首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Phex (a phosphate-regulating gene with homologies to endopeptidases on the X chromosome) is expressed predominantly in bone in which it has been implicated in the mineralization process. Multiple factors and hormones, including PTHrP, regulate formation, development, and/or homeostasis of bone. The purpose of the present study was to determine whether PTHrP(1-34) regulates Phex expression and identify the signaling pathway used. Phex mRNA and protein levels were analyzed by RT-PCR and immunoblotting, respectively. In UMR-106 cells, PTHrP(1-34) caused a time- and concentration-dependent decrease in Phex expression. Forskolin, an adenylate cyclase activator, had the same effect. Dibutiryl cAMP also decreased Phex expression, and its effect was blocked by H89, a protein kinase A (PKA) inhibitor. In contrast, 12-O-tetradecanoyl phorbol-13-acetate, a protein kinase C (PKC) activator, increased Phex expression in a time- and dose-dependent manner. This effect was reversed by bisindolylmaleimide Iota, a PKC inhibitor. Bovine PTH(3-34), which activates PKC but not PKA, had no effect. On the contrary, human PTH(1-31), which activates PKA but not PKC, decreased Phex expression. H89 but not bisindolylmaleimide Iota blocked the effect of PTHrP(1-34). PTHrP(1-34) also decreased Phex expression in cultures of fetal rat calvaria cells at d 7 of culture but not at later stages. These data demonstrate that PTHrP(1-34), through PKA, down-regulates Phex expression in osteoblasts.  相似文献   

3.
Zheng F  Liang H  Liu R  Quan JX  Li XX  Dai CL  Guo G  Zhang JY  Wang BL 《Endocrine》2009,35(1):47-56
Osteoclast inhibitory lectin (OCIL) is a recently identified inhibitor of osteoclast formation. A variety of osteotropic factors regulate OCIL expression in osteoblastic cells, however, little information is available to date concerning how this gene is controlled. Using real-time RT-PCR, we examined the regulation of OCIL expression by PTHrp and the signaling pathways used. We demonstrated in rat osteoblast-like UMR-106 cells, rat calvarial primary osteoblastic cells, and murine MC3T3-E1 cells, PTHrp(1–34) increased OCIL expression. In UMR-106 cells, the increase began and reached maximum later than RANKL induction and OPG suppression. cAMP/PKA signaling activators PTH(1–31), forskolin and dibutyryl cAMP (db-cAMP), and calcium ionophore A23187 all increased OCIL levels. In contrast, PKC activator phorbol-12-myristate-13-acetate reduced OCIL expression in short term but induced OCIL mRNA in long term. PKA inhibitor KT5720, mitogen-activated protein kinase (MAPK) cascade inhibitor PD98059, calmodulin antagonist W-7, and Ca2+/calmodulin-dependent protein kinase II (CaMK II) inhibitor KN-62 all significantly blunted PTHrp-stimulated OCIL expression. Moreover, PD98059 blocked the stimulation of OCIL by FSK or db-cAMP but not that by A23187. In primarily cultured osteoblasts, the PTHrp induction of OCIL was blocked by KT5720, W-7, and PD98059 as well. The data established that PTHrp(1–34) regulates OCIL expression in vitro through cAMP/PKA, Ca2+/CaMK II, and MAPK signaling pathways. Fang Zheng and Hui Liang contributed equally to this work.  相似文献   

4.
PTH binds to PTH/PTHrP receptor, one of seventh transmembrane receptor, which activates cAMP/PKA system through Gs protein and causes an activation of PKC and an elevation of cytosolic calcium through Gq protein. PTH affects bone cells through these dual second messenger signaling systems(cAMP/PKA and Ca/PKC system). Recent studies revealed that PTH stimulates bone resorption as well as bone formation mainly through cAMP/PKA system. Further work is necessary to clarify the downstream of the signal, such as CREB and AP-1.  相似文献   

5.
6.
7.
8.
9.
OBJECTIVE: Recently, osteoprotegerin (OPG)/osteoclastogenesis inhibitory factor (OCIF) has been shown to inhibit osteoclast differentiation. On the other hand, we have reported that parathyroid hormone (PTH) stimulated osteoclast formation, presumably through a PTH-responsive cAMP-dependent protein kinase (PKA) pathway, in mouse bone cells. DESIGN AND METHODS: The present study was performed to examine how OPG/OCIF expression is regulated by PTH and to further investigate the possible involvement of OPG/OCIF in the stimulation of osteoclast formation by PTH in mouse bone cells. OPG/OCIF mRNA expression was analyzed by Northern hybridization after 24h treatments of mouse whole bone cells and mouse stromal cell line, ST2 cells with PTH or various second messenger analogs. RESULTS: Human (h) PTH(1-34) (10(-10) and 10(-8)mol/l) but not 10(-8)mol/l hPTH(3-34) down-regulated OPG/OCIF mRNA expression in mouse bone cells. Dibutyryl cAMP, but not phorbol ester, an activator of protein kinase C, or A23187, a calcium ionophore, down-regulated it. The same was also observed in ST2 cells, suggesting that stromal cells are responsible for the inhibitory effect of PTH and cAMP analogs on OPG/OCIF mRNA expression in mouse bone cells. CONCLUSIONS: The present study indicates that PTH down-regulates OPG/OCIF mRNA expression through the PKA pathway in stromal cells, which would result in the stimulation of osteoclast formation.  相似文献   

