首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
A simple GF-AAS method for speciation analysis of chromium in mineral waters and salinas was developed. Cr(VI) species were separated from Cr(III) by solid-phase extraction with APDC (ammonium pyrrolidinedithiocarbamate). The APDC complexes were formed in the sample solution under proper conditions, adsorbed on Diaion HP-2MG resin and the resin was separated from the sample. After elution with concentrated nitric acid Cr(VI) was determined by GF-AAS. Total chromium was determined by GF-AAS directly in the sample and Cr(III) concentration was calculated as the difference between those results.

The detection limit of the method defined as 3 s of background variation was 0.03 μg l−1 for Cr(VI) and 0.3 μg l−1 for total chromium. RSD for Cr(VI) determination at the concentration of 0.14 μg l−1 was 9%, and for total chromium at the concentration of 5.6 μg l−1 was 5%. The recovery of Cr(VI) was in the range of 94–100%, dependently on type of the sample.

The investigation of recovery of the spiked Cr(VI) showed that at concentration levels near 1 μg l−1 and lower recovery may be reduced significantly even by pure reagents that seem to be free from any reductants.  相似文献   


2.
A new procedure has been developed for chromium speciation in water by sequential injection analysis and flame atomic absorption spectrometry. The method involves the online retention of Cr(VI) anionic species and Cr(III) cationic species on alumina microcolumns, prepared by packing activated alumina in polytetrafluoroethylene tubes, followed by selective elution of Cr(VI) with 2 mol l−1 NH4OH and of Cr(III) with 0.2 mol l−1 HNO3. Studies were carried out on the effect of retention and elution conditions for both Cr species. The limit of detection values, established as the concentration corresponding to three times the standard deviation of blank measurements divided by the slope of the calibration line, achieved were 42 μg l−1 for Cr(VI) and 81 μg l−1 for Cr(III). The relative standard deviation of three independent determination of natural spiked samples were lower than 10% for concentration levels between 0.5 and 2 mg l−1 of Cr. The developed procedure was applied to the analysis of two effluent sewage waters, and results obtained compared well with those obtained by a batch procedure. Recovery studies on natural spiked samples provided results between 93 and 103% for Cr(VI) and from 100 to 106% for Cr(III) for samples spiked with single species. For samples spiked with both Cr(VI) and Cr(III), the average recoveries varied from 86 to 101% for Cr(VI) and from 91 to 117% for Cr(III).  相似文献   

3.
Li Y  Pradhan NK  Foley R  Low GK 《Talanta》2002,57(6):1143-1153
A new method for determining ultra-trace levels of hexavalent chromium in ambient air has been developed. The method involves a 24-h sampling of air into potassium hydroxide solution, followed by silica gel column separation of chromium (VI), then preconcentration by complexation and solvent extraction. The chromium (VI) complex was dissolved in nitric acid. The resultant chromium ions were determined by inductively coupled plasma mass spectrometry (ICP–MS) using a dynamic reaction cell (DRC) with ammonia as the reactive gas to reduce polyatomic interferences. The interconversion of chromium in potassium hydroxide solution and air sample matrix were investigated under ambient conditions. It was found that there was no conversion of chromium (VI) into chromium (III) species. However, it was observed that some chromium (III) species were converted into chromium (VI) species. For a KOH solution containing 100 μg l−1 of chromium (III) species, the rate of conversion was found to be 3% after 24 h exposure, 8% after 48 h, 10% after 72 h and no further conversion was observed thereafter. However, in a solution containing air sample matrix, 9.3% of chromium (III) converted to chromium (VI) within 6 h, and during the course of a 11-day exposure period, 13% (range 8–17%) of chromium (III) converted to chromium (VI). The method detection limit (MDL) for chromium (VI) in potassium hydroxide solution (0.025 M) was found to be 2×10−2 μg l−1. This is equivalent to 0.2 ng m−3 (for 23 m3 air sampled into 200 ml of KOH solution over a 24-h period). The recovery of spiked chromium (VI) from solutions containing air sample matrix was 95±9% (n=8). Matrix related interferences were estimated to be less than 10% based on recovery studies. The concentration of airborne chromium (VI) in Sydney residential areas was found to be less than 0.2 ng m−3, however, in industrial areas the concentrations ranged from 0.2 to 1.3 ng m−3 using this analytical procedure.  相似文献   

