首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
陈志远  颜冬  钱凡  李文翠 《化工学报》2019,70(12):4864-4871
MnO2具有低成本、无毒性、高天然丰度和优异的理论比电容等优点,被认为是一种极具前景的超级电容器(SC)电极材料。赝电容电极材料MnO2仍然存在导电性差以及充放电过程中易剥落的问题。本文利用恒电流沉积的方法在硝酸预氧化处理的碳纸表面制备了一种MnO2/CNTs/MnO2复合电极材料。X射线衍射(XRD)、扫描电子显微镜(SEM)和氮吸附测试证明,所制备的复合材料具有一种三明治状的夹层结构,同时富含5 nm左右的介孔,介孔结构能够保证电解液离子的高效传输。采用三维立体的碳纸能够为MnO2提供丰富的附着位点,而电沉积法合成的α-MnO2生长在有效的导电位点上,具有蓬松多孔的形貌,在MnO2发生膨胀/收缩过程中,这种海绵状形貌可以有效降低材料受到的膨胀应力。中间层碳纳米管(CNTs)相互搭接于内外两层MnO2之间,作为一种导电中继,提高了复合材料的导电性。该复合材料具有优异的电化学性能:在0.1 A·g-1的电流密度下,能够获得428.8 F·g-1的可逆比电容,并在5 A·g-1的高电流密度下仍能具有80%的电容保持率。同时,电极表现出优异的循环稳定性,在1 A·g-1循环6000次之后比电容仅衰减5%。  相似文献   

2.
近年来,越来越多的研究致力于开发新型、超高能量密度、高法拉第反应活性的电极材料,尤其将其应用于新一代超级电容器储能系统。通过水热法直接在柔性基质碳布上生长海胆状V2O5纳米球和十四面体Fe2O3纳米盒子。V2O5微观结构和储能性能可通过改变水热时间进行调控。海胆状V2O5纳米球正极材料具有最高比容量535 F·g-1。以十四面体Fe2O3纳米盒子作为负极材料组装的新型结构V2O5-CC//Fe2O3-CC柔性超级电容器,在功率密度为699.49 W·kg-1时,能量密度可达46.06 W·h·kg-1。而且具有良好的机械柔韧性,在180°弯曲循环测试5000次,比容量保持率仍高达83.4%。研究为开发下一代超高能量密度、柔性电子器件提供了一种通用而有效的策略。  相似文献   

3.
汪晓莉  郑玉婴  刘先斌 《化工学报》2015,66(3):1201-1207
采用水热法通过添加Ce离子制备了MnO2纳米空心球电极材料。Ce离子对MnO2的形貌和结晶程度有很大的影响,添加Ce离子后生成由纳米棒组成的中空球,中空球比表面积(BET)达到315.2 m2·g-1。MnO2电极电化学测试结果表明:当铈锰摩尔比为0.2时电极材料具有较好的电化学性能,其比电容达到178.6 F·g-1,与未加Ce离子相比其比电容提高了2.6倍,而且经过1000次循环稳定性测试后比电容仍保留了90.5%。这些结果表明添加Ce离子有利于形成中空结构,并提高了MnO2电极的比电容。  相似文献   

4.
为满足超级电容器对于高性能电极材料的需求,本研究采用水热和电沉积结合的方法,在泡沫镍上合成了具有独特三维(3D)核壳结构的纳米针/纳米片核壳阵列(3D NDNSA)的过渡金属氧化物和硫化物复合赝电容电极材料Mn-Ni-Co-O@Ni-Mn-S(MNCO@NMS)。SEM和TEM分析结果表明,一维MNCO纳米针为核心和二维NMS纳米片为壳层,相互连接并交织形成分层的3D核壳纳米结构的MNCO@NMS。由于过渡金属氧化物和硫化物的协同作用和分层核壳结构带来的导电性和活性位点的增加,制得的3D MNCO@NMS表现出了优异的电化学性能。在3 mol·L-1 KOH作为电解质的三电极电化学测试系统中,MNCO@NMS电极在电流密度1 A·g-1下比电容为 2 574.2 F·g-1;在电流密度 10 A·g-1下循环5 000次后,表现出接近100%的库伦效率和83.4%的比电容保持率。此外,以制得的MNCO@NMS为正极,活性炭为负极组装的混合超级电容器器件(HSCs)在功率密度799 W·kg-1下的能量密度为54.4 Wh·kg-1,在 5 A·g-1下进行4 000次循环后,库伦效率接近100%和保持初始比电容的81.7%。这些电化学特性表明,核壳MNCO@NMS可以成为超级电容器高性能电极的选择之一。  相似文献   

