首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
High cycle fatigue properties of 2124 aluminum alloy plates with different thickness were investigated by determining fatigue S?N curves, fatigue crack growth rates and fracture toughness of 2124‐T851 aluminum alloy plates with the thickness of 30 mm, 40 mm and 55 mm, respectively. Fatigue fracture behaviors of alloy plates were also analyzed and discussed using scanning electron microscope morphology observation, energy spectrum analysis, X‐ray diffraction phase analysis and transmission electron microscopy observation in this paper. The results indicate that plate thickness affects the comprehensive fatigue properties of 2124 aluminum alloy plates. Thinner plate achieves better comprehensive fatigue properties. Due to the different amount of deformation during hot rolling, the variation of microstructure of alloy plates with different thickness mainly concentrates on the difference of grain sizes, substructure and volume fraction of grain boundaries. The thinner the plate, the smaller the grain sizes and therefore the thinner plate produces a higher volume fraction of grain boundaries and substructure, and a greater resistance to fatigue crack growth, thus thinner plate exhibits better fatigue properties.  相似文献   

2.
目的 对0.8 mm厚的Ti6Al4V钛合金和2 mm厚的AA6060铝合金薄板进行脉冲激光焊接,分析异种轻合金激光焊接裂纹产生的机理及界面结合机理。方法 采用扫描电镜、EDS能谱以及显微硬度计等微观表征分析方法,对焊接接头的形貌特征、成分以及显微硬度进行分析,探索焊接接头处裂纹产生的原因。结果 钛/铝脉冲激光焊接性较差,接头存在严重的裂纹缺陷,裂纹多集中在焊缝与铝母材交界处以及焊缝中心区域位置,主要以热裂纹为主;接头焊缝可能存在大量的Ti-Al金属间化合物以及少量未熔的钛,其界面层主要成分推测为层状TiAl和外层锯齿状的TiAl3;接头整个焊缝区域的平均显微硬度为HV0.1420,其硬度水平远远高于焊缝两侧铝合金母材,也高出钛合金母材很多。结论 钛铝金属间化合物使钛铝焊接接头焊缝区脆性增大,另外接头焊缝区存在较大的组织应力、热应力、拉压应力、拘束应力等复杂应力,致使焊缝内存在较严重的裂纹缺陷。  相似文献   

3.
H.T. Zhang  J.Q. Song 《Materials Letters》2011,65(21-22):3292-3294
Dissimilar material welding between 1 mm-thick magnesium and aluminum alloy plates in lap form was performed using the MIG process with zinc foil as the interlayer material. The zinc foil acted as a barrier layer that restrained reactions between the aluminum and magnesium atoms, and a crack-free lap joint of dissimilar materials was obtained. The interfacial layer between the fusion zone and the unmelted magnesium substrate was mainly composed of Mg–Zn binary intermetallic compounds. The tensile strength of the lap joint was 64 MPa, and a fracture occurred at the interface between the fusion zone and the unmelted magnesium alloy.  相似文献   

4.
Dissimilar materials of H220YD galvanised high strength steel and 6008-T66 aluminium alloy were welded by means of median frequency direct current resistance spot welding with employment of 4047 AlSi12 interlayer. Effects of interlayer thickness on microstructure and mechanical property of the welded joints were studied. The welded joint with interlayer employed could be recognised as a brazed joint. The nugget diameter had a decreased tendency with increasing thickness of interlayer under optimised welding parameters. An intermetallic compound layer composed of Fe2(Al,Si)5 and Fe4(Al,Si)13 was formed at the interfacial zone in the welded joint, the thickness and morphology of which varying with the increase of interlayer thickness. Reaction diffusion at the steel/aluminium interface was inhibited by introduction of silicon atoms, which restricted growth of Fe2(Al,Si)5. Tensile shear load of welded joints experienced an increased tendency with increasing interlayer thickness from 100 to 300 μm, and the maximum tensile shear load of 6.2 kN was obtained with interlayer thickness of 300 μm, the fractured welded joint of which exhibiting a nugget pullout failure mode.  相似文献   

