首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tropical forests are an important component of the global carbon balance, yet there is considerable uncertainty in estimates of their carbon stocks and fluxes, which are typically estimated through analysis of aboveground biomass in field plots. Remote sensing technology is critical for assessing fine-scale spatial variability of tropical forest biomass over broad spatial extents. The goal of our study was to evaluate relatively new technology, small-footprint, discrete-return lidar and hyperspectral sensors, for the estimation of aboveground biomass in a Costa Rican tropical rain forest landscape. We derived a suite of predictive metrics for field plots: lidar metrics were calculated from plot vertical height profiles and hyperspectral metrics included fraction of spectral mixing endmembers and narrowband indices that respond to photosynthetic vegetation, structure, senescence, health and water and lignin content. We used single- and two-variable linear regression analyses to relate lidar and hyperspectral metrics to aboveground biomass of plantation, managed parkland and old-growth forest plots. The best model using all 83 biomass plots included two lidar metrics, plot-level mean height and maximum height, with an r2 of 0.90 and root-mean-square error (RMSE) of 38.3 Mg/ha. When the analysis was constrained to plantation plots, which had the most accurate field data, the r2 of the model increased to 0.96, with RMSE of 10.8 Mg/ha (n = 32). Hyperspectral metrics provided lower accuracy in estimating biomass than lidar metrics, and models with a single lidar and hyperspectral metric were no better than the best model using two lidar metrics. These results should be viewed as an initial assessment of using these combined sensors to estimate tropical forest biomass; hyperspectral data were reduced to nine indices and three spectral mixture fractions, lidar data were limited to first-return canopy height, sensors were flown only once at different seasons, and we explored only linear regression for modeling. However, this study does support conclusions from studies at this and other climate zones that lidar is a premier instrument for mapping biomass (i.e., carbon stocks) across broad spatial scales.  相似文献   

2.
Accurate forest carbon accounting forms a basis for promoting the development of ecosystem service markets including forest carbon sinks. However, carbon assessments over large forest areas are challenging. Difficulties are compounded by the lack of adequate field observations especially in mountainous regions. In this study, we describe the development of a two-phase sampling framework to evaluate regional aboveground carbon density (ACD) of subalpine temperate forests in northwestern China that includes integrating ground plots, airborne lidar metrics, and Landsat images. During the first phase, an accurate, lidar-derived, ACD inventory network of a representative forested zone (Dayekou Basin) was established on the basis of a modified allometric model by adding crown coverage (CC) as a supplementary variable; cross-validated R2 was 0.88 and root mean square error (RMSE) was 14.7 Mg C ha?1. The outcomes of this step enabled the extension of quasi-field plots required for the representative carbon evaluations and the amplification of the range of observed values. Further integration of lidar measures and optical Landsat data by using the partial least squares regression (PLSR) method was conducted in the subsequent phase. The final model developed for broad-scale estimates explained 76% of the variance in forest ACD and produced a mean bias error of 27.9 Mg C ha?1. Aboveground carbon stocks for the whole ecoregion averaged 77.2 Mg ha?1, which generated an uncertainty of 13%. Visual patterns revealed a systematic overestimation for low ACD values and an underestimation in those regions with high carbon density. Potential errors in our carbon estimates could be associated with the saturation of optical signals, accuracy of land-cover map, and effects of topographic conditions. Overall, the double-sampling method demonstrated promising means for carbon accounting over large areas in a spatially-explicit manner and provided a good first approximation of carbon quantities for the forests in the ecoregion. Our study illustrated the potential for the use of lidar sampling in facilitating scaling of field surveys to a larger spatial extent than ground-based practices by supplying accurate biophysical measurements (e.g. heights).  相似文献   

