首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 553 毫秒
1.
The supersonic nozzle is the most important device of an ejector-diffuser system.The best operation condition and optimal structure of supersonic nozzle are hardly known due to the complicated turbulent mixing,compressibility effects and even flow unsteadiness which are generated around the nozzle extent.In the present study,the primary stream nozzle was redesigned using convergent nozzle to activate the shear actions between the primary and secondary streams,by means of longitudinal vortices generated between the Chevron lobes.Exactly same geometrical model of ejector-diffuser system was created to validate the results of experimental data.The operation characteristics of the ejector system were compared between Chevron nozzle and conventional convergent nozzle for the primary stream.A CFD method has been applied to simulate the supersonic flows and shock waves inside the ejector.It is observed that the flow structure and shock system were changed and primary numerical analysis results show that the Chevron nozzle achieve a positive effect on the supersonic ejector-diffuser system performance.The ejector with Chevron nozzle can entrain more secondary stream with less primary stream mass flow rate.  相似文献   

2.
The latest results of an ongoing coordinated experimental and computational program on the design and performance of a novel supersonic rotor-vane/pressure-exchange ejector for thermally driven ejector refrigeration systems are presented. For the supersonic rotor-vane/pressure-exchange ejector, careful management of the entropy rise through the oblique shocks and boundary layers is required for obtaining an advance in ejector performance. Since the invention of this new ejector is quite recent, understanding its aerodynamics, with the consequent optimization of performance, is in the formative stage. This paper shows how the supersonic aerodynamics is managed to provide the desirable flow induction characteristics through computational study and, in parallel, experimental results including flow visualization showing actual behavior with different-shaped rotor vanes. The importance of the existence of the tail part with a long expansion ramp, the sharp leading edge such as knife-edge, the proper height of leading edges, for the overall shape of rotor vane, were observed. Also the larger spin-angle rotor vane produces better flow induction and mixing between primary flow and secondary flow.  相似文献   

3.
INTRODUCTIONThe ejector system is a device which employs ahigh-velocity primary motive fluid to enirain and accelerate a slower moving secondary fluid. The resulting kinetic energy of the mixture is subsequently usedfor self-compression to a higher pressure, thus performing the function of a compressor. The ejectorsystem has lOng been applied to jet pumps, vacuumpumps, high-altitude simulators, V/STOLs, etc[lrv4],because of the major advantages of its structural simplicity and reliabili…  相似文献   

4.
The aim of this study is to investigate the use of CFD in predicting performance of a steam ejector used in refrigeration applications. This study is reported in a series of two papers. In this part, the CFD results were validated with the experimental values. The effects of operating conditions and geometries on its performance were investigated. The CFD's results were found to agree well with actual values obtained from the experimental steam jet refrigerator. The CFD was found to be not only a sufficient tool in predicting ejector performance it also provide a better understanding in the flow and mixing processes within the ejector. Phenomena on choke flow, mixing behavior, jet core effect and the presence of oblique shock will later be discussed in Part 2.  相似文献   

5.
The effect of the secondary flow on the starting pressure of a second-throat supersonic ejector has been investigated by adapting the height of the secondary flow inlet. The obtained results show that an optimum value of the secondary inlet height exists, and the starting pressure of the ejector becomes a minimum at that condition. Based on the results of the pressure measurements, a qualitative analysis has been made to clarify the flow behavior and the physical meaning of the performance diagram. It appears that the choking phenomenon of the secondary flow plays an important role in the starting process of the ejector. When the secondary inlet height is relatively small, the choked secondary flow and the supersonic primary flow could be employed to protect the static pressure in the suction chamber from being disturbed by the back pressure effect at a certain primary stagnation pressure, which is lower than the starting pressure for the case of the zero-secondary flow. However, as the secondary inlet height increases and exceeds a critical value, the static pressure in the suction chamber rapidly increases, and the starting pressure of the ejector increases accordingly.  相似文献   