5.
利用化学合成法成功制备了尺寸分布均一的聚吡咯(polypyrrole,PPy)纳米球,通过酸解法将KMnO4分解成MnO2纳米片原位生长在PPy纳米球表面,然后采用稀溶液合成法将聚苯胺(polyaniline,PANI)生长在MnO2表面,得到PANI@MnO2@PPy三元复合材料。扫描电子显微镜、透射电镜、拉曼光谱、X射线粉末衍射和X射线光电子能谱证实PANI@MnO2@PPy成功合成。通过溶液涂覆法,将PANI@MnO2@PPy三元复合材料制备成电极并测定其电化学储能性,在1 mol·L-1 Na2SO4电解质溶液中,当电流密度为0.5 A·g-1时,PANI@MnO2@PPy电极的比电容量约为357 F·g-1,是MnO2@PPy电极的1.96倍;当电流密度从0.5 A·g-1...  相似文献   

6.
采用共沉淀合成法,将CuFe类普鲁士蓝(CuHCF)与不同质量的MnO2纳米片结合,构建CuHCF/MnO2复合材料来提高电化学性能。利用扫描电镜、X射线粉末衍射仪和红外光谱对CuHCF/MnO2的形貌和微观结构进行分析,并用循环伏安法和电流充放电法评价其电化学性能。结果表明:由于CuHCF和MnO2纳米片良好的协同效应,CuHCF/MnO2-1电极在1 A·g-1电流密度下比容量最高为260.9 F·g-1,优于单独的CuHCF和MnO2电化学性能。  相似文献   

7.
马卫园  张东 《化工学报》2018,69(10):4438-4448
以NaHCO3为引气剂,利用化学发泡法制备磷酸镁多孔材料(MPCPM),该材料孔径发达、强度较高。利用MPCPM和KOH复合形成结构载体/电解质双连续相系统,并与石墨烯电极组装成一种新型结构超级电容器。研究发现,MPCPM孔隙连通度是影响结构超级电容器电学性能的主要因素。内部连通孔隙结构有利于离子的运输,从而改善结构超级电容器的储能容量。使用循环伏安、交流阻抗、恒流充放电以及抗压强度测试等方法研究化学发泡剂NaHCO3掺量及养护龄期对结构超级电容器电学性能和力学性能的影响。NaHCO3掺量为2.5%时比电容最高可达62.2 F·g-1,比不掺加NaHCO3时提高了34.1%。并且当NaHCO3掺量为2%其比电容为38.79 F·g-1,同时抗压强度高达18.76 MPa,显示出良好的多功能性。  相似文献   