3.
Ranging techniques such as lidar (LIght Detection And Ranging) and digital stereo‐photogrammetry show great promise for mapping forest canopy height. In this study, we combine these techniques to create hybrid photo‐lidar canopy height models (CHMs). First, photogrammetric digital surface models (DSMs) created using automated stereo‐matching were registered to corresponding lidar digital terrain models (DTMs). Photo‐lidar CHMs were then produced by subtracting the lidar DTM from the photogrammetric DSM. This approach opens up the possibility of retrospective mapping of forest structure using archived aerial photographs. The main objective of the study was to evaluate the accuracy of photo‐lidar CHMs by comparing them to reference lidar CHMs. The assessment revealed that stereo‐matching parameters and left–right image dissimilarities caused by sunlight and viewing geometry have a significant influence on the quality of the photo DSMs. Our study showed that photo‐lidar CHMs are well correlated to their lidar counterparts on a pixel‐wise basis (r up to 0.89 in the best stereo‐matching conditions), but have a lower resolution and accuracy. It also demonstrated that plot metrics extracted from the lidar and photo‐lidar CHMs, such as height at the 95th percentile of 20 m×20 m windows, are highly correlated (r up to 0.95 in general matching conditions).  相似文献   

4.
ABSTRACT

Tree crown attributes are important parameters during the assessment and monitoring of forest ecosystems. Canopy height models (CHMs) derived from airborne laser scanning (ALS) data have proved to be a reliable source for extracting different biophysical characteristics of single trees and at stand level. However, ALS-derived tree measurements (e.g., mean crown diameter) can be negatively affected by pits that appear in the CHMs. Thus, we propose a novel method for generating pit-free CHMs from ALS point clouds for estimating crown attributes (i.e., area and mean diameter) at the species level. The method automatically calculates a threshold for a pixel based on the range of height values within neighbouring pixels; if the pixel falls below the threshold then it is recognized as a pitted pixel. The pit is then filled with the median of the values of the neighbouring pixels. Manually delineated individual tree crowns (ITC) of four deciduous and two coniferous species on Colour Infrared (CIR) stereo images were used as a reference in the analysis. In addition, a variety of different algorithms for constructing CHMs were compared to investigate the performance of different CHMs in similar forest conditions. Comparisons between the estimated and observed crown area (R2 = 0.95, RMSE% = 19.12% for all individuals) and mean diameter (R2 = 0.92, RMSE% = 12.16% for all individuals) revealed that ITC attributes were correctly estimated by segmentation of the pit-free CHM proposed in this study. The goodness of matching and geometry revealed that the delineated crowns correctly matched up to the reference data and had identical geometry in approximately 70% of cases. The results showed that the proposed method produced a CHM that estimates crown attributes more accurately than the other investigated CHMs. Furthermore, the findings suggest that the proposed algorithm used to fill pits with the median of height observed in surrounding pixels significantly improve the accuracy of the results the species level due to a higher correlation between the estimated and observed crown attributes. Based on these results, we concluded that the proposed pit filling method is capable of providing an automatic and objective solution for constructing pit-free CHMs for assessing individual crown attributes of mixed forest stands.  相似文献   

5.
In the context of reducing emissions from deforestation and forest degradation (REDD) and the international effort to reduce anthropogenic greenhouse gas emissions, a reliable assessment of aboveground forest biomass is a major requirement. Especially in tropical forests which store huge amounts of carbon, a precise quantification of aboveground biomass is of high relevance for REDD activities. This study investigates the potential of X- and L-band SAR data to estimate aboveground biomass (AGB) in intact and degraded tropical forests in Central Kalimantan, Borneo, Indonesia. Based on forest inventory data, aboveground biomass was first estimated using LiDAR data. These results were then used to calibrate SAR backscatter images and to upscale the biomass estimates across large areas and ecosystems. This upscaling approach not only provided aboveground biomass estimates over the whole biomass range from woody regrowth to mature pristine forest but also revealed a spatial variation due to varying growth condition within specific forest types. Single and combined frequencies, as well as mono- and multi-temporal TerraSAR-X and ALOS PALSAR biomass estimation models were analyzed for the development of accurate biomass estimations. Regarding the single frequency analysis overall ALOS PALSAR backscatter is more sensitive to AGB than TerraSAR-X, especially in the higher biomass range (> 100 t/ha). However, ALOS PALSAR results were less accurate in low biomass ranges due to a higher variance. The multi-temporal L- and X-band combined model achieved the best result and was therefore tested for its temporal and spatial transferability. The achieved accuracy for this model using nearly 400 independent validation points was r² = 0.53 with an RMSE of 79 t/ha. The model is valid up to 307 t/ha with an accuracy requirement of 50 t/ha and up to 614 t/ha with an accuracy requirement of 100 t/ha in flat terrain. The results demonstrate that direct biomass measurements based on the synergistic use of L- and X-band SAR can provide large-scale AGB estimations for tropical forests. In the context of REDD monitoring the results can be used for the assessment of the spatial distribution of the biomass, also indicating trends in high biomass ranges and the characterization of the spatial patterns in different forest types.  相似文献   

