首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 407 毫秒
1.
【目的】通过基于单倍型的病例-对照全基因组关联分析(GWAS)鉴别白色杜洛克×二花脸F2资源家系中影响猪阴囊疝的易感位点及位置功能候选基因,并在远缘纯种猪阴囊疝三联体核心家系(Trio)群体中进行重复验证。【方法】利用Illumina porcine 60K SNP芯片对1 020头白色杜洛克×二花脸F2资源家系阴囊疝群体(包含19个阴囊疝患病个体)进行扫描获取基因型。通过Plink v1.07软件对基因型数据进行质量控制;剔除个体基因型检出率< 90%的个体,剔除SNP位点检出率< 90%、哈迪温伯格平衡卡方检验P≤10-3和最小等位基因频率< 0.05及性染色体上和无法定位的SNP位点。质控合格的SNP位点用PHASEBOOK构建出F2资源家系中每个个体的单倍型,并采用隐马尔可夫模型将其归类到数目预先定义的祖先单倍型中。使用基于广义线性混合模型的GLASCOW软件进行利用祖先单倍型的病例-对照全基因组关联分析。采用保守的Bonferroni校正方法得到基因组显著水平和染色体显著水平的阈值。对F2资源家系中达到染色体显著水平的易感SNP位点在包含237个患病个体的远缘纯种猪阴囊疝三联体核心家系(Trio)群体中进行同样的质控,并利用Haploview软件对质控合格的SNP位点分别展开基于单点和基于单倍型的传递不平衡分析(TDT),进行重复验证。【结果】白色杜洛克×二花脸F2资源家系中全部个体的38 033个SNP标记通过质控。在GWAS分析中,共发现108个达染色体显著水平(P<2.63×10-5)的猪阴囊疝关联SNP位点,分别位于染色体2、8和17上,最强相关的SNP位点位于17号染色体上。在远缘三联体核心家系群中,724个个体的96个SNP位点通过质控。对质控合格的SNP位点进行基于单点的TDT分析,结果发现5个显著相关的SNP位点得到重复验证(P<0.05),其中2号染色体上有1个SNP位点和17号染色体上有4个SNP位点,分别位于IQGAP2,CHMP4B,SERINC3,ZNF334 等4个基因内或其上下游。基于单倍型的TDT验证分析发现两个易感单倍型框,其中与基于单点TDT验证分析有重合的仅有SSC17上CHMP4B内及下游的两个易感位点。结合疝气发生机制及TDT分析结果,推测IQGAP2和CHMP4B可能是影响猪阴囊疝发生的两个重要的位置功能候选基因。【结论】本研究利用基于小样本的GWAS分析和较大样本群验证分析,在SSC2和SSC17上分别鉴别1个和4个阴囊疝易感位点,在SSC17上鉴别到两个易感单倍型。易感位点附近的2个基因IQGAP2和CHMP4B可能是影响猪阴囊疝发生的位置功能候选基因,值得进一步研究。  相似文献   

2.
【目的】研究PRL、PRLR基因在白色杜洛克×二花脸F2资源群体中的遗传变异及其与母猪杀婴行为和产仔数的关联性。【方法】PRL基因的g.1317TA、g.8905CT、g.9056CT位点,PRLR基因的g.1217CT、g.1283CA、g.1439GA、g.1528GA和g.1600TA位点采用SNaPshot法对资源群体所有F0、F1和288头F2母猪进行基因型判定,分别利用传递不平衡检测(TDT)和最小二乘法分析这些位点与母猪杀婴行为和产仔性状的关联性。【结果】TDT分析发现,PRL和PRLR基因所有检测SNP位点,无论基因型还是单倍型均与母猪杀婴行为无显著相关。与母猪产仔数相关性分析表明:PRLR基因5个SNP位点的基因型及单倍型与总产仔数、产活仔数、产死胎数、断奶仔猪数和断奶窝重均未达到显著相关;PRL基因的3个SNP位点与母猪的总产仔数和产活仔数达到显著相关(P0.05),单倍型ACC个体的总产仔数(P=0.0005)和产活仔数(P=0.001)极显著低于其它单倍型个体;单倍型TTT个体的产活仔数显著高于其它单倍型个体(P=0.003)。【结论】白色杜洛克×二花脸F2资源群体中,PRL、PRLR基因与母猪杀婴行为无关联性,PRL基因与母猪总产仔、产活仔数显著相关。  相似文献   

