首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
以二氧化硅( SiO2)为添加剂,低结构炭黑(CB)为导电填料,环氧树脂(EP)为基体树脂,甲基四氢邻苯二甲酸酐( MeTHPA)为固化剂,采用超声分散溶液混合法制备EP/CB/SiO2复合材料.通过电阻-温度特性测试和扫描电镜等分别对其电性能和微观形貌进行了表征与分析.结果表明,随SiO2含量增加,复合材料的室温体积电阻率先下降后上升,当SiO2质量分数为0.5%时,电阻率达到最小值;含SiO2的EP/CB/SiO2导电复合材料仍具有正温度系数( PTC)和负温度系数(NTC)效应,但其PTC强度小于EP/CB复合材料,NTC效应也弱于EP/CB体系.  相似文献   

2.
以KNG–180石墨烯微片(GNSs)为导电填料,双酚A型环氧树脂(EP)E–54为基体,并分别用2-乙基-4-甲基咪唑(2,4-EMI)和甲基四氢邻苯二甲酸酐(Me THPA)为固化剂,采用超声分散法制备了EP/GNSs导电复合材料。研究了不同固化剂及GNSs含量对EP/GNSs复合材料电性能的影响。结果表明,两种固化剂固化的复合材料均具有明显的导电逾渗行为和正温度系数(PTC)效应;2,4-EMI固化的复合材料的逾渗阈值为5.1%,Me THPA固化的为4.5%;Me THPA固化的复合材料具有更强的PTC效应和更低的室温电阻率,但大量实验发现Me THPA固化的复合材料电性能实验结果重复性相对较差,且易存在负温度系数效应,故仍采用2,4-EMI作为EP/GNSs导电复合材料的固化剂。随GNSs含量增加,2,4–EMI固化的复合材料室温电阻率逐渐降低,PTC强度先升高后降低,当GNSs质量分数达到8%时,复合材料的PTC强度最高,达到2.3,且经过3次热循环之后,其阻–温曲线的热循环稳定性变好。  相似文献   

3.
为了研究温度对处在"渗滤"区的导电复合材料导电行为的影响,以乙烯基酯树脂为基体,用短切碳纤维(CF)为填料,制备了导电复合材料,研究了温度和CF体积分数的变化对复合材料体积电阻率的影响.结果表明,温度对处于"渗滤"区的导电复合材料的电学性能影响显著.当温度从20℃升到100℃时,CF体积分数为2.00%和3.04%的复合材料其体积电阻率降低了28.01%和37.38%,CF体积分数为4.03%和5.63%的复合材料其体积电阻率分别升高了3.00%和9.87%.  相似文献   

4.
王明明  张炜巍 《粘接》2013,(7):36-39
采用高温模压成型法制备氮化硅/碳纤维/环氧树脂导热复合材料(SiN/CF/EP)。研究了34SiN用量和表面改性对SiN/CF/EP复合材料导热性能、导电性能和力学性能的影响。结果表明,复合材料3434的导热性能随SiN质量分数的增加而增大,当SiN质量分数为40%时,导热率为1.02W/mK;而3434SiN/CF/EP复合材料的导电率随SiN质量分数的增加而呈线性降低;力学性能则随SiN质量分数的增加先343434增大后降低。表面改性有助于进一步提高SiN/CF/EP复合材料的导热性能和力学性能。34  相似文献   

5.
分别以低结构炭黑(F101)和高结构导电炭黑(XE2)作为导电填料,不同牌号(E-54,E-51和E-44)的环氧树脂(EP)作为基体树脂,采用超声分散溶液混合法制备了炭黑/环氧树脂(CB/EP)复合材料.研究了CB结构、CB含量和EP基体等对复合材料正温度因数(PTC)效应的影响.结果表明:F101/EP复合材料具有...  相似文献   

