首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
cDNA clones coding for hemoprotein H-450 were isolated from a rat liver cDNA library using anti-H-450 antibody. The molecular weight calculated from the deduced amino acid sequence comprising 547 amino acid residues was 60,085. The N-terminal sequence and a partial internal amino acid sequence of purified H-450, which were determined chemically, were both found in the amino acid sequence of H-450 deduced from the nucleotide sequence. H-450 mRNA is expressed in liver, kidney, and brain. A homology search of amino acid sequences indicated that H-450 shows no homology with cytochrome P-450, but shows significant homology with bacterial O-acetylserine (thiol)-lyases. However, H-450 has no O-acetylserine (thiol)-lyase activity.  相似文献   

2.
Cytochrome P450s of the 4A Subfamily in the Brain   总被引:2,自引:0,他引:2  
Abstract: Members of the P450 4A subfamily are key enzymes in the synthesis and degradation of metabolites of arachidonic acid, which are of physiological importance in the brain. In the rat, four members of this subfamily, 4A1, 4A2, 4A3, and 4A8, have been described. In this study, the expression of members of the 4A subfamily in the rat brain has been examined by PCR amplification, by western and northern blotting, and by protein N-terminal sequencing. With PCR all four members of the subfamily were detectable in the liver and kidney. P450 4A1 was found exclusively in the liver and kidney, whereas P450 4A2 was detectable in all the tissues tested, including the lung, seminal vesicles, prostate, cerebral cortex, hypothalamic preoptic area, cerebellum, and brainstem. The tissue distribution of P450 4A3 was similar to that of 4A2 except that it was not detectable in seminal vesicles. A P450 4A8-specific fragment was amplified from the kidney, liver, and prostate and weakly from the cerebral cortex but not from other brain regions. Despite the evidence of their presence by PCR, no members of the 4A family were detectable on northern blots with mRNA from the brain. On western blots a P450 4A-specific antiserum recognized a band in P450 fractions prepared from the brain. The intensity of the signal with 30 pmol of P450 from the brain was similar to that with 10 pmol of liver microsomal P450. The brain P450 was extracted from 1 g of brain, whereas the 10 pmol of liver P450 is the equivalent of 1 mg of liver. This suggests a brain content of 4A P450 that is 0.1% of that in the liver. N-terminal sequencing of the protein bands in the brain P450 fraction revealed the presence of both P450 4A8 and 4A3. These data show the presence in the brain of forms of P450 whose level of mRNA is too low to be detected on northern blots. The specificity of tissue distribution shows that this is not just a nonspecific background level of expression and suggests a role of brain P450 in the synthesis and degradation of arachidonic acid metabolites.  相似文献   

3.
Chromatography on 1.8-diaminooctyl-Sepharose and DEAE-Sephacel resulted in 4 fractions of cytochrome P-450 from liver microsomes of 3-methylcholanthrene-induced Wistar rats. All the four fractions differed in terms of their absorption maxima in the CO-reduced state, Mr and catalytic activity. Only one cytochrome fraction (cytochrome P-450 C) possessed a high activity upon benz(a)pyrene hydroxylation. All cytochrome P-450 forms were characterized by a low rate of aminopyrine N-demethylation. Antibodies against cytochrome P-450 C (P-448) (anti-P-448) were raised. Cytochromes of fractions A, B1 and B2 in the Ouchterlony reaction of double immunodiffusion did not give precipitation bands with anti-P-448. Neither of the four cytochrome P-450 forms interacted with the antibodies raised against cytochrome P-450 isolated from liver microsomes of rats induced with phenobarbital. The procedure developed is applicable to the isolation of multiple forms of cytochrome P-450 from liver microsomes of 3-methylcholanthrene-induced rats. Using rocket immunoelectrophoresis, cytochrome P-450 C possessing a high (as compared to benz(a)pyrene metabolism) activity (18 nmol/min/nmol cytochrome) and a high (60-70%) content in 3-methylcholanthrene-induced rat liver microsomes was shown to give a relatively high yield.  相似文献   