3.
 【目的】利用二花脸×沙子岭家系定位影响仔猪45日龄断奶体重的数量性状位点(quantitative trait loci,QTL)并搜寻QTL区间内与表型相关的位置候选基因,为最终鉴别因果基因奠定前期工作基础。【方法】构建二花脸×沙子岭猪F2资源家系,利用Illumina porcine 60k DNA芯片判定F2个体的基因型,对45日龄断奶体重表型进行全基因组连锁分析,定位影响二花脸×沙子岭家系F2家系仔猪45日龄断奶体重的QTL。在Ensemble(EMBL-EBI)和NCBI(National Center for Biotechnology Information)网站基因组数据库中搜寻相应的位置候选基因。【结果】在猪的2号染色体(sus scrofa chromosome 2,SSC2)上定位到了1个5%基因组水平显著的QTL,在猪的5号染色体(sus scrofa chromosome 5,SSC5)和猪的14号染色体(sus scrofa chromosome 14,SSC14)上分别定位到了1个1%基因组水平显著的QTL。在上述3个QTL区域内搜寻到了5个与仔猪45日龄断奶体重相关的候选基因,分别是SSC2上的CYP2R1、COPB1、PDE3B基因和SSC5上的NOP2、GDF3基因。【结论】本研究将影响二花脸×沙子岭家系仔猪45日龄断奶体重的QTL定位于SSC2、SSC5和SSC14,并揭示出5个与仔猪45日龄断奶体重相关的候选基因。  相似文献   

4.
【目的】母猪初情期日龄是重要的经济性状,直接影响母猪的繁殖利用年限,但调控母猪初情期启动的机制尚不清楚。【方法】基于全基因组芯片数据,对571头杜洛克母猪初情期日龄进行全基因组关联分析,筛选影响母猪初情期日龄的重要基因。【结果】571头杜洛克母猪的初情期日龄符合正态分布,初情期日龄最早为173 d,最晚为291 d,平均为224 d;初情期越早的母猪表现出更高的窝产仔数和平均窝重;通过质控,共有30 281 SNP位点被用于全基因组关联分析,在前10个潜在SNP位点附近,找到ABCC8、BCAR3、NELL2和NSF等基因,这些基因的主要功能富集在ATP binding、第二性征发育、激素分泌的调控方面。【结论】初步筛选了影响母猪初情期日龄的基因,但具体功能需要进一步研究确认。此研究不仅能为解析母猪初情期启动的遗传机制提供参考,还能为母猪初情期日龄的遗传改良提供一定的理论基础。  相似文献   

5.
【目的】测定苏太猪和白色杜洛克×二花脸F2资源家系240 d血糖(glucose,GLU)和糖基化血清蛋白(glycosylated serum proteins,GSP)浓度,采用全基因组关联分析定位影响GLU和GSP的染色体位点,为最终鉴别影响该性状的因果基因奠定基础,同时为人类低血糖症和糖尿病的遗传学研究提供参考。【方法】分别将435头苏太猪和760头白色杜洛克×二花脸F2资源家系F2个体在相同条件下饲养至240日龄进行统一屠宰,收集血液后分离血清,利用全自动生化分析仪测定GLU和GSP浓度。采集猪只耳组织提取DNA并测定DNA浓度。将质检合格的DNA样品利用Illumina porcine 60K SNP芯片判定基因型。运用PLINK软件对SNP判型结果进行质控,将合格的SNP标记用于后续的关联性分析,利用广义混合线性模型及R语言GenABEL软件包进行全基因组关联分析,定位影响苏太猪和白色杜洛克×二花脸F2资源家系240 d血清GLU和GSP含量的染色体位点。根据全基因组关联分析结果从Ensembl或NCBI网站上分析可能的位置候选基因。【结果】全基因组关联分析共检测到5个与血清GLU和GSP达染色体显著水平相关的SNP位点。其中白色杜洛克×二花脸F2资源群体在10号染色体(SSC10)24.67Mb处定位到与血清GSP含量显著相关的SNP(ALGA0057739,P=1.58×10-5),解释表型变异为3.72%。苏太猪群体共检测到2个与血清GSP显著相关的SNP(ALGA0108699和DRGA0017552,P=1.45×10-5),解释表型变异均为3.72%。使用猪参考基因组序列(10.2版本),无法定位到具体的染色体位置。通过人、猪比较基因组分析,这两个SNP都位于SSC8,距STPG2基因3’端约180.0-193.0 kb。将两个群体进行Meta分析,未发现新的与GSP显著相关的SNP;在1号染色体250.32Mb处(DRGA0002016,P=2.48×10-5)和14号染色体43.97Mb处(ASGA0062984,P=1.29×10-5),定位到与血清GLU显著相关的SNP。通过搜寻显著相关SNP所在染色体区域内的注释基因,发现ASPM、TRPM3和KCTD10 等基因是影响血清GSP和GLU的重要候选基因。【结论】检测到5个显著影响猪血清GLU和GSP的SNP位点。这些SNP位点所处染色体区域内的ASPM、TRPM3、STPG2和KCTD10基因是影响血清GSP和GLU的重要候选基因。  相似文献   