6.
将还原氧化石墨烯(rGO)与短切碳纤维(SCF)按一定比例混合,制备SCF/rGO协同改性环氧树脂复合材料,研究添加rGO前后复合材料的体积电阻率和硬度变化,分析SCF和rGO含量对复合材料力电性能的影响。结果表明,添加rGO前,短切碳纤维/环氧树脂复合材料(SCF/EP)的体积电阻率随SCF含量的增加逐渐减小,整体变化趋势分为三个阶段,同时其维氏硬度成对数比例上升。材料在拉伸应变小于0.2%时表现出线弹性行为,电阻变化率(ΔR/R_0)随应变呈现出先线性变化,后逐渐趋于指数变化的规律。添加rGO后,复合材料(SCF/rGO/EP)的电导率、维氏硬度和拉伸性能均显著提高,应变灵敏系数大幅下降,离散度大幅减小,说明rGO与SCF协同实现了导电网络的有效优化。  相似文献   

7.
采用浓硝酸和浓硫酸改性碳纳米管(CNTs),然后以环氧树脂(EP)为基体、碳纤维双层间隔织物(CFDSF)为增强体制备了EP/CFDSF/CNTs复合材料,研究了改性CNTs含量对EP/CNTs和EP/CFDSF/CNTs复合材料力学性能及电学性能的影响。结果表明,随改性CNTs含量增加,两种复合材料的弯曲强度和缺口冲击强度均先升高后降低,当改性CNTs的含量为2.5份时,两种复合材料的力学性能最好,EP/CFDSF/CNTs复合材料的弯曲强度和缺口冲击强度分别为145.18 MPa和18 kJ/m~2,分别较EP/CNTs复合材料提高了12.5%和18.4%。随改性CNTs含量增加,两种复合材料的体积电阻率降低,当达到渗滤阈值即改性CNTs的含量为2.5份后下降明显,EP/CNTs复合材料的体积电阻率为25.9Ω·cm,而EP/CFDSF/CNTs复合材料的体积电阻率为20.85Ω·cm。  相似文献   

8.
通过熔融共混法制备了聚醚醚酮/碳纤维(PEEK/CF)复合材料.采用差示扫描量热分析法(DSC)、扫描电子显微镜(SEM)、动态热机械分析仪(DMA)、微欧计、高阻计等考察了复合材料的热性能和电性能.结果表明:聚醚醚酮/碳纤维复合材料的熔点比聚醚醚酮高,但是复合材料的结晶度小于聚醚醚酮.通过SEM照片、DSC曲线和DMA曲线可以证明:聚醚醚酮和碳纤维结合较好,这对复合材料导电性能产生一定影响,即随着碳纤维质量分数增加到10%,复合材料导电性能呈现出逾渗效应,但是逾渗值较高,在经过热处理后,碳纤维含量较高的复合材料电阻率呈现七升趋势,一定碳纤维含量的复合材料表现出明显的PTC效应.  相似文献   

9.
环氧树脂/碳纤维/绢云母复合材料性能研究   总被引:4,自引:0,他引:4  
采用环氧树脂(EP)与短碳纤维(SCF)通过熔融共混法制得体积电阻率较低的EP/SCF复合材料,其渗滤阈值为10%。再以EP/SCF(67/25)复合材料的配比为基准,加入不同质量份的经2%硬脂酸改性的绢云母,制备出EP/SCF/绢云母复合材料。实验结果表明,当EP、SCF、绢云母的质量比为67∶25∶10时,复合材料的体积电阻率为2.25×108Ω·cm,拉伸强度、拉伸弹性模量和冲击强度比EP分别提高了78.5%、57.5%和43.6%。  相似文献   