6.
This study explored the feasibility of height distributional metrics and intensity values extracted from low-density airborne light detection and ranging (lidar) data to estimate plot volumes in dense Korean pine (Pinus koraiensis) plots. Multiple linear regression analyses were performed using lidar height and intensity distributional metrics. The candidate variables for predicting plot volume were evaluated using three data sets: total, canopy, and integrated lidar height and intensity metrics. All intensities of lidar returns used were corrected by the reference distance. Regression models were developed using each data set, and the first criterion used to select the best models was the corrected Akaike Information Criterion (AICc). The use of three data sets was statistically significant at R2 = 0.75 (RMSE = 52.17 m3 ha?1), R2 = 0.84 (RMSE = 45.24 m3 ha?1), and R2 = 0.91 (RMSE = 31.48 m3 ha?1) for total, canopy, and integrated lidar distributional metrics, respectively. Among the three data sets, the integrated lidar metrics-derived model showed the best performance for estimating plot volumes, improving errors up to 42% when compared to the other two data sets. This is attributed to supplementing variables weighted and biased to upper limits in dense plots with more statistical variables that explain the lower limits. In all data sets, intensity metrics such as skewness, kurtosis, standard deviation, minimum, and standard error were employed as explanatory variables. The use of intensity variables improved the accuracy of volume estimation in dense forests compared to prior research. Correction of the intensity values contributed up to a maximum of 58% improvement in volume estimation when compared to the use of uncorrected intensity values (R2 = 0.78, R2 = 0.53, and R2 = 0.63 for total, canopy, and integrated lidar distributional metrics, respectively). It is clear that the correction of intensity values is an essential step for the estimation of forest volume.  相似文献   

7.
Scanning Light Detecting and Ranging (LiDAR), Synthetic Aperture Radar (SAR) and Interferometric SAR (InSAR) were analyzed to determine (1) which of the three sensor systems most accurately predicted forest biomass, and (2) if LiDAR and SAR/InSAR data sets, jointly considered, produced more accurate, precise results relative to those same data sets considered separately. LiDAR ranging measurements, VHF-SAR cross-sectional returns, and X- and P-band cross-sectional returns and interferometric ranges were regressed with ground-estimated (from dbh) forest biomass in ponderosa pine forests in the southwestern United States. All models were cross-validated. Results indicated that the average canopy height measured by the scanning LiDAR produced the best predictive equation. The simple linear LiDAR equation explained 83% of the biomass variability (n = 52 plots) with a cross-validated root mean square error of 26.0 t/ha. Additional LiDAR metrics were not significant to the model. The GeoSAR P-band (λ = 86 cm) cross-sectional return and the GeoSAR/InSAR canopy height (X-P) captured 30% of the forest biomass variation with an average predictive error of 52.5 t/ha. A second RaDAR-FOPEN collected VHF (λ ∼ 7.8 m) and cross-polarized P-band (λ = 88 cm) cross-sectional returns, none of which proved useful for forest biomass estimation (cross-validated R2 = 0.09, RMSE = 63.7 t/ha). Joint consideration of LiDAR and RaDAR measurements produced a statistically significant, albeit small improvement in biomass estimation precision. The cross-validated R2 increased from 83% to 84% and the prediction error decreased from 26.0 t/ha to 24.9 t/ha when the GeoSAR X-P interferometric height is considered along with the average LiDAR canopy height. Inclusion of a third LiDAR metric, the 60th decile height, further increased the R2 to 85% and decreased the RMSE to 24.1 t/ha. On this 11 km2 ponderosa pine study area, LiDAR data proved most useful for predicting forest biomass. RaDAR ranging measurements did not improve the LiDAR estimates.  相似文献   