6.
母猪的繁殖性状是一个重要的经济性状,它由一系列主效基因或数量性状位点(Quantitative trait locus,QTLs) 控制。产仔数是母猪繁殖性状中最重要的考量指标之一袁找到影响产仔数的基因或标记有重要的经济及科研价值遥针对猪60KSNP芯片扫描结果,采用Genepop软件检测太湖猪(二花脸、梅山猪)及野猪每个SNP位点的遗传分化系数(Fst值),鉴别与产仔数相关的SNP位点。按照0.025%比例的原则挑选遗传分化系数最大的SNP位点,并将其所在基因及物理位置临近的2个基因提交到DAVID数据库进行GO(Gene Ontology)和KEGG(KyotoEncyclopedia of Genes and Genomes)分析。结果显示,关于猪产仔数最强的2个选择性清除信号位于猪8号染色体(SSC8)和13号染色体(SSC13)上。其中SSC13中检测到的2个SNP位点均位于IQCJ-SCHIP1基因内遥。SC8上的SNP位点位于NR3C2基因内,可能为新发现的SNP位点遥经KEGG分析,有2个基因位于赖氨酸合成通路中遥结果表明,利用选择性清除的方法,选择高产太湖猪、低产野猪这两个极端群体来鉴别影响产仔数的SNP位点,发现了新的SNP位点。IQCJ-SCHIP1、NR3C2基因及位于赖氨酸通路中的功能基因可能是影响母猪产仔数的候选基因。  相似文献   

7.
 【目的】猪精子黏合分子1(SPAM1)基因在精卵结合过程中发挥重要作用,是影响产仔数的重要候选基因。本试验分析SPAM1基因的遗传变异及其与母猪产仔数的相关性。【方法】以305头白色杜洛克×二花脸资源群体F2母猪为材料,记录连续3胎的产仔性状,利用PCR-RFLP检测intron1 g298 C>T 、intron1 g357 C>T 和intron3 g380 C>T共3个SNP位点在F2群体中的多态性,构建单倍型,分析各SNP基因型和单倍型与母猪产仔数、产活仔数、产死胎数的相关性。【结果】intron1 g298 C>T位点CC型母猪的总产仔数显著低于CT、TT型母猪(P<0.05),CT基因型母猪产死胎数显著多于TT型(P<0.05)。intron1 g357 C>T位点CT基因型母猪产死胎数显著多于CC、TT基因型(P<0.05)。intron3 g380 C>T位点CC基因型母猪产活仔数显著低于CT型,产死胎数显著高于CT型(P<0.05)。在6种单倍型中,TTT单倍型母猪的总产仔数和产活仔数明显高于其它5种(P<0.05);TCT、TTC单倍型母猪产死胎数显著低于CTC、TTT和TCC(P<0.05)。【结论】SPAM1基因与母猪产仔数存在显著相关性。  相似文献   

8.
鸡脾脏重全基因组关联分析   总被引:2,自引:0,他引:2  
【目的】利用全基因组关联分析(genome-wide association study, GWAS)技术解析产蛋后期母鸡脾脏重的分子机制和遗传特征,为改善产蛋后期母鸡的健康状况提供理论依据。【方法】利用东乡绿壳蛋鸡和白来航蛋鸡构建资源群体,以72周龄F2代501只母鸡脾脏重为研究材料。首先利用高密度600 K 基因芯片对试验群体基因组进行SNPs检测。其次利用APT软件进行质控、BEAGLE软件进行基因型填充、PLINK软件进行主成分分析,GEMMA软件进行全基因组关联分析,最终获得脾脏重的显著和潜在显著关联位点。然后利用GCTA软件计算基于SNP数据的脾脏重遗传力以及染色体遗传力,并利用Haploview软件对显著或潜在关联位点进行连锁不平衡分析。最后通过显著位点区域的相关基因功能注释来筛选影响母鸡产蛋后期脾脏重的候选基因。【结果】由72周龄母鸡脾脏重的表型数据可知,在蛋鸡产蛋后期存在较大的变异系数,脾脏重的遗传力为0.236。通过基因型分析得到43万个高质量的SNP进行进一步分析。群体结构分析发现基因膨胀系数为1.042,表明试验群体没有群体分层的现象,避免了关联分析中假阳性结果的出现。利用单变量混合线性模型分析共发现了412和281个SNPs位点与脾脏重显著和潜在显著关联,位于1、4、16、28号染色体上。显著性关联位点在1号染色体161-174 Mb区间和28号染色体0.47-1.27 Mb区间,潜在性显著位点在4号染色体76 Mb区间和16号染色体175kb区间。由于显著区域可能存在的连锁不平衡,对显著性位点进行了条件分析和连锁不平衡检验,以1号染色体位点rs314001986和28号染色体上位点rs312729296进行条件分析,经分析后原先显著关联的位点均不显著,即以rs314001986和rs312729296作为候选SNP进行基因注释分析。对4号染色体和16号染色体潜在显著位点进行连锁不平衡分析,结果显示潜在性显著位点间存在强的连锁不平衡,即以性状表型方差贡献率最大的SNP rs315270535和rs314065899为候选位点进行进一步分析。参考鸡的galgal4基因组,对各显著及潜在性显著位点及区间初步筛选到KCTD4、LDB2、HEP21和PCASP2候选基因,鉴定的候选基因可能参与了脾脏生长以及免疫应答等过程。此外,将显著位点的基因型与群体的表型数据进行关联分析,发现rs314001986和rs312729296在基因型为GG时对脾脏均有增重效应。此外,基于群体的基因型数据得到1号染色体解释的遗传力为9.25%,28号染色体为4.55%。【结论】初步揭示了母鸡产蛋后期脾脏重的遗传特征,脾脏重的遗传力和染色体遗传力为首次报道。生物信息学分析鉴定到影响脾脏重的区域为新的发现,并初步筛选出4个候选基因。  相似文献   