10.
构建渐进导电网络结构是一种降低导电材料电磁波反射率的有效策略。利用芳纶纤维(AF)、还原氧化石墨烯负载芳纶纤维(rGO@AF)与碳纤维(CF),制备多层纤维增强环氧树脂复合材料(AF/rGO@AF/CF/EP),研究CF/EP和AF/rGO@AF/CF/EP的电磁屏蔽性能。通过单层纤维的电磁参数和电导率预测,得到多层纤维增强环氧树脂复合材料电磁屏蔽效能的简化模型。结果表明:单层CF/EP的反射损耗效能(SER)为12.3 dB,总电磁屏蔽效能(SET)为40.2 dB,与之相比,AF/rGO@AF/CF/EP的SER降至9.6 dB,SET提高至43.6 dB,说明梯度导电网络结构在保证材料屏蔽效能的同时降低复合材料的反射损耗。利用简化模型得到AF/rGO@AF/CF/EP的电磁屏蔽效能为42.6 dB,表明该模型准确预测多层结构复合材料的电磁屏蔽性能。  相似文献   

11.
以乙烯基酯树脂作为基体,用不同质量分数的短切碳纤维制备了导电复合材料,研究了材料的电阻率与温度和伏安特性的影响。结果表明:导电复合材料的PTC转变温度随碳纤维质量分数的增加而升高;复合材料的升温曲线和降温曲线不能重合,随着碳纤维质量分数的增加,回滞环的面积变小;在0~23 V的电压范围内,复合材料的电流-电压关系在低温下符合欧姆定律,随着温度升高,材料的电流-电压关系偏离欧姆定律。  相似文献   

12.
环氧树脂/碳纤维复合材料的成型工艺与应用   总被引:2,自引:0,他引:2  
介绍了环氧树脂(EP)/碳纤维(CF)复合材料的特点及其应用;总结了EP/CF复合材料的成型工艺及每种成型工艺的优缺点。指出随着CF制备技术、表面处理技术,以及EP制备技术和固化工艺的发展,采用环保、简便、快捷且价廉的成型工艺生产性价比更高的EP/CF制品是EP/CF复合材料的发展方向。  相似文献   

13.
炭黑/环氧树脂复合材料导电行为的研究   总被引:3,自引:2,他引:1  
分别采用不同的混合分散方法制备炭黑/环氧树脂(CB/EP)复合材料(CB牌号为F101、XE2,EP牌号为E-54、E-51和E-44),研究了制备工艺、CB用量和CB结构等对复合材料导电性能的影响。结果表明:不同方法制得的复合材料体积电阻率的大小依次为机械混炼法离心混合法超声分散法;CB/EP复合材料的导电性能随CB用量增加而显著提高,并且F101/E-54、XE2/E-54复合材料体系均表现出明显的导电渗流行为;CB结构对复合材料的导电性能影响较大,F101/E-54、XE2/E-54复合材料体系的导电渗流阈值分别为3.85%、0.47%。  相似文献   

14.
采用超声溶液分散法制备出超高分子量聚乙烯/石墨烯(PE-UHMW/GNPs)导电复合材料,研究了该材料的导电渗流行为和阻-温特性。研究发现,PE-UHMW/GNPs导电复合材料的导电渗流阈值为3.8%,即当导电填料在体系中的质量分数达到3.8%时,材料内部逐渐形成较为完善的导电网络,从而实现其导电特性。研究和探讨了PE-UHMW/GNPs导电复合材料的正温度系数(PTC)效应和负温度系数(NTC)效应。研究发现,PE-UHMW/GNPs导电复合材料的PTC效应会随着GNPs含量的增加逐渐增强,当导电填料GNPs的添加量达到3.8%时,通过阻-温曲线可以观察到,PE-UHMW/GNPs导电复合材料具有最大的PTC强度和相对较低的室温体积电阻率。场发射扫描电子显微镜分析结果表明,GNPs和PE-UHMW之间的相互作用会随着热循环次数的不同而发生变化,最终会影响到材料的PTC效应。  相似文献   

