM chlorpromazine. These drugs did not change the apparent Km of the cytidylyltransferase for CTP or phosphocholine. Inhibition of cytidylyltransferase by these compounds was reversible with exogenous phospholipid or oleate in the enzyme assay. The data indicate that both drugs inhibit phosphatidylcholine synthesis by an effect on the cytidylyltransferase. The mechanism of action remains unknown at this time.  相似文献   

12.
After a 3-h incubation of Krebs II ascitic cells in the presence of phospholipase C from Clostridium welchii under nonlytic conditions, the incorporation of [3H] choline into phosphatidylcholine was increased 1.7-fold as compared to untreated cells. The total amounts of phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin were unchanged up to 3 h of incubation. The limiting step in phosphatidylcholine biosynthesis was the formation of CDP-choline catalyzed by CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15) as monitored by the decrease in phosphocholine labeling following phospholipase C treatment of cells prelabeled with [3H]choline. The specific activity of homogenate cytidylyltransferase was increased about 1.6-fold in phospholipase C-treated cells. Specific activity of the membrane fraction was increased 2-fold, whereas cytosolic specific activity decreased in phospholipase C-treated cells. The activation of cytidylyltransferase was concomitant with translocation of the enzyme from the cytosol to the membrane fraction. The latter was further fractionated using a Percoll gradient that allowed an efficient separation between endoplasmic reticulum and other subcellular membranes. In control cells, particulate cytidylyltransferase activity co-migrated with the endoplasmic reticulum and ribosome markers and not with the plasma membrane. Also, in treated cells, the stimulation of cytidylyltransferase activity occurred at the endoplasmic reticulum level and did not involve either the external cell membrane or other cellular organelles including the Golgi apparatus, lysosomes, or mitochondria. Thus, our results demonstrate that a stimulus acting on the plasma membrane promotes the translocation of the soluble form of cytidylyltransferase specifically to the endoplasmic reticulum.  相似文献   

13.
It has been known for 40 years that oestrogens stimulate phospholipid metabolism in roosters. We have investigated in vivo the mechanism for this effect. Young roosters were injected daily with 1 mg of diethylstilboestrol for 1--3 days. At 4 h after the last injection, 30 microCi of [Me-3H]choline was injected into the portal vein. At periods up to 3 min the livers were freeze-clamped and choline and its metabolites were extracted and resolved by t.l.c. Hormone treatment in the first 2 days resulted in a 2-fold increase in phosphorylation of [Me-3H]choline and a decrease in the oxidation of [Me-3H]choline to [3H]betaine. The concentrations of phosphocholine in liver were increased 2-fold during the first 2 days concomitant with a 2-fold increase in the rate of phosphatidylcholine biosynthesis. After 3 days of hormone treatment, many of the above effects were reversed and the rate of phosphatidylcholine biosynthesis decreased to approx. 60% of the control value. The results suggest that the initial hormone treatments activate choline kinase within 4 h and, thereby, divert choline form oxidation to betaine. The resulting increased phosphocholine concentrations cause an increase in the activity of CTP:phosphocholine cytidylyltransferase, which results in a doubling of the rate of phosphatidylcholine biosynthesis. After 3 days of hormone treatment, the biosynthesis of phosphatidylcholine is decreased, most likely by an effect on the cytidylyltransferase reaction.  相似文献   

14.
Immunoprecipitation of 32P-labeled CTP:phosphocholine cytidylyltransferase from freshly isolated rat hepatocytes followed by trypsin digestion and two-dimensional peptide mapping revealed multiple phosphorylation sites. Treatment of the hepatocytes with 0.5 mM of the cAMP analog, 8-(4-chlorophenylthio)-adenosine 3':5'-monophosphate or elevation of intracellular cAMP levels by cholera toxin activated the cAMP-dependent protein kinase activity in intact cells. Despite the activation of cAMP-dependent protein kinase no change in the rate of [3H]choline incorporation into phosphatidylcholine was detected. In addition, the activity of cytidylyltransferase in total cell homogenates and its distribution between soluble and particulate fractions remained unchanged. Comparison of peptide maps of 32P-labeled cytidylyltransferase obtained from control and cholera-toxin-treated hepatocytes did not reveal any differences in the phosphorylation state of cytidylyltransferase. Furthermore, only [32P]phosphoserine residues were detected following phosphoamino acid analysis. We conclude that cytidylyltransferase activity is not altered solely by the activation of the cAMP-dependent kinase in fresh hepatocytes.  相似文献   