4.
Mei Yang  Jin-Xiang Li  Jian-Hua Wang   《Talanta》2007,72(5):1710-1716
A fully automated and portable analyzer for field speciation of inorganic chromium in wastewater was developed. The instrument consists of a micro-sequential injection lab-on-valve (LOV) system and a miniature USB2000 spectrophotometer. A multi-purpose flow cell was incorporated on one side of the main body of the LOV, which offers vast potentials and versatilities in its compatibility with various detection modes. On-line oxidation of trivalent chromium was performed on a bismuthate immobilized silica micro-column reactor integrated in the LOV. When determining Cr(VI), its chromogenic reaction with 1,5-diphenylcarbazide (DPC) was facilitated in the flow cell and the absorbance was monitored in situ at 548 nm via optical fibers. While for the quantification of total chromium, Cr(III) was oxidized on-line by aspirating sample solution through the oxidizing column reactor, followed by chromogenic reaction with DPC and the absorbance was monitored in the flow cell. With a sampling volume of 200 μl, the detection limits of 5.6 μg l−1 for Cr(VI) and 6.8 μg l−1 for total chromium were achieved along with a sampling frequency of 60 h−1. A R.S.D. value of 2.0% was recorded at 32 μg l−1 of Cr(VI). The practical applicability of the speciation analyzer was validated by analyzing Cr(VI) and total chromium contents in two certified reference materials. The feasibility of performing rapid field speciation of chromium in wastewater samples was also demonstrated.  相似文献   

5.
A system for molybdenum separation and enrichment aiming its determination in water and biological samples by graphite furnace atomic absorption spectrometry (GFAAS) is proposed. The procedure is based on the sorption of the molybdenum (VI) thiocyanate complex onto a mini-column packed with polyurethane foam (PUF). The elution is accomplished by a 3.0 mol l−1 nitric acid solution. Flow variables were optimized and an enrichment factor of 10 as well as a limit of detection (LOD) (3 s) of 0.08 μg l−1 in the sample solution were achieved. The coefficient of variation showed values of 3 and 2% for molybdenum solutions of 2.0 and 10.0 μg l−1, respectively. The accuracy of the method was confirmed by the good concordance between found and certified values in the analysis of certified reference materials (CRMs) (CASS-3 Nearshore Seawater, NIST 1547 Peach Leaves, NIST 1515 Apple Leaves and NIST 1572 Citrus Leaves). The procedure was also applied for the molybdenum determination in mineral waters as well as in produced water samples. The results obtained for the mineral water samples compared well with those obtained by ICP-MS. Concerning the produced water samples, in spite of their large salinity, recoveries of 90 to 120% at the 1 μg l−1 were observed.  相似文献   

6.
Tunçeli A  Türker AR 《Talanta》2002,57(6):1199-1204
A simple and sensitive method for the speciation, separation and preconcentration of Cr(VI) and Cr(III) in tap water was developed. Cr(VI) has been separated from Cr(III) and preconcentrated as its 1,5-diphenylcarbazone complex by using a column containing Amberlite XAD-16 resin and determined by FAAS. Total chromium has also been determined by FAAS after conversion of Cr(III) to Cr(VI) by oxidation with KMnO4. Then, Cr(III) has been calculated by subtracting Cr(VI) from the total. The effect of acidity, amount of adsorbent, eluent type and flow rate of the sample solution on to the preconcentration procedure has been investigated. The retained Cr(VI) complex was eluated with 10 ml of 0.05 mol l−1 H2SO4 solution in methanol. The recovery of Cr(VI) was 99.7±0.7 at 95% confidence level. The highest preconcentration factor was 25 for a 250 ml sample volume. The detection limit of Cr(VI) was found as 45 μg l−1. The adsorption capacity of the resin was found as 0.4 mg g−1 for Cr (VI). The effect of interfering ions has also been studied. The proposed method was applied to tap water samples and chromium species have been determined with the relative error <3%.  相似文献   

