首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The wettability of the membrane surface has shown obvious influent on the separation performance of the membrane. In this work, a hydrophilic PDA-[PDDA/TiO2]+ Cl membrane was prepared by a one-step codeposition of poly(diallyldimethylammonium chloride) (PDDA) polyelectrolyte solution containing positively charged TiO2@PDDA nanoparticles with the assistance of dopamine (DA). Such positively charged membrane can be transformed into a hydrophobic membrane PDA-[PDDA/TiO2]+ PFO via the counterion exchange between Cl and PFO (perfluorooctanoate). The transformation between hydrophilicity and hydrophobicity is reversible. For both hydrophilic and hydrophobic membranes, the nanofiltration performances were respectively investigated by the aqueous solution and ethanol solution of dyes including methyl blue (MB), Congo red (CR) and Evans blue (EB), and as well metal salt aqueous solution. The consecutive running stability and anti-fouling performance of both hydrophilic and hydrophobic membranes were explored. The results revealed that both membranes showed high nanofiltration performances for retention of dyes in (non)aqueous solution. For the hydrophilic membrane, the rejection of salts in a sequence is MgSO4 > Na2SO4 > MgCl2 > NaCl. Moreover, both of the hydrophilic and hydrophobic membranes showed high stability and antifouling property.  相似文献   

2.
In this work, novel sandwich-type asymmetric ceramic microfiltration membranes with a sea urchin-like mullite whisker skeleton were prepared one step. Their structural properties and oil-water separation performance were investigated. The results show that after sintering at 1400 °C, the prepared membrane possesses good hydrophilic, underwater oleophobic, and anti-fouling properties. During the continuous separation of a 300 mg/L oil-in-water emulsion, a maximum stable flux of 267 L·m−2·h−1 was achieved without membrane cleaning. After chemical cleaning and simple physical cleaning, the membranes recovered to a steady flux of 397 L·m−2·h−1 and 305 L·m−2·h−1, respectively, and maintained a 95% oil rejection. The good underwater oleophobicity and selective permeability brought about by the flat-lying whiskers on the top surface, coupled with the efficient water channels between the sea urchin-like structures inside the membrane, are considered to be the main reasons for its improved separation characteristics over conventional low-cost ceramic membranes.  相似文献   

3.
In this study, a novel thin-film nanocomposite (TFN) membrane is developed consisting of a cross-linked nano-modified polyvinyl alcohol (PVA) selective layer on an organic acid-modified polyvinylidene fluoride (PVDF) membrane. The nano-modification of the PVA layer is performed via incorporating different amounts of the amine-functionalized multiwalled carbon nanotubes (MWCNTs-NH2) into the PVA matrix. The effect of citric acid on the chemical structure and morphology of the PVDF support is also investigated. The performance of the resultant membranes in the nanofiltration (NF) of MgSO4 and acid yellow-17 aqueous solutions is also studied. The results indicate that the modification of the support with 0.5 wt% of citric acid increased the water permeance from 1.59 L m−2 h−1 bar−1 (LMH/bar) for PVA/PVDF to 4.49 LMH/bar for the PVA/modified PVDF membrane. Furthermore, the optimum value of MWCNT-NH2 (0.6 wt%) increases the permeance of the resultant TFN membrane to 4.94 LMH/bar while maintaining a high rejection. Interestingly, the incorporation of MWCNT-NH2 into the PVA layer and citric acid into the PVDF solution results in a membrane with the highest permeance of 6 LMH/bar.  相似文献   

4.
Highly permeable acid-resistant nanofiltration (NF) membranes are of critical significance for the efficient treatment of acidic streams. Enhancing permeability while maintaining the high solute rejection of acid-resistant NF membranes remains a great challenge due to the low reactivity of monomers. In this work, a novel catalytic template assisted interfacial polymerization (IP) strategy of 3-aminobenzenesulfonamide (ABSA) and trimesoyl chloride (TMC) was provided to prepare a poly(amide-sulfonamide) membrane. Aminopyridine doped graphene quantum dots rich in acylation catalytic sites and ZIF-8 nanoparticles are co-loaded on a substrate as template. Benefiting from the enhanced phase integrity and self-inhibition effect of the template assisted IP process, the resulting ultra-thin acid-resistant membrane exhibits an excellent water permeance (20.4 Lm−2h−1bar−1) with a high Na2SO4 rejection of 90.5%, which outperforms almost all the reported acid-resistant NF membranes. Our work paves a versatile way for synthesis of special separation membranes.  相似文献   

