首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
甘肃某镜铁矿石主要有价元素为铁,TFe含量为59.61%,原矿中94.79%的铁以赤褐铁的形式存在,脉石矿物主要为石英,含量为8.11%。为考察焙烧过程主要影响因素对焙烧产物的物相转化与磁性转变的影响,进行了悬浮焙烧试验。结果表明:镜铁矿经悬浮磁化焙烧后,焙烧产物中铁主要以磁铁矿的形式存在,磁性明显增强;随着焙烧温度升高、焙烧时间延长、CO浓度增加、总气量增加,焙烧产品中镜铁矿含量均逐渐降低,磁铁矿含量均逐渐增加,焙烧产品饱和磁化强度和最大比磁化系数均先提高后降低;在焙烧温度为550 ℃、焙烧时间为4 min、CO浓度为20%、总气量为600 mL/min时,焙烧产物的比饱和磁化强度为63.66 A·m2/kg、最大比磁化系数为5.02×10-4 m3/kg;焙烧过程铁物相按照Fe2O3→Fe3O4→FeO的反应顺序进行,焙烧产物铁物相的转化会影响铁矿物磁性的强弱,并且主要与磁铁矿的含量相关。试验结果可以为我国镜铁矿资源悬浮焙烧过程机理研究提供理论依据。  相似文献   

2.
基于流态化焙烧手段,对鞍山某含菱铁矿难选混合铁矿预富集精矿的磁化焙烧过程物相转变行为进行了研究。参照工业还原气条件的直接磁化焙烧结果显示,预富集精矿中的菱铁矿会产出弱磁FeO,降低磁化率。采用氧化—还原的工艺,可以将菱铁矿改性为弱磁赤铁矿α-Fe2O3和磁赤铁矿γ-Fe2O3,避免分解产物FeO存在。但后续500~550 ℃长时间还原仍会出现弱磁FeO,只有在还原温度450 ℃磁赤铁矿γ-Fe2O3的还原产物Fe3O4能够稳定存在。据此提出了“低温预氧化—超低温还原”磁化焙烧工艺,能够实现含菱铁矿混合难选铁矿的稳定磁性转化,且满足生产适应性需求。经该流态化工艺磁化焙烧后,预富集精矿焙烧矿经弱磁选可达到铁精矿产品铁品位65.15%、铁回收率92.02%的良好指标。实验结果为含菱铁矿混合难选铁矿的磁化焙烧生产工艺开发提供了参考依据。  相似文献   

3.
以菱铁矿为研究对象,分别在 N2和 CO2氛围下,考察微波焙烧温度以及微波焙烧时间 对焙烧产品磁 选分选指标的影响。结果表明,在 N2氛围下,焙烧温度为 650 ℃,焙烧时间为 15 min,磁 选磁场强度为 85.12 kA/m 的条件下,可以获得最佳磁选指标,铁精矿品位为 63.93%,回收率为 74.33%。在 CO2氛围 下,焙烧温度为 650 ℃,焙 烧时间为 10 min,磁选磁场强度为 85.12 kA/m 的条件下,最佳的磁选指标为铁精矿品位 61.53%、回收率 80.05%。菱 铁矿热分解产物磁性分析表明,菱铁矿在 CO2气氛下的焙烧产品的饱和单位质量磁矩和比磁化 率最大值均大于 N2 气氛下的焙烧产品,表明 CO2气氛下的焙烧产物磁性强于 N2气氛下的焙烧产物。微波磁化焙 烧为菱铁矿石的高效 利用提供了一种新思路。  相似文献   