4.
The presence of cytochrome P-450 and associated mono-oxygenase activities was examined in brain microsomes from male and female mice. Although the cytochrome P-450 level in male mouse brain was very low as compared with mouse liver, the aminopyrine N-demethylase and morphine N-demethylase specific activities in male mouse brain were much higher than those observed in mouse liver. Ethoxycoumarin O-de-ethylase and aniline hydroxylase activities were, however, not detected in mouse brain. Sex-related differences were observed in both the cytochrome P-450 levels and aminopyrine N-demethylase activity in mouse brain, the levels of both being higher in male mouse brain as compared with female mouse brain. Aminopyrine N-demethylase activity in mouse brain microsomes was dependent on the presence of oxygen and NADPH and could be inhibited by piperonyl butoxide, N-octyl imidazole and carbon monoxide. Antiserum raised to the phenobarbital-inducible form of rat liver cytochrome P-450 [P-450(b+e)] inhibited mouse brain aminopyrine N-demethylase activity by around 80+ mouse brain microsomal protein exhibited cross-reactivity against this antiserum when examined by Ouchterlony double diffusion and immunoblotting. The present results indicate the presence of a phenobarbital-inducible form of cytochrome P-450 (or a form of cytochrome P-450 that is similar immunologically) in mouse brain microsomes, which is associated with a sex-related difference.  相似文献   

5.
(1) We evaluated the involvement of brain mitochondrial and microsomal cytochrome P-450 in the metabolization of known porphyrinogenic agents, with the aim of improving the knowledge on the mechanism leading to porphyric neuropathy. We also compared the response in brain, liver and kidney. To this end, we determined mitochondrial and microsomal cytochrome P-450 levels and the activity of NADPH cytochrome P-450 reductase. (2) Animals were treated with known porphyrinogenic drugs such as volatile anaesthetics, allylisopropylacetamide, veronal, griseofulvin and ethanol or were starved during 24 h. Cytochrome P-450 levels and NADPH cytochrome P-450 reductase activity were measured in mitochondrial and microsomal fractions from the different tissues. (3) Some of the porphyrinogenic agents studied altered mitochondrial cytochrome P-450 brain but not microsomal cytochrome P-450. Oral griseofulvin induced an increase in mitochondrial cytochrome P-450 levels, while chronic Isoflurane produced a reduction on its levels, without alterations on microsomal cytochrome P-450. Allylisopropylacetamide diminished both mitochondrial and microsomal cytochrome P-450 brain levels; a similar pattern was detected in liver. Mitochondria cytochorme P-450 liver levels were only diminished after chronic Isoflurane administration. In kidney only mitochondrial cytochrome P-450 levels were modified by veronal; while in microsomes, only acute anaesthesia with Enflurane diminished cytochrome P-450 content. (4) Taking into account that δ-aminolevulinic acid would be responsible for porphyric neuropathy, we investigated the effect of acute and chronic δ-aminolevulinic acid administration. Acute δ-aminolevulinic acid administration reduced brain and liver cytochrome P-450 levels in both fractions; chronic δ-aminolevulinic acid administration diminished only liver mitochondrial cytochrome P-450. (5) Brain NADPH cytochrome P-450 reductase activity in animals receiving allylisopropylacetamide, dietary griseofulvin and δ-aminolevulinic acid showed a similar profile as that for total cytochrome P-450 levels. The same response was observed for the hepatic enzyme. (6) Results here reported revealed differential tissue responses against the xenobiotics assayed and give evidence on the participation of extrahepatic tissues in porphyrinogenic drug metabolization. These studies have demonstrated the presence of the integral Phase I drug metabolizing system in the brain, thus, total cytochrome P-450 and associated monooxygenases in brain microsomes and mitochondria would be taken into account when considering the xenobiotic metabolizing capability of this organ. Dedicated to the memory of Dr. Susana Afonso  相似文献   