9.
【目的】明确SNP标记位点与罗氏沼虾生长性状间的关联性,为罗氏沼虾生长性状候选基因的寻找、生长性状调控机理及后期分子标记辅助育种研究打下基础。【方法】采用直接测序技术对25个SNP标记位点在罗氏沼虾生长性状极端群体中进行多态性检测。采用卡方检验(χ2)筛选出2个极端(体长极大和极小)罗氏沼虾群体中与生长状况存在潜在相关性的SNP标记位点,进一步对罗氏沼虾浙江群体60个个体进行SNP基因型与生长性状(体长、头胸甲宽、第一腹节宽、第一腹节高和体重)的关联分析。运用一般线性模型对SNP标记位点与罗氏沼虾5个生长性状的关联性进行检测。【结果】卡方检验结果显示,SNP6、SNP7、SNP16、SNP20和SNP24等5个标记位点在罗氏沼虾极端群体中与生长性状存在潜在相关。5个潜在相关SNP标记位点与生长性状的相关性分析结果表明,SNP6、SNP7、SNP16和SNP24等4个位点与生长性状呈显著(P<0.05,下同)或极显著(P<0.01,下同)相关,其中位点SNP6与体长和体重关联极显著,与头胸甲宽关联显著;SNP7与体长、头胸甲宽、第一腹节宽和体重关联极显著,与第一腹节高关联显著;SNP16与头胸甲宽、第一腹节宽、第一腹节高和体重关联极显著,与体长关联显著;SNP24仅与第一腹节高关联显著。对浙江群体中60尾个体体长50%小个体和体长50%大个体2个群体中4个SNP位点的基因型频率进行统计,结果显示,SNP6和SNP24 2个标记与生长的关联性显著,SNP7和SNP16与生长的关联性极显著。【结论】HSP90和HGS基因可能是与罗氏沼虾生长相关的重要功能基因,研究结果为下一步基因定位及分子标记辅助育种提供了更多的标记基础。  相似文献   

10.
【目的】为揭示PTGS2基因多态性与母猪繁殖性状的关联。【方法】采用PCR产物直接测序法对401头大白母猪PTGS2基因第3内含子的SNP位点进行检测,结合1 786窝母猪繁殖性能记录,采用最小二乘模型分析了各多态位点基因型及其单倍型组合对5个繁殖性状的影响。【结果】大白猪PTGS2基因第3内含子区域存在3个紧密连锁的SNP位点:G227A、A392C和T409C,分别以等位基因G、A、T及其纯合子(GG、AA和TT)、GAT单倍型及GAT/GAT组合的频率最高,各位点杂合度在0.320 9~0.353 6之间,遗传多样性较为丰富;G227A位点的GA基因型、A392C位点的AC基因型、T409C位点的TC基因型及GAT单倍型具有显著提高母猪总产仔数、产活仔数和仔猪21日龄成活数的效应(P0.05或P0.01),AA、CC和CC基因型及GCC/GCC单倍型组合具有显著提高仔猪21日龄窝重的效应(P0.05或P0.01)。【结论】研究结果丰富了猪PTGS2基因的SNP标记,初步证实PTGS2基因对母猪繁殖性状有显著影响,但其具体效应可能会因品种(或猪群)及具体性状的不同而有一定差异。  相似文献   