5.
Friction stud welding is a promising technique in many applications related to oil and gas industries. It is used to attach grating to offshore oil platforms in areas where arc welding is not permitted because of the risk of causing a fire or explosion. Attachment of anodes inside seawater discharge pipelines in a gas processing plant is performed by this process. This solid state joining process permits metal combinations such as welding of aluminum studs to steel which would be problematic with arc welding because of the formation of thick and brittle inter-metallic compounds. In the present work, AA 6063 is joined to AISI 1030 steel using friction stud welding machine. Properties that are of interest to manufacturing applications such as Young’s modulus, longitudinal velocity, bulk modulus and shear modulus are evaluated by means of an ultrasonic flaw detector. At the interface of the joint, there is an increase of 4.4%, 1.8%, 1.15% and 4.42% is observed for the properties Young’s modulus, longitudinal velocity, bulk modulus and shear modulus respectively. This is due to the formation of intermetallic compound and increase in hardness at the interfacial region. Energy Dispersive X-ray analysis confirms the presence of FeAl as the intermetallic compound. Scanning Electron Microscope evaluation shows the presence of an unbound zone at the center of the inner region which is due to the minimum rotational speed and low axial load experienced at that point. In the unbound zone, there is an incomplete bond between dissimilar metals and it is detrimental to joint strength. Optimum value of friction time and usage of pure aluminum interlayer during the friction stud welding process hinders the formation of unbound zone and enhances the quality of AA 6063/AISI 1030 joints. The tensile strength of AA 6063/AISI 1030 joint was found to be 36.64% and 78.15% lower than that of AA 6063 and AISI 1030 respectively. Reasons for lower joint strength are attributed to low frictional pressure, non-optimal rotational speed and friction time, improper mechanical mixing, presence of oxide layer and formation of brittle intermetallic compound at the joint interface.  相似文献   

6.
Infrared brazing Inconel 601 and 422 stainless steel using the 70Au-22Ni-8Pd braze alloy is performed in the experiment. The brazed joint is primarily comprised of Au-rich and Ni-rich phases, and there is no interfacial intermetallic compound observed in the joint. The (Ni,Fe)-rich phase is observed at the interface between 422SS and the braze alloy, and the Ni-rich phase is found at the interface between the braze alloy and IN601. With increasing the brazing temperature and/or time, the microstructures of the brazed joint is coarsened. For the infrared brazed joint at 1050C for 180 s shows the highest average shear strength of 362 MPa. In contrast, the shear strength of the infrared brazed joint is higher than that of the furnace brazed specimen due to coarsening of the microstructure in the furnace brazed joint.  相似文献   

7.
目的探究搅拌摩擦辅助铆接铝/钢接头界面的结合特征,解决传统铆接力学性能较低的问题。方法采用搅拌摩擦焊技术实现了对3mm厚不锈钢板和4mm厚的铝合金板的搭接点焊,采用OM及SEM对铝/钢接头界面结合情况进行分析,并利用EDS对界面处元素分布进行分析。结果搅拌头转速1180 r/min、焊接时间120 s、下压量0.2 mm时,铝/钢接头界面结合较好,平均拉剪力达到6519 N,且在铝/钢界面处产生FeAl金属间化合物。受摩擦热作用的影响,位于下板的铝母材晶粒发生长大变粗,铝铆钉与铝板结合紧密,铝铆钉与铝板的结合情况受搅拌头压力的影响更为显著。结论搅拌摩擦辅助铆接铝/钢异种合金,实现了铆钉与铝板和钢板的有效冶金结合,在铝钢结合界面处存在原子的互扩散现象,且有相应的金属间化合物生成。  相似文献   

8.
In order to explore a new method for the explosive welding of aluminum alloy to steel, a 5083 aluminum alloy plate and a Q345 steel plate with dovetail grooves were respectively employed as the flyer and base plates. The parameters adopted in the explosive welding experiment were close to the lower limit of weldable window of 5083 aluminum alloy to Q345 steel. The bonding properties of 5083/Q345 clad plate were studied through mechanical performance tests and microstructure observations. The results showed that the aluminum alloy and steel plates were welded under the actions of metallurgical bonding and meshing of dovetail grooves. The tensile shear strength of 5083/Q345 clad plate met the requirements of the bonding strength of Al/Fe clad plate. The interfaces between aluminum alloy and the upper and lower surfaces of dovetail grooves were mainly welded through direct bonding, and discontinuous molten zone emerged in the local region; while the interface between aluminum alloy and the inclined surface of dovetail grooves was bonded by continuous molten layer. The brittle intermetallic compounds FeAl2 and Al5Fe2 were generated at the bonding interfaces of 5083/Q345 clad plate. The fracture surface of the tensile specimen exhibited ductile and quasi-cleavage fractures.  相似文献   

9.
通过设计不同的爆炸焊接工艺参数爆炸复合了铝合金-钢爆炸复合板,并对复合板的界面性能进行了显微分析和力学性能测试,探讨了爆炸焊接装药量对复合板界面性能的影响。结果表明:在铝合金-钢复合板的的结合界面产生了一层金属间化合物并且在化合物中产生了许多微裂纹。随着装药量的增加,界面化合物的厚度略有增加,其上微裂纹的的数量也有所增加。复合界面的剪切强度随着装药量的增加而有所降低。界面化合物对复合板强度产生不利影响,铝合金-钢爆炸焊接时应尽量采用小药量。  相似文献   