6.
Cytochrome c oxidase was isolated from rat liver either by affinity chromatography on cytochrome-c--Sepharose 4B or by chromatography on DEAE-Sepharose. Dodecyl sulfate gel electrophoresis of both preparations showed the same subunit pattern consisting of 13 different polypeptides. Kinetic analysis of the two preparations gave a higher Vmax for the enzyme isolated by chromatography on DEAE-Sephacel. Specific antisera were raised in rabbits against nine of the ten nuclear endoded subunits. A monospecific reaction of each antiserum with its corresponding subunit was obtained by Western blot analysis, thus excluding artificial bands in the gel electrophoretic pattern of the isolated enzyme due to proteolysis, aggregation or conformational modification of subunits. With an antiserum against rat liver holocytochrome c oxidase a different reactivity was found by Western blot analysis for subunits VIa and VIII between isolated cytochrome c oxidases from pig liver or kidney and heart or skeletal muscle. For a quantitative analysis of immunological differences a nitrocellulose enzyme-linked immunosorbent assay was developed. Monospecific antisera against 12 of the 13 subunits of rat liver cytochrome c oxidase were titrated with increasing amounts of total mitochondrial proteins from different rat tissues dissolved in dodecyl sulfate and dotted on nitrocellulose. The absorbance of a soluble dye developed by the second peroxidase-conjugated antibody was measured. From the data the following conclusions were obtained: (a) The mitochondrial encoded catalytic subunits I-III of cytochrome c oxidase are probably identical in all rat tissues. (b) All nine investigated nuclear encoded subunits of cytochrome c oxidase showed immunological differences between two or more tissues. Large immunological differences were found between liver, kidney or brain and heart or skeletal muscle. Minor but significant differences were observed for some subunits between heart and skeletal muscle and between liver, kidney and brain. (c) Between corresponding nuclear encoded subunits of cytochrome c oxidase from fetal and adult tissues of liver, heart and skeletal muscle apparent immunological differences were observed. The data could explain cases of fatal infantile myopathy due to cytochrome c oxidase deficiency.  相似文献   

7.
Earlier, we reported the isolation of a cytochrome P-450 highly active in prostaglandin A (PGA) omega-hydroxylation (PGA omega-hydroxylase) from rabbit kidney cortex, small intestine, and colon microsomes. In the present studies, the effects of peroxisomal proliferating agents on the PGA omega-hydroxylase have been examined. Administration of clofibrate or di(2-ethylhexyl)phthalate (DEHP) resulted in a significant increase in the PGA1 omega-hydroxylase activity of kidney cortex, liver, and small intestine microsomes. Similar findings were also obtained for laurate hydroxylase activity in kidney and liver microsomes. Kidney PGA omega-hydroxylase (designated cytochrome P-450ka) was isolated and highly purified from clofibrate- or DEHP-treated rabbits, with a yield 3 times higher than that from untreated, or phenobarbital- or 3-methylcholanthrene-treated rabbits. Cytochrome P-450ka from clofibrate- or DEHP-treated rabbits exhibited the same properties as those from untreated rabbits. Guinea pig antiserum against cytochrome P-450ka strongly inhibited the omega-hydroxylation of PGA1 by kidney cortex microsomes from clofibrate-treated rabbits. The PGA1 omega-hydroxylase activity of clofibrate-treated liver microsomes was also inhibited by this antiserum, suggesting that a PGA omega-hydroxylase immunochemically related to cytochrome P-450ka exists in liver microsomes.  相似文献   

8.
Four isozymes of cytochrome P-450 were purified to varying degrees of homogeneity from liver microsomes of cod, a marine teleost fish. The cod were treated with beta-naphthoflavone by intraperitoneal injection, and liver microsomes were prepared by calcium aggregation. After solubilization of cytochromes P-450 with the zwitterionic detergent 3-[(3-cholamidopropyl) dimethylammonio]-1-propansulfonate, chromatography on Phenyl-Sepharose CL-4B, and subsequently on DEAE-Sepharose, resulted in two cytochrome P-450 fractions. These were further resolved on hydroxyapatite into a total of four fractions containing different isozymes of cytochromes P-450. One fraction, designated cod cytochrome P-450c, was electrophoretically homogeneous, was recovered in the highest yield and constituted the major form of the isozymes. The relative molecular mass of this form (58 000) corresponds well with a protein band appearing in cod liver microsomes after treatment with beta-naphthoflavone. Both cytochrome P-450c and a minor form called cytochrome P-450d (56000) showed activity towards 7-ethoxyresorufin in a reconstituted system containing rat liver NADPH-cytochrome P-450 reductase and phospholipid. Differences between these two forms were observed in the rate and optimal pH for conversion of this substrate, and in optical properties. Rabbit antiserum to cod cytochrome P-450c did not show any cross-reactions with cod cytochrome P-450a (Mr 55000) or cytochrome P-450d in Ouchterlony immunodiffusion, but gave a precipitin line of partial identity with cod cytochrome P-450b (Mr 54000), possibly as a result of contaminating cytochrome P-450c in this fraction.  相似文献   