15.
We have examined how a specific enrichment of cultured fibroblasts with various sterols (cholesterol, lathosterol, 7-dehydrocholesterol, allocholesterol and dihydrocholesterol) regulate synthesis de novo of phosphatidylcholine, cholesterol and cholesteryl (or steryl) esters in human skin fibroblasts. When human skin fibroblasts were incubated for 1 h with 130 microM cholesterol/CyD complexes, the mass of cellular free cholesterol increased by 100 nmol.mg-1 protein (from 90 nmol.mg-1 to 190 nmol.mg-1 protein). A similar exposure of cells to different sterol/CyD complexes increased the cell sterol content between 38 and 181 nmol sterol per mg cell protein. In cholesterol-enriched cells, the rate of phosphatidylcholine synthesis was doubled compared to control cells, irrespective of the type of precursor used ([3H]choline, [3H]palmitic acid, or [14C]glycerol). Enrichment of fibroblasts with 7-dehydrocholesterol, allocholesterol, or dihydrocholesterol also upregulated phosphatidylcholine synthesis, whereas cells enriched with lathosterol failed to upregulate their phosphatidylcholine synthesis. The activity of membrane-bound CTP:phosphocholine cytidylyltransferase, the rate-limiting enzyme, was increased by 47 +/- 4% in cholesterol-enriched cells whereas its activity was unchanged in lathosterol-enriched cells. Sterol enrichment with all tested sterols (including lathosterol) down-regulated acetate-incorporation into cholesterol, and upregulated sterol esterification in the sterol-enriched fibroblasts. Using 31P-NMR to measure the lamellar-to-hexagonal (Lalpha-HII) phase transition in multilamellar lipid dispersions, lathosterol-containing membranes underwent their transition at significantly higher temperatures compared to membranes containing any of the other sterols. In a system with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine and either cholesterol or lathosterol (70:30 mol/mol), differential scanning calorimetry also revealed that the Lalpha-HII-transition occurred at a higher temperature with lathosterol compared to either cholesterol, allocholesterol, or dihydrocholesterol. These findings together suggest that there may exist a correlation between the propensity of a sterol to stabilize the Lalpha-HII-transition and its capacity to upregulate the activity of CTP:phosphocholine cytidylyltransferase in cells.  相似文献   

16.
The genomes of Treponema denticola and Treponema pallidum contain a gene, licCA, which is predicted to encode a fusion protein containing choline kinase and CTP:phosphocholine cytidylyltransferase activities. Because both organisms have been reported to contain phosphatidylcholine, this raises the possibility that they use a CDP-choline pathway for the biosynthesis of phosphatidylcholine. This report shows that phosphatidylcholine is a major phospholipid in T. denticola, accounting for 35-40% of total phospholipid. This organism readily incorporated [14C]choline into phosphatidylcholine, indicating the presence of a choline-dependent biosynthetic pathway. The licCA gene was cloned, and recombinant LicCA had choline kinase and CTP:phosphocholine cytidylyltransferase activity. The licCA gene was disrupted in T. denticola by erythromycin cassette mutagenesis, resulting in a viable mutant. This disruption completely blocked incorporation of either [14C]choline or 32Pi into phosphatidylcholine. The rate of production of another phospholipid in T. denticola, phosphatidylethanolamine, was elevated considerably in the licCA mutant, suggesting that the elevated level of this lipid compensated for the loss of phosphatidylcholine in the membranes. Thus it appears that T. denticola does contain a licCA-dependent CDP-choline pathway for phosphatidylcholine biosynthesis.  相似文献   

17.
The production and characterization of an antibody to rat liver CTP:phosphocholine cytidylyltransferase is described. This antibody quantitatively precipitated cytidylyltransferase from both rat liver and HeLa cell cytosol. Following affinity purification, the antibody was used to demonstrate, for the first time, the phosphorylation of cytidylyltransferase in vivo. Following the immunoprecipitation of cytidylyltransferase from HeLa cells, acid hydrolysis, and thin layer electrophoresis of the amino acids, only [32P]phosphoserine was detected. The phosphorylation state of cytidylyltransferase in HeLa cells was examined following treatment with phorbol ester for 1 h. In agreement with previous studies, the incorporation of [3H]choline into phosphatidylcholine via the CDP-choline pathway was stimulated 5-fold in cultures of HeLa cells following treatment with phorbol ester for 1 h. However, no appreciable translocation of cytidylyltransferase was detected, despite the utilization of two different methods of cell lysis. Furthermore, the inclusion of phosphatase inhibitors and chelators of divalent cations in the homogenization buffers had no effect on the observed distribution or activity of the enzyme. Immunoprecipitated cytidylyltransferase was phosphorylated to the same extent, and on serine residues only, in both control and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-treated cells. Measurement of the pool sizes of the aqueous intermediates of the CDP-choline pathway, following TPA treatment, revealed a modest decrease in the phosphocholine pool only, consistent with an activation of cytidylyltransferase.  相似文献   