7.
In this study a flow injection (FI) system used in conjunction with hydride generation (HG), atomic absorption spectrometry (AAS) and microwave (MW) aided pre-reduction of selenite (Se(IV)) to selenate (Se(IV)) with HCl:HBr has been developed in order to differentiate both inorganic selenium species. As full control of the MW reduction step is possible, the experimental approach allows the use of milder acidic conditions (10% v/v of HCl and HBr) than those conventionally accomplished with hydrochloric acid alone (≥50% v/v). Experimental parameters were optimized by the univariate optimization method. In either case, the linear range was from 1.0 to 30 μg l−1. The detection limits based on 3σ of the blank signal were 0.25 μg l−1 for Se(IV) and 0.30 μg l−1 for Se(VI). The reproducibility, about 3% RSD and recoveries of different amounts of Se(VI) and Se(IV) added to water and orange juice samples (97–103%) were good. The main advantage of the proposed method is that the sequential determination of Se(IV) and Se(VI) is performed at a high sampling frequency (ca. 50 samples per h) in a closed system without Se losses, and with a minimum sample waste, operator attention, and sample manipulation.  相似文献   

8.
An atomic absorption spectrophotometric method for the determination of trace copper after adsorption of its 1-nitroso-2-naphthol-3,6-disulfonic acid chelate on Ambersorb 572 has been developed. This chelate is adsorbed on the adsorbent in the pH range 1–8. The copper chelate is eluted with 5 ml of 0.1 mol l−1 potassium cyanide and determined by flame atomic absorption spectrometry (FAAS). The selectivity of the proposed procedure was also evaluated. Results show that iron(III), zinc(II), manganese(II) and cobalt(II) at the 50 μg l−1 level and sodium(I), potassium(I), magnesium(II), calcium(II) and aluminium(III) at the 1000 μg l−1 level did not interfere. A high enrichment factor, 200, was obtained. The detection limit (3σ) of copper was 0.34 μg l−1. The precision of the method, evaluated by seven replicate analyses of solutions containing 5 μg of copper was satisfactory and the relative standard deviation was 1.7%. The adsorption of copper onto Ambersorb 572 can formally be described by a Langmuir equation with a maximum adsorption capacity of 14.3 mg g−1 and a binding constant of 0.00444 l mg−1. The accuracy of the method is confirmed by analysing tomatoes leaves (NIST 1573a) and lead base alloy (NBS 53e). The results demonstrated good agreement with the certified values. This procedure was applied to the determination of copper in waters (tap, river and thermal waters), aluminium foil and tea samples.  相似文献   

9.
An on-line flow injection system has been developed for the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters by hydride generation atomic absorption spectrometry with microwave-aided heating prereduction of Se(VI) to Se(IV). The samples and the prereductant solutions (4 mol l−1 HCl for Se(IV) and 12 mol l−1 HCl for Se(VI)) which circulated in a closed-flow circuit were injected by means of a time-based injector. This mixture was displaced by a carrier solution of 1% v/v of hydrochloric acid through a PTFE coil located inside the focused microwave oven and mixed downstream with a borohydride solution to generate the hydride. The linear ranges were 0–120 and 0–100 μg l−1 of Se(IV) and Se(VI), respectively. The detection limits were 1.0 μg l−1 for Se(IV) and 1.5 μg l−1 for Se(VI). The precision (about 2.0–2.5% RSD) and recoveries (96–98% for Se(IV) and 94–98% for Se(VI)) were good. Total selenium values were also obtained by electrothermal atomic absorption spectrometry which agreed with the content of both selenium species. The sample throughput was about 50 measurements per hour. The main advantage of the method is that the selective determination of Se(IV) and Se(VI) in citric fruit juices and geothermal waters is performed in a closed system with a minimum sample manipulation, exposure to the environment, minimum sample waste and operator attention.  相似文献   