11.
苏太猪宰后72 h pH和肉色性状的全基因组关联分析   总被引:1,自引:0,他引:1  
【目的】利用全基因组关联分析(GWAS)方法搜寻与苏太猪肉质性状相关的候选基因及分子标记。【方法】屠宰测定了150头苏太猪的背最长肌和半膜肌72 h pH值(包括72 h pH、45 min至72 h pH下降值)及72 h肉色性状(包括红度a,黄度b,亮度L和主观评分)。利用Illumina猪60 K SNP芯片,对这些个体进行基因型判定,用PLINK v1.07对获得的基因型数据进行质量控制,剔除检出率<99.7%、次等位基因频率(minor allele frequency, MAF)<0.05、偏离哈代温伯格(Hardy-Weinberg Equilibrium,HWE)P≤10-5的SNP标记和检出率<90%的个体,最终有150个个体和43 760个SNP用于GWAS研究。利用R语言环境下的GenABEL软件包中的广义线性混合模型,对每个SNP与性状作关联分析,采用Bonferroni方法确定关联显性阈值。群体层化效应的检测通过QQ-plot的结果展示,它通过比较无效假设关联显著性的分布与实际关联性分布的差异来展示可能的群体结构或者显著关联位点。【结果】1.背最长肌72 h pH和半膜肌72 h pH、背最长肌45 min至72 h pH下降值和半膜肌45 min至72 h pH下降值、背最长肌和半膜肌的72 h肌肉黄度、背最长肌和半膜肌的肉色主观评分与肌肉亮度L性状间均为高度相关,且均达到显著水平(P<0.05)。2. 群体层化分析没有发现明显的整体系统偏差,也不存在明显群体层化效应。3.关联分析结果表明共有39个SNPs达到染色体显著水平,分布于基因组上的20个区域(≤10 Mb);其中,与pH显著关联的SNPs有17个,除了标记ASGA0082337没有定位在猪基因组序列上,其余16个SNPs分别位于3、4、10、14、X号染色体上;与肉色显著关联的SNPs有22个,它们分别位于1、3、7、10、12、14、15号染色体上;但在背最长肌的红度、亮度和肉色主观评分及半膜肌的亮度和肉色主观评分性状中未检测到显著SNPs。 背最长肌和半膜肌的45 min至72 h pH下降值最强关联的SNP位点都为14号染色体上的M1GA0020074和MARC0028756,利用Haploview version 4.2软件开展单倍型分析,结果表明,它们位于一个跨度为433 kb的单倍型框内。【结论】在10、14、15号染色体上存在影响多个肉质指标的一因多效的基因位点,显著位点附近的BNIP3、PRKG1和ADRB3等可能是影响这些性状的候选基因。  相似文献   

12.
[目的]随着工业化的推进,重金属尤其是铅对耕地的污染已成为世界性问题.小麦作为主要粮食作物,其健康生产对保障粮食安全意义重大,筛选铅耐受性强和铅低积累小麦品种、挖掘相关调控基因或QTL区间,为耐铅种质创新和揭示小麦铅耐受性遗传机制奠定基础.[方法]采用140 mg·kg-1的硝酸铅溶液对102份小麦品种(系)进行苗期胁...  相似文献   

13.
鸡胸腺重和脾脏重性状的全基因组关联   总被引:2,自引:2,他引:0  
【目的】全基因组关联分析(genome-wide association study,GWAS)是复杂性状和疾病相关基因定位的新策略。【方法】试验利用鸡60K SNP芯片对来自50个公鸡家系的728只北京油鸡进行SNP分型检测,采用全基因组关联分析方法对影响100日龄胸腺重和脾脏重的基因进行定位研究。【结果】结果发现24个达5%全基因组水平显著的位点,与100日龄胸腺重和脾脏重显著相关,并在这些位点附近发现Janus kinase 1(JAK1)、 zinc finger DHHC-type containing 8(ZDHHC8)、vav 3 guanine nucleotide exchange factor(VAV3)、SATB homeobox 1(SATB1)等候选基因;84个与这两个性状潜在关联同时达到5%染色体水平显著的位点。【结论】利用GWAS分析策略筛选和鉴定的重要突变位点及候选基因,将为揭示鸡免疫器官发育的分子调控机制和抗病育种分子标记辅助选择提供必要的分子基础。  相似文献   