8.
The accurate quantification of the three-dimensional (3-D) structure of mangrove forests is of great importance, particularly in Africa where deforestation rates are high and the lack of background data is a major problem. The objectives of this study are to estimate (1) the total area, (2) canopy height distributions, and (3) above-ground biomass (AGB) of mangrove forests in Africa. To derive the 3-D structure and biomass maps of mangroves, we used a combination of mangrove maps derived from Landsat Enhanced Thematic Mapper Plus (ETM+), lidar canopy height estimates from ICESat/GLAS (Ice, Cloud, and land Elevation Satellite/Geoscience Laser Altimeter System), and elevation data from SRTM (Shuttle Radar Topography Mission) for the African continent. The lidar measurements from the large footprint GLAS sensor were used to derive local estimates of canopy height and calibrate the interferometric synthetic aperture radar (InSAR) data from SRTM. We then applied allometric equations relating canopy height to biomass in order to estimate AGB from the canopy height product. The total mangrove area of Africa was estimated to be 25,960 km2 with 83% accuracy. The largest mangrove areas and the greatest total biomass were found in Nigeria covering 8573 km2 with 132 × 106 Mg AGB. Canopy height across Africa was estimated with an overall root mean square error of 3.55 m. This error includes the impact of using sensors with different resolutions and geolocation error. This study provides the first systematic estimates of mangrove area, height, and biomass in Africa.  相似文献   

9.
ABSTRACT

Aboveground biomass (AGB) of mangrove forest plays a crucial role in global carbon cycle by reducing greenhouse gas emissions and mitigating climate change impacts. Monitoring mangrove forests biomass accurately still remains challenging compared to other forest ecosystems. We investigated the usability of machine learning techniques for the estimation of AGB of mangrove plantation at a coastal area of Hai Phong city (Vietnam). The study employed a GIS database and support vector regression (SVR) to build and verify a model of AGB, drawing upon data from a survey in 25 sampling plots and an integration of Advanced Land Observing Satellite-2 Phased Array Type L-band Synthetic Aperture Radar-2 (ALOS-2 PALSAR-2) dual-polarization horizontal transmitting and horizontal receiving (HH) and horizontal transmitting and vertical receiving (HV) and Sentinel-2A multispectral data. The performance of the model was assessed using root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), and leave-one-out cross-validation. Usability of the SVR model was assessed by comparing with four state-of-the-art machine learning techniques, i.e. radial basis function neural networks, multi-layer perceptron neural networks, Gaussian process, and random forest. The SVR model shows a satisfactory result (R2 = 0.596, RMSE = 0.187, MAE = 0.123) and outperforms the four machine learning models. The SVR model-estimated AGB ranged between 36.22 and 230.14 Mg ha?1 (average = 87.67 Mg ha?1). We conclude that an integration of ALOS-2 PALSAR-2 and Sentinel-2A data used with SVR model can improve the AGB accuracy estimation of mangrove plantations in tropical areas.  相似文献   

10.
The use of Unmanned Aerial Systems (UAS) opens a new era for remote sensing and forest management, which requires accurate and regular quantification of resources. In this study, we propose a comprehensive workflow to detect trees and assess forest attributes in the particular context of coniferous stands in transformation from even-aged to uneven-aged stands, using UAS imagery, from data acquisition to model construction. We implement a local maxima detection to identify the tree tops, based on a fixed-radius moving window in a Canopy Height Model (CHM) and images produced from UAS surveys. To compare the contribution of different photogrammetric products, we analysed the local maxima detected from the CHM, from three image types (individual rectified and ortho-rectified images and ortho-mosaic) and from a combination of both CHM and images. The local maxima detection gave promising results, with low omission and true-positive rates of up to 89.2%. A filtering process of false positives was implemented, using a supervised classification which decreased the false positives up to 2.6%. Based on the local maxima combined with an area-based approach, we constructed models to assess top height (R2: 83%, root mean square error [RMSE]: 5.7%), number of stems (R2: 71%, RMSE: 28.3%), basal area (R2: 70%, RMSE: 16.2%), volume (R2: 69%, RMSE: 20.1%), and individual tree height (R2: 70%, RMSE: 7.2%). Despite a suboptimal data acquisition, our simple and flexible method has yielded good results and shows great potential for application.  相似文献   