10.
Soylak M  Tuzen M  Mendil D  Turkekul I 《Talanta》2006,70(5):1129-1135
A solid phase extraction procedure based on biosorption of copper(II), lead(II), zinc(II), iron(III), nickel(II) and cobalt(II) ions on Aspergillus fumigatus immobilized Diaion HP-2MG has been investigated. The analytical conditions including amounts of A. fumigatus, eluent type, flow rates of sample and eluent solutions were examined. Good recoveries were obtained to the spiked natural waters. The influences of the concomitant ions on the retentions of the analytes were also examined. The detection limits (3sigma, N = 11) were 0.30 μg l−1 for copper, 0.32 μg l−1 for iron, 0.41 μg l−1 for zinc, 0.52 μg l−1 for lead, 0.59 μg l−1 for nickel and 0.72 μg l−1 for cobalt. The relative standard deviations of the procedure were below 7%. The validation of the presented procedure is performed by the analysis of three standard reference materials (NRCC-SLRS 4 Riverine Water, SRM 1515 Apple leaves and GBW 07605 Tea). The procedure was successfully applied for the determination of analyte ions in natural waters microwave digested samples including street dust, tomato paste, black tea, etc.  相似文献   

11.
Matoso E  Kubota LT  Cadore S 《Talanta》2003,60(6):1105-1111
An analytical method using silica gel chemically modified with zirconium (IV) phosphate for preconcentration of lead and copper, in a column system, and their sequential determination by flame atomic absorption spectrometry (FAAS), was developed. Sample solutions are passed through a glass column packed with 100 mg of the sorbent material, at pH 4.5, and lead and copper are eluted with 1.0 mol l−1 HNO3 at a flow rate of 2.0 ml min−1. The extraction of copper is affected by Fe(II), Mn(II), Zn(II), Ni(II) and Co(II) while only Fe(II) interferes in the lead determination. These interferences may be overcome with an appropriate addition of a KI or NaF solution. An enrichment factor of 30 was obtained for both metals. While the limits of detection (3σ) were 6.1 and 1.1 μg l−1, for Pb and Cu, respectively, the limits of determination were 16.7 and 3.3 μg l−1. The precision expressed as relative standard deviation (R.S.D.) obtained for 3.3 μg l−1 of Cu and 16.7 μg l−1 of Pb were 4.3 and 4.7%, respectively, calculated from ten measurements. The proposed method was evaluated with reference material and was applied for the determination of lead and copper in industrial and river waters.  相似文献   

12.
Nielsen SC  Stürup S  Spliid H  Hansen EH 《Talanta》1999,49(5):27-1044
A rapid, robust, sensitive and selective time-based flow injection (FI) on-line solvent extraction system interfaced with electrothermal atomic absorption spectrometry (ETAAS) is described for analyzing ultra-trace amounts of Cr(VI). The sample is initially mixed on-line with isobutyl methyl ketone (IBMK). The Cr(VI) is complexed by reaction with ammonium pyrrolidine dithiocarbamate (APDC), and the non-charged Cr(VI)–PDC chelate formed is extracted into IBMK in a knotted reactor made from PTFE tubing. The organic extractant is separated from the aqueous phase by a gravity phase separator with a small conical cavity and delivered into a collector tube, from which 55 μl organic concentrate is subsequently introduced via an air flow into the graphite tube of the ETAAS instrument. The operations of the FI-system and the ETAAS detector are synchronously coupled. A significant advantage of the approach is that matrix constituents, such as high salt contents, effectively are eliminated. The extraction procedure was optimized by a simplex approach. A central composite design was subsequently employed to verify the estimated operational optimum. An 18-fold enhancement in sensitivity of Cr(VI) was achieved after preconcentration for 99 s at a sample flow rate of 5.5 ml min−1, as compared to direct introduction of 55 μl of sample, yielding a detection limit (3σ) of 3.3 ng l−1. The sampling frequency was 24.2 samples h−1. The proposed method was successfully evaluated by analyzing a NIST Cr(VI)-reference material, synthetic seawater and waste waters, and waste water samples from an incineration plant and a desulphurization plant, respectively.  相似文献   