14.
普通小麦籽粒过氧化物酶活性全基因组关联分析   总被引:1,自引:0,他引:1  
【目的】小麦籽粒过氧化物酶(peroxidase,POD)活性对面制品加工品质有重要影响,发掘控制籽粒POD活性重要位点,并筛选其候选基因,为小麦品质的改良奠定基础。【方法】以151份黄淮冬麦区和82份北部冬麦区品种(系)为材料,分别利用来自于小麦90 K SNP芯片的18 189和18 417个高质量SNP标记,对POD活性进行全基因组关联分析(genome-wide association study,GWAS)。【结果】供试材料中POD活性表现出广泛的表型变异和多样性,黄淮麦区材料的POD活性变异系数为15.4%—21.8%,遗传力为0.79,北部麦区材料的POD活性变异系数为15.0%—19.9%,遗传力为0.82。相关性分析表明,不同环境之间材料的POD活性表现出显著的相关性,黄淮麦区相关系数为0.46—0.89(P0.0001),北部麦区相关系数为0.50—0.87(P0.0001)。多态性信息含量PIC值为0.09—0.38,最小等位基因频率MAF值为0.05—0.5。群体结构分析表明,黄淮麦区与北部麦区2个自然群体结构简单,均可分为3个亚群。GWAS分析结果表明,在黄淮冬麦区材料中共检测到20个与POD活性显著关联的位点(P0.001),分布在1A、2A、2B、2D、3A、3B、3D、4A、4B、5A、5B、6A、6D和7A染色体上,单个位点可解释7.8%—13.3%的表型变异。在北部冬麦区材料中共检测到20个与POD活性显著关联(P0.001)的位点,分布在1A、1B、1D、2A、2B、2D、3A、3B、4B、6A、6B、7A、7B和7D染色体上,单个位点可解释14.4%—23.2%的表型变异。加性回归分析表明,随着优异等位基因数量的增多,小麦籽粒POD活性越高。在发现的所有POD活性相关位点中,2个位点在黄淮麦区和北部麦区材料中均能检测到且稳定遗传,可将其转换为STARP(semi-thermal asymmetric reverse PCR)或CAPS标记,以应用于分子标记辅助育种。获得3个与POD活性有关的候选基因,分别编码磷酸甘露糖变位酶(PMM-D1)、辣根过氧化物酶(PER40)和烷基氢过氧化物还原酶(F775_31640)。【结论】黄淮麦区与北部冬麦区2个自然群体遗传多样性丰富,群体结构简单,适用于全基因组关联分析。在2个自然群体中分别发现20个POD活性位点,并在显著相关的位点区域内筛选到3个候选基因。含有越多优异等位变异的材料其POD活性越高。  相似文献   

15.
【目的】测定中国地方小型猪品种巴马香猪成年时周身9个典型部位的皮肤厚度,揭示巴马香猪不同部位皮肤厚度变化规律,进行9个部位皮肤厚度与候选SNPs位点的关联分析,在巴马香猪群体中验证影响皮肤厚度的7号染色体主效QTL,为进一步在巴马香猪群体中大规模开展皮肤厚度等形态变化的分子遗传控制机理及其相关基因功能研究奠定基础,从而增强人们对猪皮肤的认知。【方法】从一个由319头300日龄巴马香猪组成的成年屠宰群体中,随机选取50头,包括27头母猪和23头阉割公猪,分别取头脸、肩、背、肷、臀、胸、下腹、腋下和管等9个部位的皮肤,利用电子游标卡尺对这些不同部位皮肤厚度进行精确测量,利用R语言基本统计包进行不同部位和不同性别间皮肤厚度的差异分析以及不同部位间皮肤厚度的相关分析。在猪7号染色体34.5-36.2Mb的区域选取46个SNPs位点,利用MassARRAY时间飞行质谱技术进行基因分型,结合上述测定的皮厚表型,利用广义混合线性模型及R语言SNPassoc软件包进行目标候选区域的关联分析。根据关联分析结果和基因的生物学功能确定可能的位置候选基因。【结果】(1)单因素方差分析表明巴马香猪9个部位的皮肤厚度存在极显著差异(P=2.95×10~(-117)),肷部和背部的皮肤最厚,分别为(5.15±0.92)和(4.97±0.85)mm,下腹和腋下的皮肤最薄,分别为(1.77±0.36)和(1.97±0.68)mm。皮肤厚度从厚到薄依次是肷部、背部、肩部、头脸、臀部、管部、胸部、腋下和下腹。(2)阉割公猪腋下皮肤厚度显著小于母猪的(P=0.021),其它部位皮肤厚度在母猪和阉割公猪间差异均不显著。(3)除了下腹皮肤厚度与背部、肩部、头脸部的不相关(P0.05)外,巴马香猪不同部位两两之间皮肤厚度均呈现不同程度地显著或极显著正相关。(4)关联分析结果表明,9个不同部位的皮肤厚度表型均与候选区域的某些SNPs存在极显著的关联,从强到弱依次是肷部、肩部、背部、腋下、臀部、胸部、头脸、管部和下腹。从而,证实了巴马香猪群体存在影响猪皮肤厚度的7号染色体主效QTL。(5)3个与皮肤厚度关联性最强的SNPs值得进一步关注,分别位于7号染色体的34856565、35543837和35573869位置。肷部的皮肤厚度与SNP(chr7:34856565)的关联显著性最强(P_(cor)=5.15×10~(-6)),这个SNP也是肩部皮肤厚度最关联(P_(cor)=5.75×10~(-6))的位点。SNP(chr7:35543837)是腋下(P_(cor)=3.05×10~(-5))、臀部(P_(cor)=0.010)、胸部(P_(cor)=0.013)和头脸(P_(cor)=0.025)皮肤厚度的最关联位点,也是肩部皮肤厚度的次最关联位点。SNP(chr7:35573869)则是背部皮肤厚度的最关联位点(P_(cor)=1.17×10~(-5)),SNPs(chr7:35543837和chr7:34856565)次之。(6)根据最强关联SNPs所在基因及基因生物学功能,初步推测ANKS1A和HMGA1基因可能是影响皮肤厚度的候选因果基因。【结论】较全面地测量了中国小型地方猪品种巴马香猪周身皮肤厚度,揭示了巴马香猪皮肤厚度在不同部位之间的变化规律。在巴马香猪群体中验证了影响皮肤厚度的7号染色体主效QTL位点,肷部、背部和肩部皮肤厚度表型性状与候选SNPs位点关联性更强,可能适合下一步大规模深入分析。ANKS1A和HMGA1基因可能是影响皮肤厚度的候选因果基因,但需要进一步生物学功能试验证明。  相似文献   