18.
The involvement of endogenous diacylglycerol production in the stimulation of phosphatidylcholine synthesis by exogenous phospholipase C was examined using a neuroblastoma (LA-N-2) cell line. Phospholipase C treatment (0.1 unit/ml) of intact cells stimulated CTP:phosphocholine cytidylyltransferase activity significantly more effectively than did maximally effective concentrations of the synthetic diacylglycerol sn-1,2-dioctanoylglycerol (1 mM). When added to cells together with phospholipase C, oleic acid, but not dioctanoylglycerol, further increased cytidylyltransferase activity with respect to phospholipase C treatment alone, indicating that the enzyme was not maximally activated by the lipase. This suggests that the lack of additivity of diacylglycerol and phospholipase C reflects a common mechanism of action. The time course of activation of cytidylyltransferase by phospholipase C paralleled that of [3H]diacylglycerol production in cells prelabeled for 24 h with [3H]oleic acid. Diacylglycerol mass was similarly increased. Significant elevations of [3H]oleic acid and total fatty acids occurred later than did the increases in cytidylyltransferase activity and diacylglycerol levels. No significant reduction in total or [3H]phosphatidylcholine was elicited by this concentration of phospholipase C, but higher concentrations (0.5 unit/ml) significantly reduced phosphatidylcholine content. The stimulation of cytidylyltransferase activity by phospholipase C or dioctanoylglycerol was also associated with enhanced incorporation of [methyl-14C]choline into phosphatidylcholine. Dioctanoylglycerol was more effective than phospholipase C at stimulating the formation of [14C]phosphatidylcholine, and the effects of the two treatments were additive. However, further analysis revealed that dioctanoylglycerol served as a precursor for [14C]dioctanoylphosphatidylcholine as well as an activator of cytidylyltransferase; and when corrections were made for this effect, the apparent additivity disappeared. The results indicate that the generation of diacylglycerol by exogenous phospholipase C (and possibly the subsequent production of fatty acids via diacylglycerol metabolism) activates cytidylyltransferase activity in neuronal cells under conditions in which membrane phosphatidylcholine content is not measurably reduced.  相似文献   

19.
The effects of cholecystokinin (CCK) and other pancreatic secretagogues on phosphatidylcholine (PC) synthesis were studied in isolated rat pancreatic acini. When acini were incubated with [3H]choline in the presence of 1 nM CCK-octapeptide (CCK8) for 60 min, the incorporations of [3H]choline into both water-soluble choline metabolites and PC in acini were reduced by CCK8 to 74 and 41% of control, respectively. Pulse-chase study revealed that CCK8 reduced both the disappearance of phosphocholine and the synthesis of PC. Other Ca(2+)-mobilizing secretagogues such as carbamylcholine, bombesin, and Ca2+ ionophore A23187 also reduced PC synthesis to the same extent as did CCK8. When combined with 1 nM CCK8, A23187 or carbamylcholine did not further inhibit PC synthesis. Furthermore, W-7 or W-5, a calmodulin antagonist, reversed the inhibition by CCK8 of PC synthesis, suggesting that a Ca(2+)-calmodulin-dependent pathway may be involved in CCK-induced inhibition of PC synthesis in acini. By contrast, neither cAMP-dependent secretagogues such as secretin and dibutyryl cAMP nor a phorbol ester had any effect on PC synthesis in acini. Staurosporine or H-7, a protein kinase C inhibitor, did not affect the inhibition by CCK of PC synthesis. The analysis of enzyme activity involved in PC synthesis via CDP-choline pathway showed that CCK treatment of acini reduced CTP:phosphocholine cytidylyltransferase activity in both cytosolic and particulate fraction, a finding consistent with the delayed disappearance of phosphocholine induced by CCK in pulse-chase study. By contrast, CCK treatment of acini did not alter the activities of choline kinase and phosphocholine transferase in acini. The extent of inhibition by CCK of cytidylyltransferase activity became much larger when subcellular fractions of acini were prepared in the presence of phosphatase inhibitors. In addition, W-7 reversed the inhibitory effect of CCK treatment on cytidylyltransferase activity in acini. When acini were labeled with [3H]myristic acid and chased, CCK8 (1 nM) reduced the synthesis of [3H]myristic acid-labeled PC to 27% of control after a 60-min chase period. This inhibition of PC synthesis induced by CCK was accompanied by a delayed disappearance of [3H]diacylglycerol, the radioactivity of which was 225% of control at 60 min. These results indicate that CCK inhibits PC synthesis by inducing both the reduction of choline uptake into acini and the inhibition of CTP:phosphocholine cytidylyltransferase activity. Furthermore, the results suggest the possibility that the activation of Ca(2+)-calmodulin-dependent kinase in response to CCK may phosphorylate cytidylyltransferase thereby decreasing this enzyme activity in pancreatic acinar cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
The influence of cyclic AMP analogues and fatty acids on glycerolipid biosynthesis in monolayer cultures of rat hepatocytes was investigated. Chlorophenylthio-cyclic AMP and adenosine 3':5'-cyclic phosphorothioate inhibited the rate of triacylglycerol synthesis from [1(3)-3H]glycerol, and phosphatidylcholine synthesis from [Me-3H]-choline. Supplementation of the hepatocytes with palmitate (1 mM) reversed chlorophenylthio-cyclic AMP inhibition of triacylglycerol synthesis. Similarly, cyclic AMP analogue-inhibition of phosphatidylcholine synthesis was abolished when the cells were simultaneously incubated with oleate (3 mM). Reactivation of phosphatidylcholine synthesis in chlorophenylthio-cyclic AMP-supplemented cells with oleate was accompanied by conversion of CTP: phosphocholine cytidylyltransferase into the membrane-bound form, since these cells released the enzyme more slowly after treatment with digitonin. The opposing actions of cyclic AMP and fatty acids are discussed in relation to the regulation of glycerolipid biosynthesis during starvation, diabetes and stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号