13.
An extremely sensitive, reliable and simple procedure is described for the determination of physiological palladium, platinum and gold in human urine. The urine samples were adjusted to pH 4 (Pd, Au) or pH 5 (Pt), followed by conversion of the analytes to their pyrrolidinedithiocarbamate complexes. These complexes were separated from the matrix by liquid-liquid extraction into 4-methyl-2-pentanone resulting in a 25-fold enrichment. Determination was by electrothermal atomic absorption spectrometry (ET-AAS) using longitudinal inverse alternating current Zeeman-effect background correction. The limits of detection calculated from three standard deviations of the blank values were 20 ng l−1 for Pd and Au and 70 ng l−1 Pt. Within-day precision (n = 10, 5 μg l−1) ranged 5.2%–7.7%. The procedure is successfully applied to determine urinary palladium, platinum and gold in nine unexposed persons. Palladium levels in urine ranged < 20–80 ng l−1 (arithmetical MEAN=38.7 ng l−1), while gold levels ranged < 20–130 ng l−1 (36.0 ng l−1). Physiological platinum levels in urine were all < 70 ng l−1. The accuracy of the procedure was checked by analyzing a series of urine samples by a second independent method (magnetic sector field inductively-coupled plasma-mass spectrometry) in combination with UV photolysis.  相似文献   

14.
Methods for the determination of aluminium and manganese in human scalp hair samples by electrothermal atomic absorption spectrometry using the slurry sampling technique were developed. Palladium and magnesium nitrate were used as chemical modifiers. Hair samples were pulverized using a zirconia vibrational mill ball, and were prepared as aqueous slurries. Determinations can be performed in the linear ranges of 1.9–150 μg l−1 Al3+ and 0.03–10.0 μg l−1 Mn2+. Limits of detection of 0.9 mg kg−1 and 27.6 μg kg−1 were obtained for aluminium and manganese, respectively. The analytical recoveries were between 99.6 and 101.8% for aluminium and in the 98.3–101.3% range for manganese. The repeatability of the methods (n=11), slurry preparation procedure and ETAAS measurement, was 16.0 and 7.9% for aluminium and manganese, respectively. The methods were finally applied to the aluminium and manganese determination in 25 scalp hair samples from healthy adults. The levels for aluminium were between 8.21 and 74.08 mg kg−1, while concentrations between 0.03 and 1.20 mg kg−1 were found for manganese.  相似文献   

15.
A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH4OH+0.05% w/v Triton X-100®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO3)2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1−1 Se, corresponding to 30 μg l−1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l−1, with a mean value of 114±22 μg l−1.  相似文献   

16.
A simple procedure was developed for the direct determination of As(III) and As(V) in water samples by flow injection hydride generation atomic absorption spectrometry (FI–HG–AAS), without pre-reduction of As(V). The flow injection system was operated in the merging zones configuration, where sample and NaBH4 are simultaneously injected into two carrier streams, HCl and H2O, respectively. Sample and reagent injected volumes were of 250 μl and flow rate of 3.6 ml min−1 for hydrochloric acid and de-ionised water. The NaBH4 concentration was maintained at 0.1% (w/v), it would be possible to perform arsine selective generation from As(III) and on-line arsine generation with 3.0% (w/v) NaBH4 to obtain total arsenic concentration. As(V) was calculated as the difference between total As and As(III). Both procedures were tolerant to potential interference. So, interference such as Fe(III), Cu(II), Ni(II), Sb(III), Sn(II) and Se(IV) could, at an As(III) level of 0.1 mg l−1, be tolerated at a weight excess of 5000, 5000, 500, 100, 10 and 5 times, respectively. With the proposed procedure, detection limits of 0.3 ng ml−1 for As(III) and 0.5 ng ml−1 for As(V) were achieved. The relative standard deviations were of 2.3% for 0.1 mg l−1 As(III) and 2.0% for 0.1 mg l−1 As(V). A sampling rate of about 120 determinations per hour was achieved, requiring 30 ml of NaBH4 and waste generation in order of 450 ml. The method was shown to be satisfactory for determination of traces arsenic in water samples. The assay of a certified drinking water sample was 81.7±1.7 μg l−1 (certified value 80.0±0.5 μg l−1).  相似文献   