6.
The paper deals with experimental and numerical results of investigation into supersonic and transonic flow past a two-dimensional model ejector. Results of optical measurements show a flow structure and flow parameter development in the entrance part of the mixing chamber of the ejector. Numerical results are obtained by means of both the straight solution of shock waves in supersonic flow field using classical relations of parameters of shock waves and the Fluent 6 program. Results of numerical solutions are compared with experimental pictures of flow fields. Flow structure development in the mixing chamber is analysed in detail.  相似文献   

7.
The aim of this study is to reveal the complication of the flow and the mixing process of a steam ejector used in a jet refrigeration cycle by using the simulation software package (FLUENT). In Part 1 of this work, the CFD results of the steam ejector's performance were validated with the experimental values. After the validation is satisfied, this paper is able to analyze the flow phenomena inside the steam ejector when its operating conditions and geometries were varied. Using the applications provided by the CFD software, the flow structure of the modeled ejectors could be created graphically, and the phenomena inside the flow passage were explored. The CFD method was evaluated as an efficient tool to represent the flow inside a steam ejector.  相似文献   

8.
The influence of nozzle position on the performance of an ejector was analyzed qualitatively with free jet flow model. Experimental investigations and computational fluid dynamics (CFD) analysis of the nozzle position of the subsonic ejector were also conducted. The results show that there is an optimum nozzle position for the ejector. The ejecting coefficient reaches its maximum when the nozzle is positioned at the optimum and decreases when deviating. Moreover, the nozzle position of an ejector is not a fixed value, but is influenced greatly by the flow parameters. Considering the complexity of the ejector, CFD is reckoned as a useful tool in the design of ejectors.  相似文献   

9.
This paper deals with experimental study of flow field of starting process in two-dimensional, single-stage supersonic ejector on different air total pressure. Schlieren pictures of flow field were taken, static pressure distribu-tions on side wall were measured. The obtained results show that, on critical pressure, the starting main shock waves in ejector oscillated back and forth between the second throat and the middle section of the mixing chamber, it causes the pressure in the second half of the mixing chamber acutely fluctuated .When the working pressure of the active flow is higher than the critical starting pressure, ejector starts normally and the inner flow-field of the mixing chamber keeps stable and the shock waves in the second throat have a certain degree of oscillation . After ejector starts, the operating pressure of the active flow may be lower than the starting pressure .  相似文献   

10.
Increasing production and recovery from the mature oil and gas fields often requires a boosting system when the gas pressure is lower than that demanded by the transportation or process system. The supersonic ejector, considered to be a cost-effective way to boost the production of a low-pressure gas well, was introduced into the industrial field. However, the exploitation of natural gas often accompanies with water. The computational fluid dynamics (CFD) technique was employed to investigate the two-phase effect (water droplets) on the performance of natural gas ejector for the motive pressure ranging from 11.0 MPa to 13.0 MPa, induced pressure from 3.0 MPa to 5.0 MPa, and backpressure from 5.1 MPa to 5.6 MPa, while the injected water flow rate was less than 0.03 kg s?1. The numerical results show that the entrainment ratio of the two-phase operation was higher than that of the single-phase operation with the variation of backpressure. Meanwhile, the entrainment ratio increased with the increase of injected water flow rate into the primary flow. When the water was injected into the secondary flow, the entrainment ratio decreased as the injected water flow rate increased, but the critical backpressure remained unchanged.  相似文献   

11.
CFD investigation on the flow structure inside thermo vapor compressor   总被引:1,自引:0,他引:1  
Thermo vapor compressor (TVC) is simply a steam ejector employed in multi-effect desalination (MED) system. A greater understanding of flow phenomena inside an ejector is important for improving ejector performance. We conducted a computational fluid dynamics (CFD) investigation into the flow structure inside a steam ejector. The study focused on the effects of operating pressure and ejector geometry on the flow structure and performance of the steam ejector. The CFD results were verified with available experimental data. The angle of the converging duct considered the geometrical parameter in this study was varied as 0, 0.5, 1, 2, 3.5 and 4.5°. The ejector with a converging duct angle of 1° has the best performance.  相似文献   