16.
【目的】功能性保绿通常被认为是包括玉米在内的主要作物品种的理想性状。挖掘新的控制玉米保绿相关位点和候选基因,为玉米保绿遗传研究提供理论基础。【方法】以150份由许178和K12组配的重组自交系(recombinant inbred lines,RIL)群体为材料,通过Windows QTL Cartographer V2.5的复合区间作图法(composite interval mapping,CIM)对3个保绿相关性状(保绿度(visual stay green,VSG)、吐丝期绿叶数(green leaf number at silking stage,GLNS)和成熟期绿叶数(green leaf number at mature stage,GLNM))进行QTL定位。同时,以139份自然材料组成的关联群体为材料,基于混合线性模型(mixed linear model,MLM),结合50 790个高质量SNP标记,对这3个性状进行全基因组关联分析(genome-wide association study,GWAS)。【结果】基于CIM,利用单环境下的表型值和最佳线性无偏估计值(best linear unbiased prediction,BLUP)对GLNM、GLNS和VSG进行定位,共检测到37个QTL,分布在除第10染色体以外的其他染色体上,LOD范围为2.58—11.36,表型贡献率为4.34%—22.40%。GLNM、GLNS和VSG性状分别检测到14、12和11个位点。其中,4个遗传稳定的QTL(qGLNS2-1qVSG1-1qVSG1-2qVSG7-1),在3个及以上不同单环境中同时被检测到。利用MLM对保绿相关性状进行全基因组关联分析,共检测到44个超过阈值线的显著SNP,根据SNP标记在B73参考基因组的物理位置,发现共有15个位点落在连锁分析定位到的QTL区间内。【结论】通过QTL定位和全基因组关联分析共同检测到4个遗传稳定的共定位遗传区段(对应的B73参考基因组V4版物理位置区间为第1染色体6.2—8.2 Mb、第2染色体209.1—221.4 Mb、第6染色体96.8—102.1 Mb、第7染色体4.9—11.4 Mb),并挖掘到4个与光合作用和抗逆相关的候选基因(Zm00001d006119Zm00001d018975Zm00001d006535Zm00001d036763)。  相似文献   

17.
【目的】解析甘蓝型油菜发芽期根和下胚轴发育及耐盐性的调控位点,筛选油菜耐盐性相关的候选基因,可为油菜耐盐性改良提供依据。【方法】以317份具有代表性的甘蓝型油菜自交系为材料,在正常生长和盐胁迫条件下进行沙培鉴定,利用芸薹属60K SNP芯片和全基因组关联分析鉴定正常生长与盐胁迫下甘蓝型油菜发芽期根和下胚轴长度显著关联的SNP,并确定其连锁不平衡区间。通过区间内基因的功能注释及盐胁迫下油菜幼苗根和叶片转录组差异表达基因筛选连锁不平衡区间内的重要候选基因,并以实时荧光定量PCR分析候选基因的组织特异性和盐胁迫诱导表达模式,提高候选基因筛选的准确性。【结果】正常生长和盐胁迫下甘蓝型油菜发芽期下胚轴和根长在不同材料间变异较大,频次分布表明目标性状均为数量性状,受多基因调控。全基因组关联分析模型比较表明,MLM+P+K模型为最优模型。以此模型对目标性状进行全基因组关联分析,检测到45个显著关联SNP,其中40个与下胚轴长度显著关联,5个与根长显著关联,单个SNP解释的表型变异分别为9.12%—14.46%和7.67%—8.93%。重复检测的显著相关SNP中,值得注意的是C04染色体的rs8970,同时与4个性状显著关联,表型贡献率为7.67%—12.35%,是唯一在下胚轴长和根长间重复检测到的显著关联SNP。11个重要关联SNP中有6个位于10—442 kb的连锁不平衡区块中。转录组分析表明,11个连锁不平衡区间共包含447个基因,其中15个受盐胁迫诱导表达。转录组和基因功能注释综合分析表明,BnaSRO1、BnaPAGR2、BnaNPH3、BnaMYB124、BnaSAM-Mtase、BnaBIN2、BnaUMAMIT11、BnaEXPA7、BnaRPT3、BnaEF-hand和BnaF3H很可能为各自区间的候选基因。实时荧光定量PCR结果证实除BnaNPH3外,其他基因均在根或下胚轴中受盐胁迫诱导上调表达。组织特异性分析还发现BnaUMAMIT11、BnaPAGR2和BnaEXPA7主要在萌发的根和下胚轴中特异表达,BnaRPT3、BnaBIN2和BnaMYB124虽然呈组成型表达,但在萌发阶段的下胚轴中表达量最高,证实这些基因很可能参与油菜发芽期根和下胚轴生长发育及耐盐性的调节。【结论】全基因组关联分析共鉴定出45个控制油菜发芽期根和下胚轴发育及耐盐性的显著关联SNP。连锁不平衡、转录组和基因功能注释综合分析初步鉴定出11个重要候选基因。  相似文献   