11.
Accurate estimates of aboveground biomass in tropical forests are important in carbon sequestration and global change studies. Tropical forest biomass estimation with microwave remote sensing is limited because of the strong scattering and attenuation properties of the green canopy. In this study a microwave/optical synergistic model was developed to quantify these effects to Synthetic Aperture Radar (SAR) signals and to better estimate woody structures, which are closely related to aboveground biomass. With a Leaf Area Index (LAI) retrieved from Japan Earth Resources Satellite (JERS)‐1 Very Near Infrared Radiometer (VNIR) imagery, leaf scattering and attenuation to woody scattering were quantified and removed from the total backscatter in a modified canopy scattering model. Woody scattering showed high sensitivity to biomass >100 tonnes/ha in tropical forests. Tree height and stand density were derived from the JERS‐1 SAR image with a root mean square error (RMSE) of 4 m and 161 trees/ha, respectively. Aboveground biomass was calculated using a general allometric equation. Biomass in secondary dry dipterocarps (Dipterocarpaceae family of tropical lowland deciduous trees) was overestimated. The modelled biomass in mixed deciduous and dry evergreen forests fit better with ground measurements. In mountainous areas with steep slopes, the topographic effects in the SAR image could not be properly corrected and therefore the results are unreliable.  相似文献   

12.
ABSTRACT

Satellite remote sensing has greatly facilitated the assessment of aboveground biomass in rangelands. Soil-adjusted vegetation indices have been developed to provide better predictions of aboveground biomass, especially for dryland regions. Semi-arid rangelands often complicate a remote sensing based assessment of aboveground biomass due to bright reflecting soils combined with sparse vegetation cover. We aim at evaluating whether soil-adjusted vegetation indices perform better than standard, i.e. unadjusted, vegetation indices in predicting dry aboveground biomass of a saline and semi-arid rangeland in NE-Iran. 672 biomass plots of 2 × 2 m were gathered and aggregated into 13 sites. Generalized Linear Regression Models (GLM) were compared for six different vegetation indices, three standard and three soil-adjusted vegetation indices. Vegetation indices were calculated from the MODIS MCD43A4 product. Model comparison was done using Akaike Information Criterion (AICc), Akaike weights and pseudo R2. Model fits for dry biomass showed that transformed NDVI and NDVI fitted best with R2 = 0.47 and R2 = 0.33, respectively. The optimized soil-adjusted vegetation index (OSAVI) behaved similar to NDVI but less precise. The soil-adjusted vegetation index (SAVI), the modified soil-adjusted vegetation index (MSAVI2) and the enhanced vegetation index (EVI) performed worse than a null model. Hence, soil-adjusted indices based on the soil-line concept performed worse than a simple square root transformation of the NDVI. However, more studies that compare MODIS based vegetation indices for rangeland biomass estimation are required to support our findings. We suggest applying a similar model comparison approach as performed in this study instead of relying on single vegetation indices in order to find optimal relationships with aboveground biomass estimation in rangelands.  相似文献   

13.
This study aims to evaluate the potential of TerraSAR-X (TSX) add-on for Digital Elevation Measurement (TanDEM-X) bi-static synthetic aperture radar (SAR) data sets for the retrieval of glacier digital elevation models (DEMs) and elevation changes over mountain regions. We exploited two pairs of TanDEM-X SAR data sets acquired in 2012 and 2016 over the Puruogangri Ice Field (PIF), which is the largest modern glacier on the Tibetan Plateau (TP). Two fine-detail and high-precision DEMs for 2012 and 2016 over the PIF were generated by differential interferometric processing, and were validated against height measurements from global positioning system (GPS) and Ice, Cloud, and land Elevation Satellite (ICESat) altimetry, yielding a vertical accuracy of 1.91 ± 0.76 m and 1.69 ± 0.83 m, respectively. The elevation changes were derived by differencing the bi-temporal TanDEM-X DEMs and revealed predominant glacier surface thinning on the PIF. An annual surface thinning rate of ?0.317 ± 0.027 m year?1 was estimated in the period 2012–2016, which is much larger than the estimate of ?0.049 ± 0.200 m year?1 for the period 2000–2012 reported in previous studies. This accelerating trend of glacier surface thinning might be attributable to the continued increase in summer temperature since the 1980s and decrease in annual precipitation between two periods of investigation. This study demonstrates that comparison of the bi-temporal TanDEM-X DEMs is an efficient method for accurate and detailed retrieval of the latest surface elevation changes of mountain glaciers.  相似文献   