10.
The initial steps involved in mediating the transduction of PTH signal via its G protein-coupled receptors are well understood and occur through the activation of cAMP and phospholipase C pathways. However, the cellular and molecular mechanisms for subsequent receptor desensitization are less well understood. Recently, a new family of GTPase activating proteins known as regulators of G protein signaling (RGS), has been implicated in desensitization of several G protein-coupled ligand-induced processes. At present, it is not known whether any of the RGS proteins play a role in PTH signaling. Using the differential display method, we screened for genes that are selectively expressed after a single s.c. injection of human PTH (1-38) (8 microg/100 g) in osteoblast-enriched femoral metaphyseal spongiosa of young male rats (3-4 weeks old). We found and cloned one full-length complementary DNA that encodes a 211-amino acid RGS protein and shares 97% sequence identity with mouse and human RGS2. Based on sequence similarity, we have designated this clone as rat RGS2. Northern blot analysis confirmed that the expression of RGS2 messenger RNA (mRNA) is rapidly and transiently increased by human PTH (1-38) in both metaphyseal (4-to 5-fold) and diaphyseal (2- to 3-fold) bone, as well as in cultured osteoblast cultures (2- to 37-fold). In vitro, forskolin and dibutyryl cAMP similarly elevated RGS2 mRNA. In vivo, PTH analog (1-31) [which stimulates intracellular cAMP accumulation, PTHrP (1-34), and prostaglandin E2] induced RGS2 mRNA expression; whereas PTH analogs (3-34) and (7-34), which do not stimulate cAMP production, had no effect on expression. In tissue distribution analysis, RGS2 is widely expressed and was detected in all tissues examined (heart, spleen, liver, skeletal muscle, kidney, and testis), with significant expression in two nonclassical PTH-sensitive tissues: the brain, and the heart. After PTH injection, RGS2 mRNA expression was induced in rat bone but not in any of the other tissues examined. These findings demonstrate that RGS2 is regulated by PTH, prostaglandin E2, and PTHrP and that regulation by PTH in bone occurs via the cAMP pathway. Additionally, these results suggest the exciting possibility that increased RGS2 expression in osteoblasts may be one of the early events influencing PTH signaling.  相似文献   

11.
12.
13.
14.
PTH induces c-fos expression rapidly and transiently in osteoblastic cells and requires the activity of the cAMP response element-binding protein (CREB). Here we provide evidence that protein kinase A (PKA) is the enzyme responsible for phosphorylating CREB at serine 133 (S133) and that this event is required for PTH-induced c-fos expression. PTH increases the level of phosphorylation of CREB at S133 in a time- and dose-dependent manner, correlating with the time and level of activation of PKA in response to PTH. PTH-(1-34) and -(1-31), each known to activate the cAMP pathway, induced the phosphorylation of CREB and increased the levels of c-fos messenger RNA, whereas PTH-(3-34), -(13-34), and -(28-48) could not. Specific inhibitors of calcium/calmodulin-dependent protein kinases and protein kinase C could not inhibit CREB phosphorylation or c-fos expression in response to PTH; however, H-89, a specific inhibitor of PKA, could do so in a dose-dependent manner. In addition, PTH-induced c-fos promoter activity was completely inhibited in a dose-dependent fashion by transfection of the heat-stable inhibitor of PKA. Taken together, these data provide strong evidence that PKA is the enzyme responsible for phosphorylating CREB at S133 in response to PTH and that PKA activity is required for PTH-induced c-fos expression.  相似文献   

15.
It has been demonstrated that calcitonin-binding sites are present in a variety of tissue types, including in the pituitary gland. Interleukin-6 (IL-6) is also produced in the pituitary and it regulates the secretion of various hormones. In this study, we examined the expression of the calcitonin receptor and the mechanism of IL-6 production induced by calcitonin in the pituitary folliculo-stellate cell line (TtT/GF). The mRNA of calcitonin receptor subtype C1a, but not that of C1b, was detected by RT-PCR in TtT/GF cells and in the normal mouse pituitary. Calcitonin increased cAMP accumulation and IL-6 production in a concentration-dependent manner in TtT/GF cells. As calcitonin activates the PKA and PKC pathways, we investigated the contributions of PKA and PKC to IL-6 production. IL-6 production was only slightly increased by either 8-bromo-cAMP (1 mM) or phorbol 12-myristate 13-acetate (100 nM) alone. However, IL-6 was synergistically induced in the presence of both 8-bromo-cAMP (1 mM) and phorbol 12myristate 13-acetate (100 nM). Furthermore, calcitonin-induced IL-6 production was completely suppressed by H-89 (PKA inhibitor) or GF109203X (PKC inhibitor), indicating that the activation of both PKA and PKC is necessary for calcitonin-induced IL-6 production. On the other hand, pertussis toxin (G(i)/G(o) signaling inhibitor) treatment achieved an approximately 9-fold increase in calcitonin-induced IL-6 production. These results show that calcitonin-stimulated IL-6 production is mediated via both PKA- and PKC-signaling pathways, whereas calcitonin also suppresses IL-6 production by activating G(i)/G(o) proteins in folliculo-stellate cells.  相似文献   