8.
作为一种富氮碳源,聚丙烯腈历来被作为生产炭材料的重要原料。但是聚丙烯腈直接炭化会导致其烧结不利于后续深度活化。通过干法球磨石墨烯和聚丙烯腈复合原料,结合稳定化和KOH活化,制备了杂化多孔炭,并系统研究了石墨烯和聚丙烯腈配比及后活化处理对杂化多孔炭性能的影响。结果表明:石墨烯的存在有利于高能球磨过程中热量地快速扩散,有效避免了聚丙烯腈的烧结;而聚丙烯腈进一步抑制了石墨烯片层的团聚,使石墨烯/聚丙烯腈复合前驱体呈现蓬松的粉体结构,利于碱的深度活化。同时,石墨烯在多孔炭结构中形成的三维柔性导电网络便于电荷地快速转移。由于其发达的孔、大的比表面积、优异的导电性以及氮/氧杂原子诱导的赝电容,所制备的杂化多孔炭用作超级电容器电极材料时,在水系和有机系电解液中均表现出了优异的电化学性能。尤其是,优化的HPC-4复合炭材料用作超级电容器的电极时,在1 mol/L四乙基四氟硼酸铵有机电解液中,当功率密度为337.5 W/kg时,能量密度可达30.38 W?h/kg。该工作为面向高功率兼高能量超级电容器电极材料的开发提供了一种简易且高效的制备策略。  相似文献   

9.
通过水热法制备得到TiO2改性石墨烯复合材料(RGO/TiO2),考察了其形貌结构和电化学性能。将其组装成电极,对比未改性石墨烯(RGO)电极和RGO/TiO2电极的电吸附NH4+性能。重点考察外加电压、循环流速、初始浓度等工艺参数对RGO/TiO2电极电吸附NH4+的影响,并对其电吸附NH4+特性和对模拟实际含NH4+废水深度脱NH4+效果进行研究。结果表明:RGO/TiO2复合材料具有三维孔洞结构,比表面积为382.08 m2·g-1,比电容量在扫速为0.01 V·s-1时达到325.80 F·g-1,优于RGO材料。RGO/TiO2电极的初次电吸附量较RGO电极提升了28.3%,循环再生吸附10次后,RGO/TiO2电极的NH4+吸附量仅降低了5.87%,循环再生吸附性能优于RGO电极。外加电压2.0 V、循环流速35 ml·min-1和NH4+初始浓度1.0 mmol·L-1为RGO/TiO2电极的最佳NH4+电吸附条件。RGO和RGO/TiO2电极电吸附NH4+过程符合准一级动力学模型和Freundlich等温吸附模型,电吸附NH4+为非均匀表面的多层吸附行为,以物理吸附为主。RGO/TiO2电极4级串联时对模拟实际含NH4+炼油净化水的去除率达到86.84%。  相似文献   

10.
采用水热法制备了MnFe2O4/石墨烯(MFO/graphene)复合材料。利用XRD、SEM、EDS、循环伏安、计时电位等手段对MFO/graphene的物理与化学性能进行了表征。结果表明:产物为直径约100 nm的MFO颗粒均匀分布于graphene的片层上;MFO/graphene复合材料在3M KOH溶液中表现较好的超级电容特性。由于graphene的引入,提高了MFO材料导电性,进而改善了复合材料的电化学性能,MFO/graphene电极材料在1 A·g-1的电流密度下展现出600 F·g-1的比容量,与MFO相比,比电容提高了近47.1%。  相似文献   

11.
Graphene has shown superiority for advanced carbon electrodes in supercapacitors, characterized by high power density but limited energy density. Combining pseudocapacitive materials with graphene can alleviate the problem. This work synthesized the three-dimensional strutted graphene (SG) via the ammonium-salt-assisted sugar-blowing method, and the self-supporting MnO2/SG porous monolith was then constructed via growing manganese oxide (MnO2) nanorod array on the SG support in hydrothermal process. When tested in supercapacitor, the MnO2/SG hybrid electrode achieved a high specific capacitance of 343.6 F·g-1 at a current density of 0.5 A·g-1, exhibiting excellent cycling stability with 83.8% capacitance retention after 5000 cycles. The symmetric supercapacitor further showed a high energy density of 11.93 W·h·kg-1 at a power density of 500 W·kg-1. The impressive result indicates a promising prospect of the excellent MnO2/SG hybrid to be applied to electrochemical energy storage.  相似文献   