9.
Cysteine conjugate S-oxidase activity, with S-benzyl-L-cysteine as substrate, was found mostly in the microsomal fractions of rat liver and kidney. In the presence of oxygen and NADPH, S-benzyl-L-cysteine is converted to S-benzyl-L-cysteine sulfoxide; no S-benzyl-L-cysteine sulfone was detected. The Vmax for S-benzyl-L-cysteine sulfoxide formation by kidney microsomes was nearly 3-fold greater than the rate measured with liver microsomes. Inclusion of catalase, superoxide dismutase, glutathione, butylated hydroxyanisole, the peroxidase inhibitor, potassium cyanide, the cytochrome P-450 inhibitors, 1-benzylimidazole and metyrapone, or a monoclonal antibody to cytochrome P-450 reductase did not inhibit the metabolic reaction. Flavin-containing monooxygenase alternate substrates, N,N-dimethylaniline, n-octylamine, and methimazole inhibited the S-oxidase activities. Analogues of S-benzyl-L-cysteine, S-methyl-L-cysteine, and S-(1,2-dichlorovinyl)-L-cysteine inhibited the S-benzyl-L-cysteine S-oxidase activities, whereas S-carboxymethyl-L-cysteine and S-benzyl-L-cysteine methyl ester had no effect. These results provide clear evidence against the involvement of reactive oxygen intermediates or cytochrome P-450 in the sulfoxidation of S-benzyl-L-cysteine and indicate that the S-oxidase activities may be associated with flavin-containing monooxygenases which exhibit selectivity in the interaction with cysteine S-conjugates.  相似文献   

10.
Complementary DNA clones encoding the male-specific rat liver cytochrome P-450 g have been isolated by cross-hybridization with sequences from the female-specific rat liver cytochrome P-450 15 beta. Tissue distribution analysis indicates the liver as the organ with major expression of this cytochrome P-450 gene. Minimal P-450 g expression was also detected in prostate, kidney, heart, and brain. A developmental analysis reveals liver expression in the 8-week-old male and to a lesser extent in the 4-week-old male, but no detectable expression is seen in females of these ages or in 1- and 2-week-old rats from both sexes. Hypophysectomy of female rats dramatically increases hepatic expression of P-450 g, whereas continuous GH administration represses hepatic expression in male or female hypophysectomized rats. In similarity to P-450 15 beta and P-450 16 alpha, therefore, the cytochrome P-450 g gene in liver is GH regulated.  相似文献   

11.
Oxidative demethylation of dimethylnitosamine was studied with both reconstituted and unresolved liver microsomal cytochrome P-450 enzyme systems from rats and hamsters. Proteinase treatment of liver microsomal preparations yielded cytochrome P-450 particulate fractions. Both cytochrome P-450 and NADPH- cytochrome c reductase fractions were required for optimum demethylation activity. Particulate cytochrome P-450 fractions were more effecient than either Triton X-100- or cholatesolubilized preparations of these particles in demethylation activity with rat and hamster liver preparations appear to be due to differences in specificity in their cytochrome P-450 fractions.  相似文献   