4.
硫酸渣是一种大宗固体工业废弃物,铁含量较高,含量偏高的铅、锌往往是制约其作为铁资源利用的重要因素。氯化焙烧-磁化焙烧-磁选工艺则可成功脱除铅、锌,获得高铁低铅锌铁精矿。为揭示硫酸渣氯化焙烧过程中各主要相态的铅、锌发生氯化反应的限制环节,以及氯化反应的速率和氯化焙烧机理,以CaCl2为氯化剂,对某硫酸渣进行了氯化焙烧动力学研究。结果表明:①铁、铅、锌含量分别为49.90%、0.29%和1.23%,锌绝大部分为氧化态,铅主要为氧化态,其次是硫酸铅和其他形态铅,在CaCl2与硫酸渣的质量比为6%的情况下,延长氯化焙烧时间或提高焙烧温度,锌、铅的氯化挥发脱除率均上升,1 000 ℃时焙烧5 min,锌、铅的脱除率分别达86.99%和83.14%,为后续磁化焙烧-磁选制备高铁低杂铁精矿创造了良好的条件。②相比较而言,氯化焙烧脱锌比脱铅更容易。③900~1 050 ℃时锌氯化挥发的表观活化能为42.07×103 J/mol,受化学反应控制;900~950 ℃时铅氯化挥发的表观活化能为43.88×103 J/mol,受化学反应控制;1 000~1 050 ℃时铅氯化挥发的表观活化能为20.34×103 J/mol,受扩散控制。④强化铅、锌的氯化挥发脱除,除了提高温度,还可通过增加固体氯化剂用量或提高硫酸渣固体颗粒的孔隙率和比表面积来实现。  相似文献   

5.
悬浮磁化焙烧—磁选已在难选铁矿石的开发中实现工业应用,焙烧产物的冷却过程是影响磁选指标的 重要因素。 空气氧化冷却可以将焙烧产物中的部分磁铁矿氧化成强磁性磁赤铁矿,同时可以回收氧化过程释放的潜 热,具有广阔的应用前景。 对酒钢铁矿石进行了悬浮磁化焙烧—氧化冷却试验。 结果表明,氧化温度、氧化时间和空 气流量对氧化过程及磁选指标影响显著。 最佳的氧化条件为氧化温度 300 ℃ 、氧化时间 5 min、空气流量 500 mL / min。 在最佳条件下,氧化冷却产物中磁赤铁矿含量为 17. 74%,磁选精矿铁品位为 55. 34%、铁回收率为 90. 31%。 焙 烧产物的氧化冷却过程按两条路径同时进行,一是 Fe3O4→α—Fe2O3,二是 Fe3O4→γ—Fe2O3→α—Fe2O3;氧化温度高 于 300 ℃时,磁铁矿主要被氧化为赤铁矿。 因此,焙烧产物在氧化冷却时,应先在 N2 中冷却至 300 ℃ ,再经空气氧化 冷却至室温,以获得较高的磁赤铁矿含量。  相似文献   

6.
铁酸锌的还原分解和其中锗的行为研究   总被引:3,自引:0,他引:3  
在湿法炼锌中生成难溶性的铁酸锌是锌、锗浸出率低的原因。采用还原沸腾焙烧锌焙砂的工艺可有效地把铁酸锌还原分解成可溶性的产物,赋存其中的锗也将大部分溶出。本文研究了锌焙砂的物相组成,对铁酸锌还原过程的热力学、动力学进行了分析和研究。从而确定了铁酸锌还原分解的工艺条件并查明锗在工艺中的行为。在800—860℃,CO 8—12%的条件下对锌焙砂还原焙烧20—40min使锌浸出率从87%提高到98.5%,锗浸出率从47%提高到85—90%。研究证实了还原分解铁酸锌工艺的可行性。  相似文献   

7.
针对高磷铁矿因铁矿物与磷矿物共生关系复杂、常规选矿方法难以高效利用的特点,提出了焙烧—浸出的提铁降磷技术。对阿尔及利亚TFe品位为60.81%、FeO含量为14.92%、P含量为0.71%的某高磷铁矿,采用悬浮焙烧(氧化焙烧—磁化焙烧)—磁选—浸出工艺开展了提铁脱磷实验研究,在氧化温度1 050℃、还原温度520℃、还原时间25 min、H2体积浓度50%的磁化焙烧工艺条件下,获得了TFe品位65.50%、TFe回收率96.31%、P含量0.16%的铁精矿指标,磷脱除率77.46%。实验研究结果可为高磷铁矿提铁降磷提供指导。  相似文献   