12.
An ejector is a fluid pumping device that uses the energy of a high pressure motive fluid to raise the pressure of a secondary lower-pressure fluid. Motive pressure is converted into momentum through a choked nozzle creating a high velocity jet which entrains the surrounding low-momentum suction flow. The two streams mix and finally pressure is recovered through a diffuser. There has been little progress on high fidelity modeling of the expanding supersonic two-phase flow in refrigerant expansion work recovery ejectors due to rather complex physics involving nonequilibrium thermodynamics, shear mixing, and void fraction-dependent speed of sound. However, this technology can be applied to significantly increase the efficiency of space cooling and refrigeration devices. The approach developed in this study integrates models for real-fluid properties, local mass and energy transfer between the phases, and two-phase sonic velocity in the presence of phase change into a commercial CFD code. The intent is to create a practical design tool with better fidelity than HEM CFD models yet with tractability lacking in current boundary tracking phase change CFD models. The developed model has been validated through comparison of key performance metrics against test data under certain operating conditions.  相似文献   

13.
This paper presents results of computational fluid dynamic (CFD) analysis and experimental investigation of an ejector refrigeration system using methanol as the working fluid. The CFD modelling was used to investigate the effect of the relative position of the primary nozzle exit within the mixing chamber on the performance of the ejector. The results of the CFD were used to obtain the optimum geometry of the ejector, which was then used to design, construct and test a small‐scale experimental ejector refrigeration system. Methanol was used as the working fluid, as it has the advantage of being an ‘environmentally friendly’ refrigerant that does not contribute to global warming and ozone layer depletion. In addition, use of methanol allows the ejector refrigeration system to produce cooling at temperatures below the freezing point of the water, which of course would not be possible with a water ejector refrigeration system. CFD results showed that positioning the nozzle exit at least 0.21 length of the mixing chamber throat's diameter upstream of the entrance of the mixing chamber gave better performance than pushing it into the mixing chamber. Experimental values of coefficient of performance (COP) between 0.2 and 0.4 were obtained at operating conditions achievable using low‐grade heat such as solar energy and waste heat. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

14.
A two-layer, reduced order model of high pressure hydrogen jets was developed which includes partitioning of the flow between the central core jet region leading to the Mach disk and the supersonic slip region around the core. The flow after the Mach disk is subsonic while the flow around the Mach disk is supersonic with a significant amount of entrained air. This flow structure significantly affects the hydrogen concentration profiles downstream. The predictions of this model are compared to previous experimental data for high pressure hydrogen jets up to 20 MPa and to notional nozzle models and CFD models for pressures up to 35 MPa using ideal gas properties. The results show that this reduced order model gives better predictions of the mole fraction distributions than previous models for highly underexpanded jets. The predicted locations of the 4% lower flammability limit also show that the two-layer model much more accurately predicts the measured locations than the notional nozzle models. The comparisons also show that the CFD model always underpredicts the measured mole fraction concentrations.  相似文献   

15.
The supersonic ejector-diffuser system with a second throat was simulated using CFD.An explicit finite volume scheme was applied to solve two-dimensional Navier-Stokes equations with standard κ-εturbulence model.The vacuum performance of the supersonic ejector-diffuser system was investigated by changing the ejector throat area ration and the operating pressure ratio.Two convergent-divergent nozzles with design Mach number of 2.11 and 3.41 were selected to give the supersonic operation of the ejector-diffuser system.The presence of a second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle.There were optimum values of the operating pressure ratio and ejector throat area ratio for the vacuum performance of the system to maximize.  相似文献   

16.
The working fluid of the hydrogen recirculation ejector in proton exchange membrane fuel cell (PEMFC) systems is humid hydrogen containing water vapour. However, previous studies on the hydrogen recirculation ejector using computational fluid dynamics (CFD) were based on the single-phase flow model without considering the phase change of water vapour. In this study, the characteristics of the phase change and its effect on the ejector performance are analysed according to a two-phase CFD model. The model is established based on a non-equilibrium condensation phase change. The results show that the average deviation of the entrainment ratio predicted by a single-phase flow model is 25.8% compared with experiments involving a hydrogen recirculation ejector, which is higher than the 15.1% predicted by the two-phase flow model. It can be determined that droplet nucleation occurs at the junction of the primary and secondary flow, with the maximum nucleation rate reaching 4.0 × 1020 m?3s?1 at a primary flow pressure of 5.0 bar. The higher temperature, lower velocity, and higher pressure of the gas phase can be found in the mixing region due to condensation, resulting in a lower entrainment performance. The nucleation rate, droplet number, and liquid mass fraction increase remarkably with an increasing primary flow pressure. This study provides a meaningful reference for understanding phase change characteristics and two-phase flow behaviour in hydrogen recirculation ejectors for PEMFC systems.  相似文献   

