首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
A 100-MHz bipolar operational amplifier has a gain of 100 dB. The op amp owes its high unity-gain bandwidth and high gain to an all-n-p-n signal path and multipath nested Miller compensation (MNMC). The phase margin with a 100-pF load is 40° at 100 MHz and the amplifier settles in 60 ns to 0.1% on a 1-V step. For comparison, a similar op amp without the multipath technique has been realized. The unity-gain bandwidth of this nested Miller compensation (NMC) op amp is 60 MHz and the settling time is 70 ns. Theory and measurements confirm that the multipath technique almost doubles the bandwidth of nested Miller compensated amplifiers  相似文献   

2.
A new multistage operational amplifier topology requires only N-2 embedded compensation networks for N gain stages. The compensation circuits do not load the output stage, and noninverting gain stages are not required as in previous multistage approaches. Consequently, high gain, wide bandwidth, fast slewing, and excellent power efficiency are achieved. A low-power resistance-capacitance compensation technique assures stability and fast settling over process, voltage, and temperature variations. Implemented in a 0.6-μm n-well CMOS process, a single ended three-stage prototype dissipates 6.9 mW at 3.0 V with 102 dB gain, 47 MHz bandwidth, and 69 V/μs average slew rate with 40 pF load  相似文献   

3.
In this paper, we present an AC-boosting compensation topology with double pole-zero cancellation (ACBC-DPZ) for a multistage amplifier driving a very large capacitive load. The proposed technique modifies the original AC-boosting compensation (ACBC) topology to increase the power-bandwidth efficiency and reduce the size for the output power transistor and compensation capacitor. Simulation results show that the ACBC-DPZ amplifier using a CSM 0.18 μm CMOS process can achieve a unity gain bandwidth of 14 MHz and an average slew rate of 3.88 V/μs at 1500 pF load. The amplifier dissipates 2.55 mW at a 1.8 V supply.  相似文献   

4.
A high-frequency fully differential BiCMOS operational amplifier design for use in switched-capacitor circuits is presented. The operational amplifier is integrated in a 3.0-GHz, 2-μm BiCMOS process with an active die area of 1.0 mm×1.2 mm. This BiCMOS op amp offers an infinite input resistance, a DC gain of 100 dB, a unity-gain frequency of 90 MHz with 45° phase margin, and a slew rate of 150 V/μs. The differential output range is 12 V. The circuit is operated from a ±5-V power supply and dissipates 125 mW. The op amp is unity-gain stable with 7 pF of capacitive loading at each output. The op amp is a two-stage, pole-split frequency compensated design that uses a PMOS input stage for infinite input resistance and an n-p-n bipolar second stage for high gain and high bandwidth. The frequency compensation network serves both the differential- and common-mode amplifiers so the differential- and common-mode amplifier dynamics are similar. A dynamic switched-capacitor common-mode feedback scheme is used to set the output common-mode level of the first and second stages  相似文献   

5.
A bipolar operational amplifier (op amp) with a rail-to-rail multipath-driven output stage that operates at supply voltages down to 1 V is presented. The bandwidth of this output stage is as high as possible, viz, equal to that of one of the output transistors, loaded by the output capacitance. The output voltage can reach both supply rails within 100 mV and the output current is ±15 mA. The op amp is designed to be loaded by a 100-pF capacitor and the unity-gain bandwidth is 3.4 MHz at a 60° phase margin. The voltage gain is 117 dB and the CMRR is 100 dB. The frequency behavior of the multipath-driven (MPD) topology has an improved performance when compared to that of previously presented low-voltage output stages. A figure of merit FM for low-voltage op amps has been defined as the bandwidth-power ratio  相似文献   

6.
介绍了一种适于 VLSI库单元的轨到轨 (Rail-to-Rail)运算放大器。低电压、低功耗、输入输出动态幅度达到 Rail-to-Rail的运放模块是研究的核心。文章分析了该运放模块的输入、输出级 ,并分析了 cascodedMiller频率补偿技术。芯片采用新加坡特许半导体制造公司 0 .6μm N阱 CMOS工艺 ,芯片面积 0 .0 2 4mm2 。测试结果表明 :该运放模块在 3 V工作电压下直流增益 90 d B,共模输入范围 -0 .4~ 4V,输出动态范围 0~ 2 .9V,单位增益带宽 7MHz,相位裕量 70°,静态功耗仅有 0 .3 m W,特别适合作为 VLSI的库单元  相似文献   