12.
13.
Evaluation of ontogenetic expression of the cytochrome P450PCN and cytochrome P450b gene families as well as the NADPH-cytochrome P450 oxidoreductase and epoxide hydrolase genes in Holtzmann rats showed that basal levels of mRNAs encoding these enzymes could be detected in most tissues. Distinct developmental patterns of mRNA expression are evident for these four proteins in liver and extrahepatic tissues. Levels of cytochrome P450b-like mRNA were comparable in adult lung and liver, while cytochrome P450PCN-homologous mRNA exhibited low levels in lung and approximately 100-fold higher levels in liver. Cytochrome P450PCN-homologous mRNA also reached substantial levels in adult intestine, and was also present in placenta, where it increased approximately 4-fold 24 h before birth. Epoxide hydrolase mRNA was demonstrated to be highest in liver followed by kidney, lung, and intestine but was extremely low in brain. NADPH-cytochrome P450 oxidoreductase mRNA in kidney, lung, prostate, adrenal, and intestine exhibited levels comparable to that found in liver; however, the pattern of expression for oxidoreductase mRNA was unique in that levels declined at maturity in liver, kidney, and intestine but not in lung and brain. Development of mixed-function oxidase and epoxide hydrolase activities in liver was distinct from that in other tissues in that mRNAs for all four proteins rose dramatically after parturition. Testis from immature males demonstrated low levels of all the mRNAs assayed, which ranged from 20% (oxidoreductase) to less than 1% (cytochrome P450PCN and epoxide hydrolase) of the levels found in liver.  相似文献   

14.
With a high-resolving dodecyl sulfate electrophoretic system rat liver cytochrome c oxidase was separated into 13 different polypeptides. An antiserum against rat liver holocytochrome c oxidase immunoreacted with all 13 polypeptides, as demonstrated by immunofluorescence after transfer of the separated Coomassie blue-stained bands on nitrocellulose and coupling with FITC-protein A ("western blot"). Polypeptide-specific antisera reacted only with their corresponding polypeptides indicating that the various protein bands are represented by individual polypeptides. From total proteins of rat liver, kidney, heart, spleen and skeletal muscle mitochondria, only the cytochrome c oxidase polypeptides showed immunofluorescence with an antiserum against the rat liver holoenzyme. In contrast to the polypeptide from liver, polypeptide VIa from heart and skeletal muscle showed little or no reactivity, indicating a tissue-specificity of this polypeptide. Mitochondrial proteins from pig, bovine and blackbird heart were incubated with an antiserum against the rat liver holoenzyme. Immunoreaction was found with most cytochrome c oxidase polypeptides but not with polypeptide VIa. This result demonstrates less immunological relationship between tissue-specific polypeptides (VIa, VIIa and VIII) of the same species than between tissue-unspecific polypeptides of different species.  相似文献   

15.
1- Anti-liver/kidney microsome autoantibodies type 1 (anti-LKM1), observed in some children with chronic active hepatitis, were used to isolate their antigen in human liver microsomes. A protein, called P-LKM1 was thus purified. This protein was recognized by a rabbit antiserum directed against the related human cytochromes P-450 bufI and P-450 bufII. 2- A human liver microsomal protein immunoprecipitated with anti-LKM1 sera was also recognized by anti cytochromes P-450 bufI/II antibodies. 3- Anti-LKM1 antibodies potently inhibited microsomal bufuralol 1'-hydroxylation. These results displayed the possible identity between cytochrome P-450 bufI/II and LKM1 antigen.  相似文献   

16.
A new method was employed for the purification of cytochrome P-450 from rat liver microsomes. The purified cytochrome was essentially free from possible contaminants and the recovery and degree of purification were high. Although 15% of the original P-450 was recovered through the purification procedure used, only 0.8% of the total original microsomal ethanol oxidation activity was associated with this fraction. Addition of this purified fraction to other fractions isolated did not further stimulate ethanol oxidation. The component of rat liver microsomes that was found most efficient in the oxidation of ethanol was the mixture of catalase and NADPH - cytochrome c - reductase. It is concluded that highly purified cytochrome P-450 by itself does not oxidize ethanol to any appreciable degree.  相似文献   