8.
新疆某镜铁矿矿石TFe含量为35.20%,CaO含量为30.64%;铁矿物主要为镜铁矿,脉石矿物主要为方解石和石英。矿石中镜铁矿嵌布粒度微细,属于难选铁矿石。为考察矿石磁化焙烧过程物相转变规律,进行了焙烧温度、焙烧时间和配煤比对其磁化焙烧效果、铁物相转变过程的影响规律试验。结果表明:在配煤比为12%、焙烧温度为800 ℃、焙烧时间为75 min条件下还原焙烧后,焙烧产品磨细至-0.074 mm占90%,在磁场强度为120 kA/m条件下弱磁选,可获得铁品位为65.95%、回收率77.70%的指标。焙烧温度对镜铁矿磁化焙烧过程影响显著。焙烧温度低于800 ℃时镜铁矿磁化焙烧转变为Fe3O4,焙烧温度为800 ℃时,焙烧产品Fe3O4含量最高;焙烧温度高于800 ℃时,部分Fe3O4又被还原为FeO,产生过还原现象;焙烧温度为900 ℃时,焙烧产品FeO含量最高;焙烧温度达到1 000 ℃时部分FeO被还原成金属Fe。此过程与磁选结果的变化规律相符。另外,焙烧温度达到900 ℃时,部分Fe2O3与CaO反应,生成了2CaO·Fe2O3,不能通过弱磁选回收。试验结果为该镜铁矿资源的合理利用提供了技术参考。  相似文献   

9.
CO还原气氛下铁酸锌选择性分解过程研究   总被引:4,自引:2,他引:2  
为将电炉粉尘中铁酸锌选择性分解为Fe3O4和ZnO,采用热力学软件分析了铁酸锌在CO气氛下还原分解的热力学过程和分解特征,讨论了反应温度和气体组成对铁酸锌分解行为的影响。结果表明: 铁酸锌的气体还原遵循逐级还原规律,很容易被CO还原为Fe3O4和ZnO,也易过还原为FeO和Fe,甚至可将ZnO还原为锌蒸气;控制PCO/(PCO+PCO2)在0.05~0.20之间,温度在600~700 ℃范围内,可实现铁酸锌的高效分解、抑制铁氧化物的过还原;对CO还原气氛下铁酸锌分解过程进行了热力学模拟,计算出铁酸锌还原初期时的CO利用率约为35%。  相似文献   

10.
这是一篇冶金工程领域的论文。针对高磷铁矿石气基还原存在球强度低以及还原温度高的问题,提出了氧化焙烧-气基还原-磁选新工艺。考查了氧化温度以及脱磷剂种类对氧化球抗压强度的影响,并找出了符合竖炉强度要求的氧化焙烧条件,在此基础上,研究了还原温度、还原气体总流量、还原气体组成以及还原时间对提铁降磷的影响。结果表明,在Na2CO3用量10%,氧化温度1200℃,氧化时间60 min,还原温度950℃,H2与CO的流量分别为3.75 L/min以及1.25 L/min,还原时间180 min的条件下,可获得铁品位91.15%、铁回收率93.07%和磷含量0.14%的粉末还原铁。扫描电镜结果表明,粉末还原铁中的磷以机械夹杂的形式存在,磷是通过磨矿-磁选除去。  相似文献   

11.
针对目前锡酸钠制备工艺普遍存在的流程长、成本高、对设备材质要求严格等问题, 以化学纯二氧化锡和碳酸钠为对象, 开展了二氧化锡与碳酸钠直接焙烧制备锡酸钠的可行性研究。研究结果表明: 在CO/CO2气氛中, 二氧化锡与碳酸钠焙烧反应生成锡酸钠是完全可行的。当CO/CO2体系中CO体积浓度为15%, 碳酸钠与二氧化锡(Na2CO3/SnO2)摩尔比为1.5, 焙烧温度为875 ℃, 焙烧时间为15 min时, 锡浸出率达85.64%。XRD分析证实, 以锡石精矿(SnO2的含量为76.42%)为原料, 采用上述工艺获得了满足工业一级标准的锡酸钠产品(Na2SnO3·3H2O)。  相似文献   