7.
A novel damping-factor-control frequency compensation (DFCFC) technique is presented in this paper with detailed theoretical analysis, This compensation technique improves frequency response, transient response, and power supply rejection for amplifiers, especially when driving large capacitive loads, Moreover, the required compensation capacitors are small and can be easily integrated in commercial CMOS process. Amplifiers using DFCPC and nested Miller compensation (NMC) driving two capacitive loads, 100 and 1000 pF, were fabricated using a 0.8-μm CMOS process with Vtn=0.72 V and Vtp=-0.75 V. For the DFCFC amplifier driving a 1000-pF load, a 1-MHz gain-bandwidth product, 51° phase margin, 0.33-V/μs slew rate, 3.54-μs settling time, and 426-μW power consumption are obtained with integrated compensation capacitors. Compared to the NMC amplifier, the frequency and transient responses of the DFCFC amplifier are improved by one order of magnitude with insignificant increase of the power consumption  相似文献   

8.
A dual-path amplifier topology with dual-loop parallel compensation technique is proposed for low-power three-stage amplifiers. By using two parallel high-speed paths for high-frequency signal propagation, there is no passive capacitive feedback network loaded at the amplifier output. Both the bandwidth and slew rate are thus significantly improved. Implemented in a 0.6-/spl mu/m CMOS process, the proposed three-stage amplifier has over 100-dB gain, 7-MHz gain-bandwidth product, and 3.3-V//spl mu/s average slew rate while only dissipating 330 /spl mu/W at 1.5 V, when driving a 25-k/spl Omega///120-pF load. The proposed amplifier achieves at least two times improvement in bandwidth-to-power and slew-rate-to-power efficiencies than all other reported multistage amplifiers using different compensation topologies.  相似文献   

9.
An amplifier design approach is presented which is based on an all region MOS transistor model. Low power analogue circuits are designed using the presented approach. For illustrative purposes a nested transconductance-capacitance compensated (NGCC) operational amplifier is designed. Verification was carried out using a CMOS chip prototype which yields an op-amp with 105 dB gain, a 1.05 MHz gain-bandwidth product, 0.28 mW power consumption and 0.137 mm2 active area for a 2 V supply voltage and 10 kΩ/20pF load  相似文献   

10.
An operational amplifier has been designed and fabricated using GaAs MESFETs. This amplifier is a general-purpose monolithic GaAs op amp designed as as a stand-alone component. The amplifier has a differential input, an open-loop gain in excess of 60 dB, and is internally compensated. The high open-loop gain (60 dB at 100 kHz) was achieved by using gain stages with positive feedback. The op amp incorporates a current-mirror level-shifting stage which allows the op amp to operate over a wide power-supply range (/spl plusmn/5-9 V). Previous designs have diodes to achieve level shifting, a practice that precludes operation over a wide supply range. This op amp is a true analog to its silicon counterparts, but it has a higher gain-bandwidth product.  相似文献   

11.
结合精确度和稳定性的要求提出了一种适合宽范围电容负载的CMOS运放.在多径嵌套式密勒补偿结构中加入一个抑制电容得到适合各种电容负载的稳定性.为了证实稳定性的提高对该结构进行了理论分析并计算得出数学表达式.基于这种新的频率补偿结构,利用CMOS 0.7μm工艺模型设计了样品芯片.测试结果表明:该运放可以驱动从100pF到100μF负载电容,直流增益为90dB,最小相位裕度为26°;该运放在100pF负载情况下单位增益带宽为1MHz,使用抑制电容仅为18pF.  相似文献   

12.
An active-feedback frequency-compensation (AFFC) technique for low-power operational amplifiers is presented in this paper. With an active-feedback mechanism, a high-speed block separates the low-frequency high-gain path and high-frequency signal path such that high gain and wide bandwidth can be achieved simultaneously in the AFFC amplifier. The gain stage in the active-feedback network also reduces the size of the compensation capacitors such that the overall chip area of the amplifier becomes smaller and the slew rate is improved. Furthermore, the presence of a left-half-plane zero in the proposed AFFC topology improves the stability and settling behavior of the amplifier. Three-stage amplifiers based on AFFC and nested-Miller compensation (NMC) techniques have been implemented by a commercial 0.8-/spl mu/m CMOS process. When driving a 120-pF capacitive load, the AFFC amplifier achieves over 100-dB dc gain, 4.5-MHz gain-bandwidth product (GBW) , 65/spl deg/ phase margin, and 1.5-V//spl mu/s average slew rate, while only dissipating 400-/spl mu/W power at a 2-V supply. Compared to a three-stage NMC amplifier, the proposed AFFC amplifier provides improvement in both the GBW and slew rate by 11 times and reduces the chip area by 2.3 times without significant increase in the power consumption.  相似文献   

13.
This article discusses the composite cascode stage, both single-ended and differential, operating in the weak inversion or moderate inversion region. The gain of the MOS composite cascode differential stage can exceed 100,000?V/V, a figure that has never been reported in the literature. For low-frequency applications, this configuration can be used to fabricate op amps that have high-gain, low-power and low-nonlinear distortion. Two different architectures, both having two gain stages are reported. The first op amp uses the Widlar architecture to achieve a gain of 117?dB, a power dissipation of 110?µW and uses a compensation capacitor of only 3.5?pF. The second op amp uses a class AB stage for the second and final stage and utilises the parasitic capacitance at the output of the first stage for compensation. This self-compensating op amp has a gain of 110?dB and a power dissipation of 21?µW.  相似文献   