5.
Nanofiltration composite membranes with high selectivity are one of the most critical cores in water treatment, and regulating the surface charge and pore structure of active separation layers in thin film composite membranes is one of the most effective means to improve the selectivity of composite membranes. This article synthesized a novel monomer with positive charge and a rigid twisted Tröger's base structure (named TBDA-SO3), which was manipulated to improve the microporous structure and surface charge of the composite membrane. By interfacial polymerization, TBDA-SO3, and piperazine were co-reacted with trimesoyl chloride to successfully prepare positively charged, highly selective, and strongly microporous polyamide composite nanofiltration membranes. The best-performing composite nanofiltration membrane in this article has a permeability similar to that of the control group's poly(piperazine amide) (PPA) membrane (pure water flux, 7.8 L m−2 h−1 bar−1), but has excellent divalent cation selectivity (52.57), which is 4.4 times that of the control group's PPA membrane.  相似文献   

6.
In the present study, a simple, inexpensive, nontoxic, and environmentally friendly polyethylene glycol (PEG) polymer was used to enhance the hydrophilicity of the forward osmosis (FO) membrane using various PEG concentrations as a pore forming agent in the casting solution of polyethersulfone/polysulfone (PES/PSF) blend membranes. A nonwoven PES/PSF FO blend membrane was fabricated via the immersion precipitation phase inversion technique. The membrane dope solution was cast on polyethylene terephthalate (PET) nonwoven fabric. The results revealed that PEG is a pore forming agent and that adding PEG promotes membrane hydrophilicity. The membrane with 1 wt% PEG (PEG1) had about 27% lower contact angle than the pristine blend membrane. The PEG1 membrane has less tortuosity (which reduces from 3.4–2.73), resulting in a smaller structure parameter (S value) of 277 μm, due to the presence of open pores on the bottom surface structure, which results in diminished ICP. Using 1 M NaCl as the draw solution and distilled water as the feed solution, the PEG1 membrane exhibited higher water flux (136 L m−2 h−1) and lower reverse salt flux (1.94 g m−2 h−1). Also, the selectivity of the membrane, specific reverse salt flux, (Js/Jw) showed lower values (0.014 g/L). Actually, the PEG1 membrane has a 34.6% higher water flux than the commercial nonwoven-cellulose triacetate (NW-CTA) membrane. By means of varied concentrations of NaCl salt solution (0.6, 1, 1.5, and 2 M), the membrane with 1 wt% PEG showed improved FO separation performance with permeate water fluxes of 108, 136, 142, and 163 L m−2 h−1. In this work, we extend a promising gate for designing fast water flux PES/PSF/PEG FO blend membranes for water desalination.  相似文献   

7.
Acyl chloride monomers have been serving as the dominant acylation reagent for preparing thin-film composite (TFC) nanofiltration (NF) membranes over the past few decades. Herein, a novel acylation reagent (trimellitic anhydride, TMA) was exploited in conjunction with trimesoyl chloride (TMC) to undergo interfacial polymerization with piperazine (PIP) on the polysulfone substrate membranes. The introduction of TMA enabled the deeper diffusion of PIP monomers into the organic phase, resulting in the creation of novel circular-shaped protuberances on the top surface of the polyamide layer and the significant increase in the effective membrane area. Besides, abundant in-situ carboxylic groups were generated in the polyamide layer, conducive to both the surface hydrophilicity and negative charge density. Consequently, with an addition of 0.03 wt% TMA, pure water flux reached up to 15.3 L m−2 hour−1 bar−1, almost 2.2 times that of the pristine membrane, and high rejection of Na2SO4 (97.3%) was maintained, evincing the superior desalination performance of the TMA-modified membranes. The interaction mechanism between TMA, TMC, and PIP was described in detail. Furthermore, the TMA-modified membranes exhibited a stable separation performance over the long-running process.  相似文献   

8.
Herein, thin-film composite membranes consisting of poly(m-phenyleneisophthalamide) substrate and polyamide active layer were constructed by transition metal ion-assisted interfacial polymerization method. As compared to the traditional polyamide membranes, a much thinner polyamide layer (33 vs. 200 nm) can be synthesized with higher permeance (3.2 vs. 0.62 L m−2 h−1 bar−1) in the organic solvent nanofiltration. Similarly, the prepared membranes maintained a high rejection (>99%) for various dyes. Optimal membranes prepared by using Co2+ exhibited strong tolerance to various organic solvents with good long-term stability. Positron annihilation spectroscopy and other characterization methods were used to investigate the relationships between the membrane microstructures and the enhanced separation performance. Based on molecular dynamics simulation, it was found that the diffusion coefficient of polyethyleneimine monomer decreased by about 18 times after adding Co2+ to the aqueous solution (forming coordination interaction). This procedure has great potential and sustainability for practical organic solvent nanofiltration applications.  相似文献   