12.
In recent years, more and more research has been devoted to the development of new electrode materials with ultra-high energy density and high Faraday reaction activity, especially applying them to a new generation of supercapacitor energy storage systems. In this study, sea urchin-shaped V2O5 nanospheres and tetrakaidecahedron Fe2O3 nano boxes have been grown directly on flexible matrix carbon cloth by hydrothermal method. The hydrothermal time can control the microstructure of V2O5, and the morphology determines the performance of energy storage, the positive electrode material of sea urchin-shaped V2O5 nanosphere exhibits a maximum specific capacitance of 535 F·g-1. In addition, the tetrakaidecahedron Fe2O3 nano box is used as the negative electrode, and a new structure V2O5//Fe2O3 flexible supercapacitor is assembled. When the power density is 699.49 W·kg-1, the energy density can reach 46.06 W·h·kg-1. Moreover, it also has good mechanical flexibility, and the specific capacity retention rate is still as high as 83.4% after 5000 times of 180° bending cycle tests. This work provides a general and effective strategy for developing the next generation flexible electronic devices with ultra-high energy density.  相似文献   

13.
采用螯合法制备了RGO/δ-MnO2复合材料,并用X射线粉末衍射(XRD)、低压氮气吸附脱附(BET)、X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能谱(EDS)、热重(TGA)对其结构和物相进行表征。采用循环伏安测试(CV)、恒电流充放电(GCD)以及循环测试对所制材料电化学储能进行测试。结果表明RGO/δ-MnO2复合材料比纯石墨烯和纯δ-MnO2具有更优异的电化学性能。当电流密度为1 A·g-1时,RGO/δ-MnO2复合材料的比电容可达322.6 F·g-1,比纯δ-MnO2电极材料高234.2 F·g-1,比纯石墨烯高212.1 F·g-1。当电流密度放大10倍后,RGO/δ-MnO2复合材料的比电容保留率为79.1%。在1000次恒流充放电测试后,比电容为252 F·g-1(99.6%),说明该方法制备的RGO/δ-MnO2复合材料是一种有应用前景的超级电容器电极材料。  相似文献   

14.
Supercapacitor is a new type of energy storage device, which has the advantages of high-power property and long cycle life. In this study, three-dimensional graphene (3D-GN) with oxygen doping and porous structure was prepared from graphene oxide (GO) by an inexpensive sodium chloride (NaCl) template, as a promising electrode material for the supercapacitor. The structure, morphology, specific surface area, pore size, of the sample were characterized by XRD, SEM, TEM and BET techniques. The electrochemical performances of the sample were tested by CV and CDC techniques. The 3D-GE product is a three-dimensional nano material with hierarchical porous structures, its specific surface area is much larger than that of routine stacked graphene (GN), and it contains a large number of mesoporous and macropores, a small amount of micropores. The capacitance characteristics of the 3D-GN electrode material are excellent, showing high specific capacitance (173.5 F·g-1 at 1 A·g-1), good rate performance (109.2 F·g-1 at 8 A·g-1) and long cycle life (88% capacitance retention after 10,000 cycles at 8 A·g-1)  相似文献   

15.
毕宏晖  焦帅  魏风  何孝军 《化工学报》2020,71(6):2880-2888
在三聚氰胺为氮源、碳酸钾为活化剂的条件下,由菜籽饼制得了珊瑚状氮掺杂分级多孔碳(CNPCs)。采用场发射扫描电子显微镜、透射电子显微镜、X射线光电子能谱、氮吸脱附等表征手段,研究了三聚氰胺的用量对CNPCs微观形貌、组成及孔隙结构的影响。结果表明,当三聚氰胺的用量为2 g时,所得CNPC2的比表面积达2050 m2·g-1。以6 mol·L-1 KOH为电解液,在0.05 A·g-1的电流密度下,CNPCs的比容可达274 F·g-1;当电流密度为50 A·g-1时,CNPCs的比容为169 F·g-1,显示了优异的倍率性能。经过10000次充放电测试后,比容保持率达96%,展现了良好的循环稳定性。此工作为从生物质大规模生产高性能储能用多孔碳材料提供了一种简单、绿色的方法。  相似文献   