10.
目的 采用搅拌摩擦焊,对比分析大气环境和水下环境下铝/铜接头的组织与性能,以期获得力学性能更优异的铝/铜焊接接头。方法 利用搅拌摩擦焊,在焊接速度为40 mm/min、旋转速度为1 000 r/min的条件下,分别在大气环境和水下环境下对厚度为9 mm的6061铝合金板和T2纯铜板进行焊接。然后,对铝/铜界面、焊核区进行扫描电镜及能谱分析,并对铝/铜界面及焊核区进行物相分析,确定产物相组成。最后,对铝/铜试样进行拉伸及硬度检测。结果 铝/铜接头均无裂纹、气孔等缺陷。铜颗粒弥散分布在焊核区,铝/铜界面形成金属间化合物层。水下搅拌摩擦焊下界面元素扩散距离明显变短,且金属间化合物厚度更薄。铝/铜接头的金属间化合物为AlCu和Al4Cu9。大气环境焊接下接头的抗拉强度为130.6 MPa,断裂方式为脆性断裂;水下焊接下接头的抗拉强度为199.5 MPa,断裂方式为韧性断裂。水下环境下的接头硬度值更高,其中热影响区的硬度最低值约为65HV。结论 水下搅拌摩擦焊铝/铜接头无裂纹、气孔等缺陷。组织上,水下搅拌摩擦焊的铝/铜接头界面元素扩散距离更短,硬脆的金属间化合物更少;性能上,水下搅拌摩擦焊的铝/铜接头强度更高,抗拉强度达到199.5 MPa,达到母材的74.4%。  相似文献   

11.
目的消减预拉伸铝板内部残余应力。方法利用短波长X射线衍射仪(SWXRD),分别对某公司国产25 mm厚2024-T351预拉伸铝板,以及美国铝业公司(ALCOA)20 mm厚7075-T651预拉伸铝板的内部残余应力、内部织构及其沿板厚的分布,进行了无损测定。结果 ALCOA的20mm厚7075预拉伸铝板内部残余应力小于25 MPa,其内部晶粒取向沿板厚均匀分布;而某公司原工艺生产的25 mm厚2024预拉伸铝板,内部残余应力高达100 MPa左右,其内部晶粒取向沿板厚分布很不均匀。结论源自于轧制的内部织构沿板厚分布的不均匀性,使得以消减残余应力为目的的预拉伸处理中的铝板塑性变形不均匀,导致某公司国产预拉伸铝板内部残余应力的消减效果差,在其后续加工中容易产生加工变形超差的问题,需要抑制强剪切织构的产生,减小织构在整个板材厚度上的不均匀分布程度。  相似文献   

12.
Spherical indentation of ceramic coatings with metallic interlayer was performed by means of axisymmetric finite element analysis (FEA). Two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel were considered. Various combinations of indenter radius-coating thickness ratios and interlayer thickness-coating thickness ratios were used in the modeling. The effects of the interlayer, the coating and the substrate on the indentation behavior, such as the radial stress distribution along the coating surface as well as the coating interface, and the plastic deformation zone evolution in the substrate were investigated in connection with the above mentioned ratios. The coating cracking dominant modes were also discussed within the context of the peak tensile stresses on the coating surface and on the coating interface.  相似文献   

13.
Spherical indentation of ceramic coatings with metallic interlayer was performed by means of axisymmetric finite element analysis (FEA). Two typical ceramic coatings with relatively high and low elastic modulus deposited on aluminum alloy and carbon steel were considered. Various combinations of indenter radius-coating thickness ratios and interlayer thickness-coating thickness ratios were used in the modeling. The effects of the interlayer, the coating and the substrate on the indentation behavior, such as the radial stress distribution along the coating surface as well as the coating interface, and the plastic deformation zone evolution in the substrate were investigated in connection with the above mentioned ratios. The coating cracking dominant modes were also discussed within the context of the peak tensile stresses on the coating surface and on the coating interface.  相似文献   

14.
目的 研究金属薄板在剪切变形条件下的随动硬化行为。方法 设计一款金属薄板循环剪切变形试验夹具,对夹具的强度进行数值仿真校核。采用该夹具进行5052铝合金板的循环剪切试验,通过数字图像相关测量系统对剪切应变进行跟踪测量,对变形区剪切变形的均匀性进行分析,对5052铝合金的循环剪切应力应变曲线所表现出的包辛格效应进行讨论。结果 该夹具满足强度要求,剪切变形区的剪切应变与等效应变比值非常稳定,5052铝合金板的正向剪切强度与反向剪切强度不同,在3.97%和7.1%剪切应变时,包辛格效应系数分别为0.328和0.51。结论 所设计的夹具可以有效实现剪切变形,剪切应变分布均匀;试验所用的5052铝合金具有显著的包辛格效应。  相似文献   