9.
Extraction of lithium from high Mg2+/Li+ ratio salt lake brine with the nanofiltration (NF) membrane is significantly challenging. Interfacial polymerization was utilized for the facile modification of NF membranes with polydopamine (PDA) and polyethylenimine (PEI) to enhance lithium separation efficiency. Comparing permeability and salts rejection (Li+ and Mg2+) of three NF membranes before and after PDA/PEI deposition, it was observed that separation efficiency was not only dependent on steric hindrance but also affected by Donnan exclusion mechanism. In the case of NF270 membrane after facile polymerization, due to small pore size distribution and low charge density confirmed by zeta potential measurements, Li+ permeability was reached about 95% at a flux of 21.33 L·m−2·h−1. Although with the DK membrane, separation factor SFLi/Mg was also increased up to 60 after modification, the pore narrowing effect significantly decreased lithium permeability and flux. Experimental results showed that facile modification not only enhanced stability and hydrophilicity but also reduced the high Mg2+/Li+ ratio from 30 to 4.1 in single-stage separation.  相似文献   

10.
In this paper, nanofiltration (NF) polymer membranes based on polyestersulphone (PES) were prepared by the phase inversion method. Polyethyleneimine (PEI) and zinc nitrate (Zn(NO3)2) as a surface modifier and glutealdehyde (GA) as cross-linker was used. Fourier transform infrared spectroscopy analysis (FTIR) was used to confirm the chemical composition on the membrane surface. Membranes were also characterized using field emission scanning electron microscopy (FESEM) and 3D surface images. Water contact angle, average pore size and porosity measurements, water flux, salt rejection, and membrane anti-fouling ability were discussed. Modified membranes showed a smoother surface than the original membrane. The amount of pure water flux decreased with increasing the concentration of modifiers at the surface, but the yield of Na2SO4 salt increased, 53% in virgin membrane and 83% in M3 membrane. Modified membranes had better anti-fouling and hydrophilicity properties than primary membranes. The lowest contact angle value was 26.2° for M4. Also, the best anti-clogging comparable properties were for the M3 membrane with FRR = 63.37%, Rr = 10.69%, Rir = 36.6%, and Rt = 47.3%. By increasing the concentration of modifiers, the removal of CuNO3 and CuSO4 improved that the M1 membrane (97.59%) had the highest Cu(NO3)2 separation and the M4 membrane (87.5%) had the most increased CuSO4 separation.  相似文献   

11.
Design and preparation of membranes with ultrahigh separation performance and antifouling property for oil-in-water (O/W) emulsions remains challenging. In this study, a high flux mullite/TiO2 ceramic composite membrane was prepared via multi-precipitation of TiO2 on a whisker mullite hollow fiber support synthesized by combining phase inversion and high-temperature sintering techniques. The results showed that the generated whisker mullite structure improved the permeation flux, and the micro-nano structured TiO2 functional layer endowed the membrane surface with superhydrophility and stability. The retention of the optimal composite membrane (M20T13) that was soaked in the titanium solution 20 times for 13 min each time for the O/W emulsions like n-hexane, toluene and engine oil maintained over 98 %, and the flux after 6 h filtration was 668.34 L·m−2·h−1, 487.25 L·m−2·h−1 and 258.66 L·m−2·h−1, respectively, much higher than that of the optimal substrate (F3A1, mass ratio of fly ash: Al2O3 = 3:1). Moreover, the flux recovery rate of M20T13 was much higher than that of F3A1 after chemical backwashing. This work manifests great potential in O/W treatment fields.  相似文献   

12.
A series of cellulose triacetate/Ludox-silica nancomposite pervaporation membranes was successfully prepared via solution casting, aiming to improve the performance of cellulose triacetate membranes for desalination. The fabricated nanocomposite membranes were characterized to study the membrane morphology, chemical composition, mechanical properties, and surface hydrophilicity. Furthermore, the desalination performance was investigated as a function of silica (SiO2) loading (ranging from 1 to 4 wt%) and feed concentration at 30 and 60 g/L of sodium chloride (NaCl). Pervaporation experiments showed that incorporating 4 wt% SiO2 into a cellulose triacetate (CTA) membrane increased the water flux by a factor 2.5 compared with pristine CTA (from 2.2 to 6.1 kg m−2 h−1) for a 30 g/L NaCl feed solution at 70°C, while the salt rejection remained above 99%. The CTA/4 wt% SiO2 membrane was found to have only 21% flux reduction when tested with a 60 g/L NaCl feed solution, without changes in membrane selectivity. This suggests that the developed CTA/Ludox-SiO2 nanocomposite pervaporation membrane is suitable for desalination.  相似文献   