17.
The present study addresses a variable ejector which can improve the ejector efficiency and control the re-circulation ratio under a fixed operating pressure ratio. The variable ejector is a facility to obtain specific recirculation ratio under a given operating pressure ratio by varying the ejector throat area ratio. The numerical simulations are carried out to provide an understanding of the flow characteristics inside the variable ejector. The sonic and supersonic nozzles are adopted as primary driving nozzles in the ejector system, and a movable cone cylinder, inserted into a conventional ejector-diffuser system, is used to change the ejector throat area ratio. The numerical simulations are based on a fully implicit finite volume scheme of the compressible, Reynolds-Averaged Navier-Stokes equations. The results show that the variable ejector can control the recirculation ratio at a fixed operating pressure ratio.  相似文献   

18.
Ejectors are devices that are based on the principle of momentum transfer. A primary fluid passes through a nozzle that is usually of converging–diverging cross-section so that the flow reaches supersonic velocity at the exit. Consequently, a low-pressure region is created just outside the nozzle exit. This pressure gradient draws out the secondary fluid, into the ejector through the annular space—a phenomenon known as entrainment. This paper attempts to design and optimize an ejector with 1,1-dichloro-1-fluoroethane as the working fluid. The governing equations that accurately predict the behavior of the working fluid, are solved using the finite volume method after the discretization of the flow domain, using ANSYS Fluent. A database is created over 1008 similar computational fluid dynamics simulations by recording the input parameter values and the corresponding output parameter values. It is then used to define a function that can precisely predict the output for an unknown set of input parameters. This is achieved through the implementation of artificial neural networks—a surrogate modeling technique. The accuracy of the model is determined from the coefficient of correlation. The objective function thus obtained is optimized with the help of a genetic algorithm (GA)—a nature-inspired optimization technique. The optimal design of the ejector for a set of operating conditions is obtained as the output of the GA.  相似文献   

19.
The very high temperature gas-cooled reactor (VHTR) is a uranium-fueled, graphite-moderated, and helium-cooled reactor envisioned as one of the promising future nuclear reactor concepts due to its high efficiency, safety, and variety of applications. In this reactor concept, core bypass flow and cross flow are currently considered as key issues because of their inherent uncertainties and complication of prediction. Recently, the computational fluid dynamics (CFD) method has received a great deal of attention as a method for understanding the flow behavior in the VHTR core, including the bypass and the cross flow. However, validation of this method has not been sufficiently conducted yet based on real experimental data. For this reason, prediction capability of the CFD method was validated in this study by comparing the predictions with the existing multi-hole experimental data obtained by Groehn as a part of the core thermal-hydraulics design study for the NHDD PMR-200. A two-stacked fuel block with wedge-shaped cross gap was simulated for computational domain as the experimental setup. The flow loss coefficients and the velocity distributions of the cross flow from the experiment were compared to the CFD predictions extensively. As a result, good agreements between the CFD predictions and the experimental results were observed, confirming prediction capability of the CFD method for the complicated cross flow in the VHTR core. Furthermore, the velocity distributions and pressure distribution in the cross gap were investigated to identify the characteristics of the cross flow.  相似文献   

20.
建立喷射制冷系统中可调喷嘴喷射器的数学模型,采用数值模拟方法对可调式喷射器与固定结构喷射器的流场进行对比分析,并计算调节锥在不同位置的可调式喷射器内部流场的变化。结果显示,可调式喷射器在喷嘴出口处的速度提高3.5%,真空度提高65.3%,喷射系数提高47.6%;调节锥进入喷嘴可达到更低的轴线压力,喷射器出口轴线流速降低8.9%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号