14.
Although open forests represent approximately 30% of the world's forest resources, there is a clear lack of reliable inventory data to allow sustainable management of this valuable resource from semi‐arid areas. This paper demonstrates that the low ground cover of open forest offers a unique opportunity for deriving single tree attributes from high‐resolution satellite imagery, allowing reliable biomass estimation. More particularly, this study investigates the relationship between field‐measured stem volume and tree attributes, including tree crown area and tree shadow area, measured from pan‐sharpened Quickbird imagery with a 0.61 m resolution in a sparse Crimean juniper (Juniperus excelsa M.Bieb.) forest in south‐western Turkey. First tree shadows and crowns were identified and delineated as individual polygons. Both visual delineation and computer‐aided automatic classification methods were tested. After delineation, stem volume as a function of these image‐measured attributes was modelled using linear regression. The statistical analyses indicated that stem volume was correlated with both shadow area and crown area. The best model for stem volume using shadow area resulted in an adjusted R 2 = 0.67, with a root mean square error (RMSE) of 12.5%. The model for stem volume using crown area resulted in an adjusted R 2 = 0.51, with a RMSE of 15.2%. The results showed that pan‐sharpened Quickbird imagery is suitable for estimating stem volume and may be useful in reducing the time required for obtaining inventory data in open Crimean juniper forests and other similar open forests.  相似文献   

15.
A spaceborne lidar mission could serve multiple scientific purposes including remote sensing of ecosystem structure, carbon storage, terrestrial topography and ice sheet monitoring. The measurement requirements of these different goals will require compromises in sensor design. Footprint diameters that would be larger than optimal for vegetation studies have been proposed. Some spaceborne lidar mission designs include the possibility that a lidar sensor would share a platform with another sensor, which might require off-nadir pointing at angles of up to 16°. To resolve multiple mission goals and sensor requirements, detailed knowledge of the sensitivity of sensor performance to these aspects of mission design is required.This research used a radiative transfer model to investigate the sensitivity of forest height estimates to footprint diameter, off-nadir pointing and their interaction over a range of forest canopy properties. An individual-based forest model was used to simulate stands of mixed conifer forest in the Tahoe National Forest (Northern California, USA) and stands of deciduous forests in the Bartlett Experimental Forest (New Hampshire, USA). Waveforms were simulated for stands generated by a forest succession model using footprint diameters of 20 m to 70 m. Off-nadir angles of 0 to 16° were considered for a 25 m diameter footprint diameter.Footprint diameters in the range of 25 m to 30 m were optimal for estimates of maximum forest height (R2 of 0.95 and RMSE of 3 m). As expected, the contribution of vegetation height to the vertical extent of the waveform decreased with larger footprints, while the contribution of terrain slope increased. Precision of estimates decreased with an increasing off-nadir pointing angle, but off-nadir pointing had less impact on height estimates in deciduous forests than in coniferous forests. When pointing off-nadir, the decrease in precision was dependent on local incidence angle (the angle between the off-nadir beam and a line normal to the terrain surface) which is dependent on the off-nadir pointing angle, terrain slope, and the difference between the laser pointing azimuth and terrain aspect; the effect was larger when the sensor was aligned with the terrain azimuth but when aspect and azimuth are opposed, there was virtually no effect on R2 or RMSE. A second effect of off-nadir pointing is that the laser beam will intersect individual crowns and the canopy as a whole from a different angle which had a distinct effect on the precision of lidar estimates of height, decreasing R2 and increasing RMSE, although the effect was most pronounced for coniferous crowns.  相似文献   