13.
In this work, semiinterpenetrating polymer network (semi-IPN), consisting of sulfonated poly (arylene ether sulfone) (SPAES) and crosslinked vinyl imidazole grafted polysulfone (VMPSU), is prepared and characterized. FTIR, EDS, and solubility test indicate the successful preparation of amphoteric membranes. The semi-IPN amphoteric membranes exhibit better stability than pure SPAES membrane, as demonstrated by thermogravimetric analysis and ex situ immersion testing results. More importantly, it is shown that the amphoteric membrane can effectively hinder vanadium ion crossover through the membrane, which is attributed to the semi-IPN structure and Donnan exclusion. As expected, the amphoteric membrane containing 20% VMPSU exhibits the highest proton selectivity (6.86 × 104 S min cm−3), comparing to pristine SPAES (1.90 × 104 S min cm−3) as well as Nafion117 (1.31 × 104 S min cm−3).  相似文献   

14.
A novel chitosan (CS)-piperazine (PIP) composite nanofiltration (NF) membrane with satisfied characteristics for brackish water and seawater desalination was successfully developed. PIP was mixed with CS during the interfacial polymerization (IP) process to enhance the NF membrane permeate flux. The resultant NF membranes were characterized by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), atomic force microscope (AFM), contact angle. Effects of CS concentration, trimesoyl chloride (TMC) concentration, reaction time and the mixing ratio of CS/PIP on NF membrane performance were investigated thoroughly. When PIP in the aqueous phase monomers reached to 25% (w/w), the PWF (60.6 L·m?2·h?1) was synergistically improved by nearly 2 times without a significant reduction of Na2SO4 rejection (89.1%). Moreover, the NF membranes possessed excellent performance for the desalination of brackish water and seawater, which showed high potential to be applied in the desalination process for water treatment.  相似文献   

15.
Loose nanofiltration membrane emerges as required recently, since it is hard for conventional nanofiltration membrane to fractionate mixture of dyes and salts in textile wastewater treatment. However, the polymeric membranes unavoidably suffer from membrane fouling, which was caused by the adsorption of organic pollutants (like dyes). Normally, the dye fouling layer will shrink membrane pore size, thus resulting in flux decline and rejection increase. It is thought that membrane fouling may be a double-edged sword and can be an advantage if properly utilized. Thereby, loose nanofiltration membranes were constructed here by a green yet effective method to fractionate dyes/salt mixture by taking advantage of membrane fouling without using poisonous ingredients. A commercially available polyacrylonitrile (PAN) ultrafiltration membrane with high permeability was chosen as the substrate, and dyes were used to contaminate PAN substrate and formed a stable barrier layer when adsorption of dyes reached dynamic equilibrium. The resultant PAN-direct red 80 (DR80) composite membranes displayed superior permeability (~128.4 L m−2 h−1) and high rejection (~99.9%) to DR80 solutions at 0.4 MPa. Moreover, PAN-DR80 membranes allowed fast fractionation of dyes/sodium chloride (NaCl) mixture, which maintained a negligible dye loss and a low NaCl rejection (~12.4%) with high flux of 113.6 L m−2 h−1 at 0.4 MPa. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47438.  相似文献   

16.
For the first time, microporous polyamide networks have been synthesized via the interfacial polymerization of piperazine and acyl chloride monomers containing tetrahedral carbon and silicon cores. These polyamides, with Brunauer–Emmett–Teller surface area between 488 and 584 m2 g?1, show a CO2 uptake of up to 9.81 wt% and a CO2/N2 selectivity of up to 51 at 1 bar and 273 K, suggesting their great potential in the area of carbon capture and storage applications. We have developed the interfacial polymerization on the surface of the porous polyacrylonitrile substrate, resulting in the formation of ultrathin microporous membranes with thicknesses of about 100 nm. These nanofiltration (NF) membranes exhibited an attractive water flux of 82.8 L m?2 h?1 at 0.4 MPa and a high CaCl2 (500 mg/L) rejection of 93.3%. These NF membranes follow the salt rejection sequence of CaCl2 > NaCl > Na2SO4, demonstrating the positively charged character of these membranes.  相似文献   