18.
王晓  张勤  俞英 《中国农业科学》2017,50(4):755-763
【目的】通过全基因组关联分析定位和筛选相关基因,寻找与奶牛乳房炎抗性相关的分子标记,以进行下一步的标记辅助选择。【方法】对2 093头北京地区中国荷斯坦牛SCC进行对数转化,依据LASCS=log_2∑SCC/n和SCS-SD=log_2∑(scc-u)~2/n-1将测定日记录SCC转化为服从正态分布的统计量LASCS和SCS-SD。同时将LASCS和SCS-SD进行半个标准差(half of standard deviation,0.5 SD)和一个标准差(one standard deviation,1 SD)的划分,将牛只划分为乳房炎易感牛(Case)及抗性牛(Control)。将54 001个SNPs进行质控,剔除不符合条件的SNPs,剔除的条件是:SNPs的call rate90%,严重偏离哈迪-温伯格平衡(HWE)(P10E-6)和最小等位基因频率(MAF)0.03。然后通过ROADTRIPS软件(版本1.2)的3种检验:RM检验、RCHI检验和RW检验对LASCS和SCS-SD进行Case-control方法的全基因组关联分析。通过Bonferroni方法对关联分析结果进行校正,并针对牛的每条染色体分别制定各条染色体的显著水平,以0.05分别除每条染色体上的SNP数目,作为每条染色体的显著性水平。同时,将所有个体的LASCS和SCS-SD作为连续性状通过线性混合模型进行全基因组关联分析,将结果进行比较,以确定显著SNPs的位置。【结果】通过0.5 SD/1 SD的标准将群体划分后,分别有1371/708个个体用于LASCS性状的关联分析,和1385/716个个体用于SCS-SD性状的关联分析。通过质控将不符合的SNPs剔除之后,共有43781/43671(43817/43704)个SNPs分别可用于LASCS(SCS-SD)的0.5 SD/1 SD的关联分析。对LASCS和SCS-SD进行全基因组关联分析,经染色体水平上的Bonferroni校正(P0.05),共发现5个SNPs达到显著水平,其中3个SNPs定位到X染色体上,其它2个SNPs分别定位到7和28号染色体上。通过对基于0.5 SD的SCS-SD的乳房炎抗性进行全基因组关联分析发现一个全基因组水平显著的SNP(Hapmap48573-BTA-104531,P=1.11E-06)位于X染色体上。结果发现,被检测到5个显著的SNPs中,X染色体的显著SNPs(Hapmap48573-BTA-104531和Hapmap54175-rs29021817)位于IL1RAPL2基因内,7号染色体的显著SNP周围存在与炎症反应相关的基因(ILF3)。这两个基因都与白介素有关,而白介素4、5、6、12、13、17、22、23等都参与了不同的炎症反应,并发挥了重要的作用。ILF3是白介素家族中的一个跟炎症反应相关的因子,其功能与抑制翻译蛋白有关。本研究还通过线性混合模型对LASCS和SCS-SD进行全基因组关联分析发现了与Case-control方法在X染色体上同时定位到的SNP(BTA-28466-no-rs)。通过比较两种方法(线性混合模型方法和Case-control方法),对同一性状用两种方法可以定位的相同的位点,但不同性状的结果就各不相同。【结论】本研究找到了与乳房炎症反应相关的基因,为奶牛乳房炎易感性及抗性的分子遗传基础研究提供了数据支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号