16.
PTH has anabolic and catabolic effects in bone through activation of the PTH-1 (PTH/PTHrP) receptor and the cAMP/protein kinase A pathway. The effects of agents that regulate cAMP in nontransformed osteoblasts in relation to cell differentiation have not been described. The purpose of this study was to determine the effects of PTH fragments with differing cAMP-stimulating activity, and nonPTH cAMP regulators on PTH-1 receptor expression and activity, and osteoblast differentiation in vitro using MC3T3-E1 and primary rat calvarial cells. PTH (1-34), but not PTH (53-84), (7-34), or PTHrP (107-139) treatment (24 h) resulted in down-regulation of steady-state messenger RNA for the PTH-1 receptor. Forskolin (a stimulator of cAMP accumulation) also down regulated the PTH-1 receptor, whereas 9-(tetrahydro-2-furyl) adenine (THFA) (an inhibitor of adenylyl cyclase) had no effect. Similarly, PTH (1-34) treatment for 48 h abolished PTHrP binding to cell surface receptors; however, neither the PTH analogs nor the cAMP regulating agents altered PTH binding or numbers of binding sites on osteoblastic cells. Basal levels of cAMP were reduced in cultured cells treated for 6 days with PTH (7-34) or THFA compared with controls. In contrast, PTH-stimulated cAMP levels were significantly increased in cultures treated with PTH (7-34) and THFA for 6 days during osteoblast differentiation and were decreased in cultures treated with PTH (1-34) and forskolin compared with controls. To evaluate effects of the cAMP pathway on osteoblast differentiation, cultures were treated continuously with PTH analogs and cAMP regulators during an 18-day differentiation regime, total RNA was isolated at multiple time points, and Northern blot analysis for osteocalcin (OCN) was performed. THFA and PTH (7-34)-treated cultures had increased OCN expression; whereas, PTH (1-34) and forskolin reduced OCN expression. Interestingly, PTH (7-34) and THFA-treated cultures had increased mineralized nodule formation, in contrast to PTH (1-34) and forskolin treatment, which reduced nodule formation. Similarly, calcium accumulation in cultures was significantly increased in the PTH (7-34) and THFA-treated cultures and reduced in the PTH (1-34) and forskolin-treated cultures. These data demonstrate that agents that increase cAMP down regulate PTH-1 receptor messenger RNA and inhibit osteoblast differentiation in vitro. Agents that reduce or block adenylyl cyclase or cAMP activity do not alter PTH-1 receptor expression or binding, but have striking effects on promoting osteoblast differentiation. We conclude that many effects of PTH on osteoblasts may be mimicked or antagonized by agents that alter cAMP activity and bypass the PTH-1 receptor.  相似文献   

17.
M A Fang  D A Kujubu  T J Hahn 《Endocrinology》1992,131(5):2113-2119
Prostaglandin E2 (PGE2), PTH, and epidermal growth factor (EGF) are potent regulators of osteoblast proliferation. In UMR 106-01 rat osteosarcoma cells with osteoblast-like features, PGE2 and PTH inhibit, while EGF stimulates, mitogenesis. Both PGE2 and PTH increase intracellular cAMP levels, cytosolic calcium, and inositol phosphate turnover. In a variety of cell types, EGF mediates its effects in part via activation of receptor protein-tyrosine kinase and other protein kinases, such as protein kinase-C. The nuclear mechanisms of PGE2, PTH, and EGF regulation of osteoblast proliferation are unknown. Accordingly, we have examined the effects of these agents on mitogenesis, second messenger generation, and primary response genes, which may link second messenger activation to subsequent alterations in gene expression. Northern blot analysis of mRNA from UMR 106-01 cells treated for 3 h with 2 microM PGE2, 10 nM PTH, or 10 ng/ml EGF in the presence of cycloheximide demonstrated that all three agents induced the expression of c-fos and c-jun mRNA. In contrast, only EGF stimulated cellular proliferation and induced Egr-1 mRNA. Also, unlike PGE2 and PTH, EGF did not increase intracellular cAMP levels. c-fos mRNA was induced by treatment with 50 ng/ml tetradecanoyl phorbol acetate or by 40 ng/ml forskolin, while induction of Egr-1 mRNA was stimulated by treatment with tetradecanoyl phorbol acetate, but not forskolin. Thus, EGF signal transduction differs from that of PGE2 and PTH in UMR 106-01 osteoblast-like cells, in that EGF does not stimulate the protein kinase-A second messenger system, but causes activation of Egr-1, a primary response gene that may play a role in the mitogenic effect of EGF.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号