17.
Metal–organic framework (MOF) membranes are promising for efficient separation applications. However, the uncontrollable pathways at atomic level impede the further development of these membranes for molecular separation. Herein we show that vapor linker exchange can induce partial amorphization of MOF membranes and then reduce their transport pathways for precisely molecular sieving. Through exchanging MOF linkers by incoming ones with similar topology but higher acidity, the resulted metal-linker bonds with lower strength cause the transformation of MOF membranes from order to disorder/amorphous. The linker exchange and partial amorphization can narrow intrinsic apertures and conglutinate grain boundary/crack defects of membranes. Because of the formation of ultra-microporous amorphous phase, the MOF composite membrane shows competitive H2/CO2 selectivity up to 2400, which is about two orders of magnitude higher than that of conventional MOF membranes, accompanied by high H2 permeance of 13.4 × 10−8 mol m−2 s−1 Pa−1 and good reproducibility and stability.  相似文献   

18.
In this study, the carbon nanotubes (CNTs) are successively coated via sol-gel method with SiO2 (SiO2@CNTs), followed by grafting with 3-merraptnpropyltrimethnxysilane and oxidation with hydrogen peroxide to yield dual-modified CNTs (SSiO2@CNTs). The SSiO2@CNTs material is applied to prepared chitosan (CS) based composite proton exchange membranes by the incorporation of various content of SSiO2@CNTs, the structure and properties of as-prepared composite membranes are fully investigated. Compared to pristine CS membrane, the SSiO2@CNTs-filled composite membranes show improved thermal stability, mechanical stability, and methanol resistance, owing to the effective interface interaction and good compatibility between SSiO2@CNTs and CS matrix. Additionally, the doping of SSiO2@CNTs also generates a positive effect on the electrochemistry performance, due to the construction of abundant transport channel and providing more proton sources or proton sites. Particularly, the CS/SSiO2@CNTs-7 membrane exhibits tensile strength of about 40.1 MPa and proton conductivity of 35.8 mS cm−1 at 80 °C, which is almost 1.6 and 2.0 times higher than pure CS membrane, and lower methanol permeability of 0.9 × 10−6 cm2 s−1. The direct methanol fuel cell performance (DMFC) of CS/SSiO2@CNTs-7 membrane is also improved with open circuit voltage of 0.67 V and maximum power density of 60.7 mW cm−2 at 70 °C.  相似文献   

19.
A new type of membrane has been prepared for hyperfiltration (reverse osmosis) desalination that is essentially a very thin polyelectrolyte membrane. It is prepared by casting an aqueous solution of a polyelectrolyte, specifically poly(acrylic acid) (PAA), directly on one surface of a finely porous support membrane. In hyperfiltration tests, these composite membranes exhibit desalination performance comparable in dilute solutions to that observed with cellulose acetate membranes of the Loeb-Sourirajan type. The water flux through these membranes is linear in the pressure up to 100 atm. Salt rejection is a function of pressure; it is also a function of the concentration of the feed solution and the charge of the counterion, in qualitative agreement with the Donnan ion-exclusion mechanism. Typical long-term results range from water fluxes of 2 × 10?3 g/cm2-sec (50 gal/ft2-day) and 80% salt rejection to 0.2 × 10?3 g/cm2-sec (5 gal/ft2-day) and >99.5% salt rejection at 1500 psi with 0.3 wt-% NaCl. These membranes appear to be useful for brackish water desalination.  相似文献   

20.
A tubular ceramic‐based multilayer composite nanofiltration membrane has been developed for dye desalination. Poly(acrylic acid)(PAA)/poly(vinyl alcohol)(PVA)/glutaraldehyde(GA) was dynamically assembled on to the inner surfaces of tubular ceramic microporous substrates which had been pretreated using dynasylan ameo silane coupling agents. Subsequently, the composite membranes were thermally crosslinked to form covalent ester bonds. Experimental results proved that the composite membrane had good nanofiltration performance for dye desalination. The (GA/PVA/PAA)3/ceramic multilayer membrane shows over 96% retention of Congo red and less than 3% NaCl retention using a permeate flux of about 25 L/(m2·h). An investigation of membrane performance as a function of operating conditions suggested that the covalent crosslinking multilayer membrane possessed much higher stability compared to other, electrostatically assembled, multilayer membranes. © 2013 American Institute of Chemical Engineers AIChE J, 59: 3834–3842, 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号