17.
NADPH:cytochrome P-450 (c) reductase is a microsomal enzyme which is involved in the cytochrome P-450-dependent biotransformation of many exogenous agents as well as of some endogenous molecules. Using cytochromec as a substrate, the kinetic parameters of this enzyme were determined in brain microsomes. The comparison of the NADPH:cytochrome P-450 reductase's Vmax values and cytochrome P-450 contents in both fractions, suggests a role of cerebral NADPH:cytochrome P-450 reductase in cytochrome P-450 independent pathways. This is also supported by the different developmental pattern of brain enzyme as compared to the liver enzyme, and by the presence of a relatively high NADPH:cytochrome P-450 reductase activity in immature rat brain and neuronal cultures, while cytochrome P-450 was hardly detectable in these preparations. The enzyme activity was not induced by a phenobarbital chronic treatment neither in the adult brain nor in cultured neurons, suggesting a different regulation of the brain enzyme expression.  相似文献   

18.
Monoclonal antibodies have been raised to rat liver cytochromes P-450 b and c, and rabbit liver cytochrome P-450 form 4. A total of six antibodies have been studied. Each antibody reacted strongly both with its homologous antigen and with microsomal fractions selectively enriched with that antigen by treatment of animals with inducing compounds. However, several of the antibodies showed cross-reactivity, either within or between species. A combination of enzyme-linked immunosorbent assay, immunoadsorption, Western blotting and competitive radioimmunoassay revealed that each of the antibodies reacted with a different epitope. Proteolytic digestion of antigen followed by Western blotting of the peptide fragments enabled antibodies, otherwise identical in their reactivity, to be distinguished. It is concluded that complex structural relationships exist amongst the different isoenzymes of cytochrome P-450 and that epitope mapping will help in characterizing both animal and human cytochromes P-450.  相似文献   

19.
A new soluble cytochrome, designated as cytochrome b9, was purified to apparent homogeneity from rat liver. The absorption maximum of the oxidized (the native form) cytochrome b9 at room temperature was 413 nm. The dithionite-reduced cytochrome b9 had absorption maxima at 556, 527, and 423 nm. The prosthetic group of cytochrome b9 was identified as protoheme IX. From gel filtration experiments, the molecular weight of cytochrome b9 was estimated to be 125,000. Polyacrylamide gel electrophoresis experiments in the presence of sodium dodecyl sulfate showed that the molecular weight of its subunit was 61,000. The native form of cytochrome b9 was thus a dimer. The amount of heme/mol of dimer was 3.3 mol. Cytochrome b9 was autoxidizable and did not bind CO, 2.2 mM cyanide, or 2.2 mM azide. On the basis of its molecular weight of 125,000, the millimolar extinction coefficients of dimeric cytochrome b9 at 280 and 413 nm were 384 and 380, respectively. The absorbance at 280 nm/mg cytochrome b9 was 3.1. Cytochromes b9 and H-450 (I.-C. Kim and W.C. Deal (1976) Biochemistry 15, 4925-4930) are the only b-type, soluble cytochromes which have been isolated from mammalian liver; they are not found in tissues of heart, lung, kidney, and brain. The biological function of cytochrome b9 was not determined.  相似文献   

20.
Rabbits were immunized with cholinergic synaptic vesicles isolated from the electric organ of Torpedo marmorata. The resultant antiserum had one major antibody activity against an antigen called the Torpedo vesicle antigen. This antigen could not be demonstrated in muscle, liver or blood and is therefore, suggested to be nervous-tissue specific. The vesicle antigen was quantified in various parts of the nervous system and in subcellular fractions of the electric organ of Torpedo marmorata and was found to be highly enriched in synaptic vesicle membranes. The antigen bound to concanavalin A, thereby demonstrating the presence of a carbohydrate moiety. By means of charge-shift electrophoresis, amphiphilicity was demonstrated, indicating that the Torpedo vesicle antigen is an intrinsic membrane protein. The antigen was immunochemically unrelated to other brain specific proteins such as 14-3-2, S-100, the glial fibrillary acidic protein and synaptin. Furthermore, it was unrelated to two other membrane proteins, the nicotinic acetylcholine receptor and acetylcholinesterase, present in Torpedo electric organ. The antiserum against Torpedo synaptic vesicles did not react with preparations of rat brain synaptic vesicles or ox adrenal medullary chromaffin granules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号