16.
Large-footprint waveform light detection and ranging (lidar) data have been widely used in above-ground forest biomass estimation. Waveform metrics derived from basic statistics (e.g. percentile of energy) of the lidar waveform, such as canopy height and height of median energy, have been applied to biomass estimation in numerous studies. In this study, a set of metrics based on Gaussian decomposition (GD) results were developed and evaluated for forest above-ground biomass estimation using NASA’s laser vegetation imaging sensor (LVIS) data. The GD metrics were designed to explicitly incorporate lidar intensity and vertical structures of canopy layers for biomass estimation. The proposed GD metrics used information related to the above-ground height of each Gaussian centroid and the Gaussian area index (GAI), where GAI is the area covered by a Gaussian function. Two types of novel GD metrics were developed: (1) percentile-height GAI metrics expressing the GAI summation of a subset of Gaussian centroids located within a certain percentile height range; and (2) height-weighted GAI metrics, a summation of GAIs of a waveform weighted by the corresponding heights of their Gaussian centroids. A biomass regression model was built by eight newly developed GD metrics using GAI information and five pre-existing GD-derived metrics that have not previously been used for biomass estimation. The performance of the regression model was then compared to another regression model using 12 previously published metrics (non-GD metrics). The Random Forests (RF) regression algorithm was employed for predicting biomass. The RF out-of-bag results indicated that above-ground biomass estimations using GD metrics achieved significantly better results than those derived from non-GD metrics for deciduous plots (19% lower root mean square error (RMSE), 25% higher coefficient of determination (R2), and marginally better results in coniferous plots (4% lower RSME, 6% higher R2). The combination of GD and non-GD metrics achieved comparable biomass estimation results to the model using exclusively GD metrics. GD metrics also showed strong correlation with forest attributes such as mean diameter at breast height (DBH) and stem density. This study contributes to the usage of GD results for accurate estimation of forest above-ground biomass in large-footprint lidar waveform data in temperate deciduous forests, because temperate deciduous forests have been proved challenging in regard to lidar-derived biomass estimations.  相似文献   

17.
Most terrestrial carbon is stored in forest biomass, which plays an important role in local, regional, and global climate change. Monitoring of forests and their status, and accurate estimation of forest biomass are important in mitigating the impacts of climate change. Empirical models developed using remote-sensing and field-measured forest data are commonly used to estimate forest biomass. In the present study, we used a mechanistic model to estimate height and biomass in the Three Gorges reservoir region (China) based on the allometric scale and resource limits (ASRL) model. The forests in the Three Gorges reservoir region are important and unique in view of the vertical distribution of vegetation and mixed needleleaf. Detailed information about the forest in this region is available from the Geoscience Laser Altimeter System (GLAS) and field measurements from 714 forest plots. The ASRL model parameters were adjusted using GLAS-derived forest tree height to reduce the deviation between modelled and observed forest height. The predicted maximum forest tree height from the optimized ASRL model was compared to measured tree heights, and a good correlation (R2 = 0.566) was found. The allometric scale function between forest height and diameter at breast height (DBH) is developed and the maximum forest tree height from the optimized ASRL model transferred to DBH. Moreover, the forest biomass was estimated from DBH according to the allometric scale function that was determined using DBH and biomass data. The results of maximum forest biomass using the ASRL model and the allometric scale function show a good accuracy (R2 = 0.887) in the Three Gorges reservoir region. Here, we present the forest biomass estimation approach following allometric theory for accurate estimation of maximum forest tree height and biomass. The proposed approach can be applied to forest species in all types of environmental conditions.  相似文献   

18.
Meso-scale digital terrain models (DTMs) and canopy-height estimates, or digital canopy models (DCMs), are two lidar products that have immense potential for research in tropical rain forest (TRF) ecology and management. In this study, we used a small-footprint lidar sensor (airborne laser scanner, ALS) to estimate sub-canopy elevation and canopy height in an evergreen tropical rain forest. A fully automated, local-minima algorithm was developed to separate lidar ground returns from overlying vegetation returns. We then assessed inverse distance weighted (IDW) and ordinary kriging (OK) geostatistical techniques for the interpolation of a sub-canopy DTM. OK was determined to be a superior interpolation scheme because it smoothed fine-scale variance created by spurious understory heights in the ground-point dataset. The final DTM had a linear correlation of 1.00 and a root-mean-square error (RMSE) of 2.29 m when compared against 3859 well-distributed ground-survey points. In old-growth forests, RMS error on steep slopes was 0.67 m greater than on flat slopes. On flatter slopes, variation in vegetation complexity associated with land use caused highly significant differences in DTM error distribution across the landscape. The highest DTM accuracy observed in this study was 0.58-m RMSE, under flat, open-canopy areas with relatively smooth surfaces. Lidar ground retrieval was complicated by dense, multi-layered evergreen canopy in old-growth forests, causing DTM overestimation that increased RMS error to 1.95 m.A DCM was calculated from the original lidar surface and the interpolated DTM. Individual and plot-scale heights were estimated from DCM metrics and compared to field data measured using similar spatial supports and metrics. For old-growth forest emergent trees and isolated pasture trees greater than 20 m tall, individual tree heights were underestimated and had 3.67- and 2.33-m mean absolute error (MAE), respectively. Linear-regression models explained 51% (4.15-m RMSE) and 95% (2.41-m RMSE) of the variance, respectively. It was determined that improved elevation and field-height estimation in pastures explained why individual pasture trees could be estimated more accurately than old-growth trees. Mean height of tree stems in 32 young agroforestry plantation plots (0.38 to 18.53 m tall) was estimated with a mean absolute error of 0.90 m (r2=0.97; 1.08-m model RMSE) using the mean of lidar returns in the plot. As in other small-footprint lidar studies, plot mean height was underestimated; however, our plot-scale results have stronger linear models for tropical, leaf-on hardwood trees than has been previously reported for temperate-zone conifer and deciduous hardwoods.  相似文献   