14.
Multistage amplifiers are urgently needed with the advance in technology, due to the fact that single-stage cascode amplifier is no longer suitable in low-voltage designs. Moreover, the short-channel effects of the sub-micro CMOS transistor cause output-impedance degradation and hence the gain of an amplifier is reduced dramatically[1~6]. For multistage amplifiers, most of the compensation methods are based on pole splitting and pushing the right-half-plane zero to high frequencies or pole-ze…  相似文献   

15.
A study is made of the integrated circuit operational amplifier (IC op amp) to explain details of its behavior in a simplified and understandable manner. Included are analyses of thermal feedback effects on gain, basic relationships for bandwidth and slew rate, and a discussion of pole-splitting frequency compensation. Sources of second-order bandlimiting in the amplifier are also identified and some approaches to speed and bandwidth improvement are developed. Brief sections are included on new JFET-bipolar circuitry and die area reduction techniques using transconductance reduction.  相似文献   

16.
A multistage operational transconductance amplifier with a feedforward compensation scheme which does not use Miller capacitors is introduced. The compensation scheme uses the positive phase shift of left-half-plane (LHP) zeroes caused by the feedforward path to cancel the negative phase shift of poles to achieve a good phase margin. A two-stage path increases further the low frequency gain while a feedforward single-stage amplifier makes the circuit faster. The amplifier bandwidth is not compromised by the absence of the traditional pole-splitting effect of Miller compensation, resulting in a high-gain wideband amplifier. The capacitors of a capacitive amplifier using the proposed techniques can be varied more than a decade without significant settling time degradation. Experimental results for a prototype fabricated in an AMI 0.5-/spl mu/m CMOS process show DC gain of around 90 dB and a 1% settling time of 15 ns for a load capacitor of 12 pF. The power supply used is /spl plusmn/1.25 V.  相似文献   

17.
提出了一种新的用于低功耗,节省面积的三级放大器频率补偿技术.该技术将有源电容进行嵌套连接从而克服了传统的嵌套式密勒补偿与反嵌套式密勒补偿的缺点.当将这一技术用标准的0.35μm工艺设计成电路并负载150pF电容时,放大器实现了105dB直流增益,3.3M的增益带宽积,68°相位裕度以及2.56V/μs的平均转换速率.而这一切的实现是在2V电源电压仅消耗40μW的功耗以及使用了很小的补偿电容.  相似文献   

18.
A fast-settling CMOS op amp for SC circuits with 90-dB DC gain   总被引:4,自引:0,他引:4  
A technique that combines the high-frequency behavior of a single-stage op amp with the high DC gain of a multistage design is presented. This technique is based on the concept that a very high DC gain can be achieved in combination with any unity-gain frequency achievable by a (folded-) cascode design. Bode-plot measurements for an op amp realized in a 1.6-μm process show a DC gain of 90 dB and a unity-gain frequency of 116 MHz (16-pF load). Settling measurements with a feedback factor of 1/3 show a fast single-pole settling behavior corresponding to a closed-loop bandwidth of 18 MHz (35-pF load) and a settling accuracy better than 0.03%. This technique does not cause any loss in output voltage swing. At a supply voltage of 5.0 V an output swing of about 4.2 V is achieved without loss in DC gain. The above advantages are achieved with a 30% increase in chip area and a 15% increase in power consumption  相似文献   

19.
A 1-GHz operational amplifier with a gain of 76 dB while driving a 50-Ω load is presented. The equivalent input noise voltage is as low as 1.2 nV/√Hz. This combination of extremely high bandwidth, high gain, and low noise is the result of a three-stage all-n-p-n topology combined with a multipath nested Miller compensation. Using 10-GHz fT n-p-n transistors, the realizable bandwidth could be of the order of 2-3 GHz. However, bond-wire inductances restrict the useful bandwidth to 1 GHz. The amplifier occupies an active area of 0.26 mm2 and has been realized in the bipolar part of a 1-μm BiCMOS process  相似文献   

20.
A new technique for designing uniform multistage amplifiers (MAs) for high-frequency applications is introduced. The proposed method uses the multi-peak bandwidth enhancement technique while it employs identical, simple and inductorless stages. The intrinsic capacitances within transistors are exploited by the active negative feedbacks to expand the bandwidth. While all stages of the proposed MA topology are identical, the gain-bandwidth product can be extended several times. Using the proposed topology, a six-stage amplifier in TSMC 0.35-mum CMOS process was designed. Measurement results show that the gain can be varied between 16 and 44 dB within 0.7-3.2-GHz bandwidth with less than 5.2-nV /radicHz noise. Die area of the amplifier is 175 mum times 300 mum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号