17.
A continuous flow system for the determination of lead in home made spirituous beverages was developed. The determination was based on the formation of a neutral chelate of the element with ammonium pyrrolidine dithiocarbamate, its adsorption onto a minicolumn packed with sodium faujasite type Y synthetic zeolite, followed by elution with methyl isobutyl ketone and determination by flame atomic absorption spectrometry. Ethanol and copper interfere strongly in the determination and therefore, must be separated prior to the analysis. Copper is removed by precipitation with rubeanic acid, while ethanol is eliminated by rotaevaporation. Sample solutions containing Pb2+ in the concentration range from 5 to 120 μg l−1 at pH 2.5 could be analyzed, by using a preconcentration time of 3 min. Preconcentration factors from 80 to 140 were achieved for a sample volume of 6 ml and the detection limit varied from 1.4 to 3.5 μg l−1, depending on the matrix composition. The relative standard deviations for 60 μg l−1 Pb was 3.2% (n = 10) and the recovery of spikes (20, 40, 60 and 80 μg l−1) added to the samples was estimated within 92–105% range, suggesting that lead can be quantitatively determined in such samples. Determining lead in several samples by an alternative technique further checked the accuracy. Finally, the concentrations of Pb2+ determined in 28 samples of Venezuelan spirituous beverages were in 12.6–370.0 μg l−1 range, depending on the fermenting material based on different mixtures of agave, raw sugar cane and white sugar.  相似文献   

18.
Fang Guozhen  Luo Jikuen 《Talanta》1992,39(12):1579-1582
This paper shows that the sensitivity of the Cr(III, VI)—Chrome Azurol S (CAS)-cetylpyridinium bromide (CPB)—hydroxylamine hydrochloride system can be increased and the wavelength of maximum absorption slightly shifted by addition of zinc(II) and that the analytical data are practically identical for both Cr(III) and Cr(VI), indicating that under the conditions used both initial oxidation states of chromium yield the same final oxidation state, Cr(III). On the basis of the Cr(III, VI)—CAS—CPB—NH2OH·HCl—Zn systems a new, highly sensitive and selective method for spectrophotometric determination of microamounts of Cr(III, VI) has been developed, with molar absorptivity of 1.27 × 105 1. mole−1 . cm−1 for the complex at 620 nm and linear calibration up to 0.4 μg/ml chromium. Various foreign ions do not interfere. The method can be applied to direct determination of chromium in steels.  相似文献   

19.
Kubota T  Yamaguchi T  Okutani T 《Talanta》1998,46(6):1311-1319
A sample solution containing less than 0.5 μg of As was adjusted to pH 2. As in the solution was collected on activated carbon (AC) as molybdoarsenate. The AC was directly introduced as an AC suspension into a graphite furnace atomizer, and the concentration of As was determined by atomic absorption spectrometry (AAS). This method is relatively free from interference caused by coexisting ions. The calibration curve was linear up to 0.1 mg l−1, and limit of detection of As was 0.004 mg l−1. When 1000 ml of sample solution is preconcentrated to 5 ml (enrichment factor is 200-fold) 0.02 μg l−1 of As could be determined, and relative standard deviation was below 4.0% (by the deuterium background correction system). The method was applied to sea water and well water, and the sum of As(III) and As(V) was determined with satisfactory results.  相似文献   

20.
A flow injection (FI) on-line solvent extraction system for electrothermal atomic absorption spectrometry (ETAAS) was developed with nickel as a model trace element. The nickel pyrrolidine-dithiocarbamate chelate was extracted on line into isobutyl methyl ketone, which was delivered into the FI system by a peristaltic pump equipped with poly(tetrafluoroethylene) tubing. The organic phase was separated from the aqueous phase by a novel gravity phase separator with a small conical cavity, and stored in a collector tube, from which 50 μl organic concentrate was introduced into the graphite tube by an air flow. ETAAS determination of the analyte was performed in parallel with the extraction process. An enrichment factor of 25 was obtained in comparison with 50 μl direct introduction while achieving a detection limit of 4 ng l−1 (3σ), and a precision of 1.5% relative standard deviation for 1.0 μg l−1 nickel (n = 11). The proposed method was successfully applied to the determination of nickel in body fluids and other biological samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号