19.
Many areas of forest across northern Canada are challenging to monitor on a regular basis as a result of their large extent and remoteness. Although no forest inventory data typically exist for these northern areas, detailed and timely forest information for these areas is required to support national and international reporting obligations. We developed and tested a sample-based approach that could be used to estimate forest stand height in these remote forests using panchromatic Very High Spatial Resolution (VHSR, < 1 m) optical imagery and light detection and ranging (lidar) data. Using a study area in central British Columbia, Canada, to test our approach, we compared four different methods for estimating stand height using stand-level and crown-level metrics generated from the VHSR imagery. ‘Lidar plots’ (voxel-based samples of lidar data) are used for calibration and validation of the VHSR-based stand height estimates, similar to the way that field plots are used to calibrate photogrammetric estimates of stand height in a conventional forest inventory or to make empirical attribute estimates from multispectral digital remotely sensed data. A k-nearest neighbours (k-NN) method provided the best estimate of mean stand height (R 2 = 0.69; RMSE = 2.3 m, RMSE normalized by the mean value of the estimates (RMSE-%) = 21) compared with linear regression, random forests, and regression tree methods. The approach presented herein demonstrates the potential of VHSR panchromatic imagery and lidar to provide robust and representative estimates of stand height in remote forest areas where conventional forest inventory approaches are either too costly or are not logistically feasible. While further evaluation of the methods is required to generalize these results over Canada to provide robust and representative estimation, VHSR and lidar data provide an opportunity for monitoring in areas for which there is no detailed forest inventory information available.  相似文献   

20.
Leaf area index (LAI) is a key vegetation biophysical parameter and is extensively used in modelling of phenology, primary production, light interception, evapotranspiration, carbon, and nitrogen dynamics. In the present study, we attempt to spatially characterize LAI for natural forests of Western Ghats India, using ground based and Landsat-8 Operational Land Imager (OLI) sensor satellite data. For this, 41 ground-based LAI measurements were carried out across a gradient of tropical forest types, viz. dry, moist, and evergreen forests using LAI-2200 plant canopy analyser, during the month of March 2015. Initially, measured LAI values were regressed with 15 spectral variables, including nine spectral vegetation indices (SVIs) and six Landsat-8 surface reflectance (ρ) variables using univariate correlation analysis. Results showed that the red (ρred), near-infrared (ρNIR), shortwave infrared (ρSWIR1, ρSWIR2) reflectance bands (R2 > 0.6), and all SVIs (R2 > 0.7) except simple ratio (SR) have the highest and second highest coefficient of determination with ground-measured LAI. In the second step, to select significant (high R2, low root mean square error (RMSE), and p-level < 0.05) SVIs to determine the best representative model, stepwise multiple linear regression (SMLR) was implemented. The results indicate that the SMLR model predicted LAI with better coefficient of determination (R2 = 0.83, RMSE = 0.78) using normalized difference vegetation index, enhanced vegetation index, and soil-adjusted vegetation index variables compared to the univariate approach. The predicted SMLR model was used to estimate a spatial map of LAI. It is desirable to evaluate the stability and potentiality of regional LAI models in natural forest ecosystems against the operationally accepted Moderate Resolution Imaging Spectroradiometer (MODIS) global LAI product. To do this, the Landsat-8 pixel-based LAI map was resampled to 1 km resolution and compared with the MODIS derived LAI map. Results suggested that Landsat-8 OLI-based VIs provide significant LAI maps at moderate resolution (30 m) as well as coarse resolution (1 km) for regional climate models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号