12.
含锌电炉粉尘配碳选择性还原的实验研究   总被引:1,自引:0,他引:1  
为实现含锌电炉粉尘选择性还原、有效分离铁和锌资源,采用热力学计算和实验研究相结合,分析电炉粉尘中主要物相的还原分解行为,研究配碳量、反应温度和反应时间对还原产物的影响。结果表明,含锌电炉粉尘配碳选择性还原为铁氧化物和ZnO是可行的;在582~940 ℃之间,可实现铁酸锌的有效分解、ZnO过还原的抑制;随着反应温度增加和反应时间延长,铁氧化物遵循逐级还原规律,配碳量对产物并未产生明显影响;当温度为950 ℃时,ZnO被还原为锌蒸气而挥发,导致产物中锌含量明显降低。在配碳量1/10、反应温度850 ℃、反应时间1 h的优化条件下,ZnFe2O4分解率约为70%。  相似文献   

13.
采用硫磺为还原剂,对氧化锰矿的还原焙烧过程进行了研究,重点考查了焙烧温度、焙烧时间和硫/锰摩尔比对锰浸出率的影响。研究结果表明,在封闭体系中,当焙烧温度为550℃、焙烧时间为10 min、S/Mn摩尔比为0.5时,还原焙烧产物采用稀硫酸浸出,锰的浸出率可达95%以上。该研究可为低品位氧化锰矿的高效利用提供理论和技术指导。  相似文献   

14.
邹鑫  钟宏  曹占芳  王帅  李信佟 《矿冶工程》2017,37(1):100-102
研究了以硫化钙为还原剂焙烧还原提取锰除尘灰中的锰, 考察了焙烧时间、焙烧温度、物料配比、搅拌速率、浸出温度、液固比、浸出时间和H2SO4浓度对锰除尘灰中锰及铁浸出率的影响。结果显示, 焙烧还原工艺最佳条件为:锰除尘灰与还原剂硫化钙质量比4.12∶1、焙烧还原温度600 ℃、焙烧还原时间1.0 h, 酸浸工艺最佳条件为:搅拌速率300 r/min、H2SO4浓度3 mol/L、液固比8∶1、浸出温度80 ℃、浸出时间25 min, 最佳工艺条件下锰、铁浸出率分别为98.18%和76.83%。  相似文献   

15.
采用碱性焙烧法提取高纯铝灰中的铝,探讨了焙烧温度、焙烧时间、碱灰比等因素对铝灰中铝浸出率的影响。结果表明,碱性焙烧适宜条件为:焙烧温度600 ℃、焙烧时间60 min、碱灰比1.0,此时得到的焙烧产物物相为NaAlO2、Al2O3,焙烧产物在温度25 ℃、液固比10∶1条件下水浸60 min,铝浸出率为78.95%。  相似文献   

16.
对La-Co 替代的M 型高性能永磁铁氧体进行了详细介绍, 包括材料制备的工艺特点, 材料的成分, 显微结构, 内禀参数, 技术磁性能以及温度特性等。研究结果表明:最优化组分为Sr0.7 La0.3 Fe11.7 Co0.3O19 的M 型永磁铁氧体的饱和磁化强度(298 K)比SrFe12O19 永磁铁氧体的大1%~3%, 磁晶各向异性场Ha ≈1766.7 kA/m, 磁晶各向异性 常数K1 ≈4.2 ×106 erg/cm3, 磁性能:Br =445 mT, Hcj =383.6 kA/m,(BH)max =38.6 kJ/m3 。  相似文献   

17.
采用H2S(g)对含锡铁精矿进行还原硫化焙烧,可实现物料中锡的有效脱除。以热力学分析为基础,对含锡铁精矿中铁、锡物相的转变规律及脱锡机理进行了研究。结果表明,H2S(g)通过自身热分解反应生成H2(g)和S2(g)后,S2(g)优先与Fe3O4发生还原硫化反应生成Fe7S8,H2(g)则与SnO2优先发生还原反应生成Sn(l)。在焙烧系统中引入CO(g)可促进SnO2的还原和硫化。在混合气体(60vol%CO(g)+40vol%H2S(g))流量70 mL/min、焙烧温度1000℃、焙烧时间20 min、以及锡铁精矿粒度-74μm的条件下,含锡铁精矿中Sn脱除率可以达到95.34%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号