15.
以酚醛树脂粘结短切碳纤维(SCF)并炭化制得碳纤维三维网络增强体(CFNR),再采用真空袋成型法浸入环氧树脂(EP)制得新型EP/CFNR复合材料。通过显微镜观察CFNR和复合材料的微观结构,采用万能试验机测试力学性能,以及用电阻仪测定导电性能等方法对复合材料进行了评价。结果表明,炭化后的酚醛树脂将SCF粘结成连续的三维网络结构,EP/CFNR复合材料中SCF间有明显可见的炭质粘结点;当SCF质量分数为7.3%时,EP/CFNR复合材料较纯EP,EP/SCF复合材料的弯曲强度分别提高33%,29%,压缩强度分别提高23%,10%,同时,其体积电阻率是EP/SCF复合材料的1/45。  相似文献   

16.
将炭黑(CB)和碳纤维(CF)导电粒子加入到新型聚丙烯弹性体(Vistamaxx)与聚丙烯(PP)基体树脂中,共混制备导电复合材料。通过体积电阻率测试、力学性能测试和加工流变性能测试,得到了体积电阻率最低为0.47Ω.cm,拉伸强度为6.6 MPa,断裂伸长率为250%,具有良好加工性能的导电复合材料。  相似文献   

17.
磨碎碳纤维增强环氧树脂复合材料的性能研究   总被引:1,自引:0,他引:1  
牛牧童  吴伟端  陈名名 《塑料工业》2006,34(8):54-56,69
利用两种不同的磨碎碳纤维粉体(CFP)填充环氧树脂(EP),通过熔融共混制备了EP/CFP复合材料。研究了CFP含量、长度与复合材料导电性能、力学性能和热稳定性能的关系,并考察了材料断口形貌。研究表明:P-100型CFP填充的质量分数为25%时,EP/CFP材料的体积电阻率为1.34×106Ω·cm;拉伸强度、拉伸弹性模量、冲击强度和弯曲强度较EP分别提高了124%、186%、98.7%和66.7%,同时材料的热稳定性也略有提高。  相似文献   

18.
通过熔融共混的方法制备了不同含量炭黑的聚酰胺(PA)12复合材料,并研究了复合材料的熔体流动速率(MFR)、热性能、导电性和正温度系数(PTC)性能.结果表明:随炭黑含量增加,复合材料的熔体流动速率显著降低.炭黑改善了复合材料的热稳定性.复合材料的体积电阻率随炭黑含量的增加而显著降低,复合材料导电的炭黑逾渗浓度在14%~15%之间.导电复合材料表现出明显的PTC效应,炭黑质量分数为20%的复合材料PTC强度最高.  相似文献   

19.
采用模压成型工艺和拉挤工艺制备了加捻碳纤维增强环氧树脂(EP/CF)复合材料,利用微机控制电液伺服万能试验机和扫描电子显微镜研究了不同后处理温度对EP/CF复合材料的拉伸性能和断面微观形貌的影响。研究表明,相对于高温后处理下的EP/CF复合材料,室温后处理下的EP/CF复合材料的拉伸强度较优,其拉伸强度接近890 MPa;而随着后处理温度的升高,EP/CF复合材料的截面和表面显微硬度值呈先上升后下降趋势,当后处理温度为150℃时,其硬度值最优。随着后处理温度的上升,样品的断面形态由撕拉态变为剪切状态,整个断面转变为脆性断面,EP与CF之间的界面变差。较优后处理工艺为低温后处理;同时,常温固化剂下的EP和CF体系选择后处理工艺优化时,后固化温度应接近固化体系温度进行优化处理。  相似文献   

20.
为获得最佳的混编排列方式,基于三维四向编织结构,以碳纤维(CF)和超高分子质量聚乙烯(UHMWPE)纤维为增强体,以环氧树脂(EP)为基体,采用真空导入工艺设计制备了三维编织UHMWPE/CF/EP复合材料,并研究了不同混编排列方式预制件复合材料的弯曲性能。结果发现:韧性UHMWPE纤维的加入改变了非混杂碳纤维三维编织树脂基复合材料的弯曲破坏模式,破坏模式呈现为塑性破坏特征;基于CF和UHMWPE纤维数量之比为1∶1的情况下,采用逐块排列混编方式的复合材料的弯曲性能最佳,较之逐束排列混编方式的复合材料提高24.28%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号