16.
利用固体农业废弃物玉米秸秆作为原料,经高温煅烧,KOH刻蚀获得具有较大比表面积的多孔生物炭材料,并采用粉末X射线衍射仪(XRD)、场发射扫描电镜(FE-SEM)、红外光谱(FT-IR)、拉曼光谱(Raman)以及比表面积和孔径分析仪(BET)等表征手段,研究其物理、化学结构和微观形貌。结果表明,所制备的生物炭材料具有发达的“微孔-中孔-大孔”三维贯通多级孔道结构,比表面积高达1228 m2·g-1。将其作为电极材料,与H2SO4/PVA凝胶电解质可组装成为具有柔性的全固态超级电容器。利用循环伏安测试(CV)、恒电流充放电(GCD)以及交流阻抗测试(EIS)对柔性超级电容器电化学性能进行了测试。在电流密度为1.0 A·g-1的条件下,其比容量可达125 F·g-1。该器件具有良好的机械柔性和电化学稳定性,将其从0°弯曲至180°的过程中,比电容保持率约为93.5%;以不同弯曲角度将其连续弯折100次后,仍能保持较高的比电容。此外,在弯折角度180°、充放电电流密度为5.0 A·g-1 的条件下经过500次循环充放电后,比电容值保持率约为95.6%,库仑效率约为94.9%。说明所制备的柔性超级电容器具有优异的充放电性能和长效循环稳定性。作为一种柔性、质轻、便携的储能装置,在可穿戴电子器件领域内具有潜在应用价值。同时该方法也为固体农业废弃物玉米秸秆的高附加值转化利用和新型绿色能源器件创新研制提供了新的技术途径。  相似文献   

17.
Cellulose and its derivatives are natural materials with high carbon contents, but it is challenging to convert their carbon into high value-added carbonaceous materials (e.g., graphene). Here, an approach to convert the carbon in cellulose into N, P co-doped porous graphene (LIG) materials via laser induction is proposed. Cellulose nanofibrils (CNFs), a cellulose derivative with high dispersion uniformity and abundant surface hydroxyl groups, were easily formed on a bulk substrate (thickness ≥ 5 mm) containing ammonium polyphosphate (APP). Then, a 10.6 μm CO2 laser was used to scribe for 1-5 passes on the CNFs/APP substrate under an ambient environment to produce N, P co-doped porous LIG. Upon increasing the number of laser scribing passes, the IG/ID of LIG first increased and then decreased, reaching a maximum of 1.68 at 4 passes. The good pore structure and low resistance also showed that 4 laser passes were ideal. Besides, the N, P co-doped LIG also showed excellent electrochemical performance, with a specific capacitance of 221.4 F?g-1 and capacitance retention of 89.9%. This method exploits the advantages of nanocellulose and overcomes the difficulties associated with directly compounding cellulosic materials, providing a method for the further development of biomass nanomaterials.  相似文献   

18.
以棉纤维素为原料,采用硝酸盐、尿素、纤维素共混后热裂解的方法制备分级多孔炭HPC样品,通过改变煅烧温度和KOH活化处理对多孔炭比表面积及孔结构进行调控。对比三个不同温度煅烧活化处理后样品的循环伏安曲线、恒电流充放电曲线、比容量等电化学参数,结果表明,4AC@HPC800样品作为超级电容器工作电极具有优良的电化学性能,其比表面积高达2433.8 m2·g-1,在1 A·g-1的电流密度下比容量高达234.7 F·g-1,在大电流密度10 A·g-1时依然有207.6 F·g-1的比容量,具有良好的倍率性能;电极在2 A·g-1的电流密度下循环10000次后依然有196.1 F·g-1的比容量,表明其具有长时工作的特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号