15.
Friction Stir Weldabilities of AA1050-H24 and AA6061-T6 Aluminum Alloys   总被引:1,自引:0,他引:1  
The friction stir weldabilities of the strain-hardened AA1050-H24 and precipitate-hardened AA6061-T6 aluminum alloys were examined to reveal the effects of material properties on the friction stir welding behavior. The experimental results are obtlained. (1) For AA1050-H24, the weld can possess smoother surface ripples; there is no elliptical weld nugget in the weld; there is no discernible interface between the stir zone and the thermomechanically affected zone; and the internal defect of the weld looks like a long crack and is located in the lower part of the weld. (2) For AA6061-T6, the weld usually possesses slightly rougher surface ripples; an elliptical weld nugget clearly exists in the weld; there are discernible interfaces among the weld nugget, thermomechanically affected zone and heat affected zone; and the internal defect of the weld is similar to that of the AA1050-H24 weld. (3) The effective range of welding parameters for AA1050-H24 is narrow, while the one for AA6061-T6 is very wide. (4) T  相似文献   

16.
Horizontal twin‐roll casting technology was successfully introduced to produce high‐performance copper/aluminum (Cu/Al) laminated composites. The interface morphology, electrical properties and peeling strength after different annealing and cold rolling processes were investigated and contrasted with Cu/Al clad plates fabricated by conventional methods. The results show that sound metallurgical bonding between the copper and aluminum matrix can be attained after the horizontal twin‐roll casting processes and Al2Cu is the only intermetallics at the interfacial region, the thickness of interfacial interlayer is about 0.7 μm. The peeling strength is 31.4 N/mm and can be further increased to 37.1 N/mm after annealing at 250 °C. However, higher temperature like 400 °C will cause the excessive growth of intermetallics so that peeling strength sharply decreases to 9.2 N/mm. Electrical conductivity of the clad plate is 51 MS/m. At the same electrical current intensity, the temperature‐rise of the composite plate is between the pure copper plate and the aluminum plate, and closer to the copper plate. All of the properties are outstanding than that of Cu/Al clad plate fabricated by conventional methods.  相似文献   

17.
采用电子束焊接方法对厚度为2.5 mm的Ti6321钛合金板材和5083铝合金板材进行了对接焊接试验,并进行了力学性能、显微组织测试。结果表明,焊缝的钛侧及其热影响区组织主要是α'相和原始α相混合形成的马氏体组织,铝侧主要为粗大柱状晶组织,钛铝焊缝交界处析出少量Ti Al金属间化合物;焊接接头的拉伸强度约为219 MPa,接头断裂位置主要在铝侧焊缝位置,部分在钛铝两侧焊缝交界处的Ti-Al金属间化合物上。  相似文献   

18.
The joint interface of Mg alloy to steel with Ni interlayer was investigated. Comparing with that without any interlayer, the joint shear strength was improved significantly. The characterization of interfaces in the joint with Ni interlayer was analyzed and discussed. The results show that the formation of intermetallic compound Mg2Ni and solid solution of Ni in Fe at the interface altered the bonding mode of joints which contributed to the increase of the tensile shear strength in contrast to the direct joining of Mg alloy to steel. Owing to the addition of Ni interlayer, the conclusion is that the bonding mode of Mg alloy to steel from mechanical bonding to semi-metallurgical joining.  相似文献   

19.
Dissimilar Mg alloy and Q235 steel lap joints are produced by Laser‐ tungsten inert gas (TIG) hybrid welding with Ni as an interlayer. Fe and Ni are joined together in the form of solid solution, while Mg alloy and Ni foil are joined together by intermetallic compound Mg2Ni. During tensile testing, the joints fail at the interface between Ni foil and Mg alloy. The shear strength of the Mg/Steel joints with Ni as interlayer is 170 MPa, which is higher than that without interlayer 120MPa.  相似文献   

20.
The interfacial reactions between various molten metals and solid plates were investigated in this diffusion couple study. The molten metals were pure magnesium, pure aluminium, aluminium-rich Al-Mg alloy, and aluminium-rich Al-Cu alloys, and the solid plates were pure nickel plate, alumina plate, and nickel-plated alumina plate. The interfacial reactions in the diffusion couples were determined by using optical microscopy, scanning electron microscopy and electron probe microanalysis in regard to the formation of intermetallic phases, the dissolution rates of the nickel plates, and the morphology of the interfaces. Mg2Ni phase was found in the pure Mg/Ni plate diffusion couples, and the Al3Ni and Al3Ni2 phases were observed in the pure Al/Ni plate and Al-alloys/Ni plate diffusion couples. In the Al-Cu alloy/Ni-plated alumina plate diffusion couple, Al2O3 formed at the interface, while spinel particles were found in the diffusion couples of Al-7.4wt% Mg alloy/Ni-plated alumina plate. Experimental difficulty was encountered in preparing the diffusion couples with alumina plate, and a gap existing at the interface prohibited reactions between the molten metal with alumina plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号