首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
淀粉的湿热处理及其发展前景   总被引:3,自引:0,他引:3  
在不损伤淀粉颗粒结构的情况下,热液处理能改变淀粉的物化性质。热液处理包括热处理和湿热处理。20世纪30年代,研究者做了第一个热液试验,在低于糊化温度的情况下,研究者又对半干淀粉进行了处理。通过这个试验人们第一次认识到通过控制加热温度和淀粉的含水量以及处理时间就可以不破损颗粒大小、颗粒形状和偏光十字等来改变淀粉的性质。热处理和湿热处理是淀粉的两种物理变性方法。  相似文献   

2.
采用快速黏度分析法、离心法、差示扫描量热分析法、动态流变仪分析法等,研究了干热与湿热处理对3种不同直链淀粉含量的玉米淀粉糊化性质、膨润性质、热力学性质、流变性质的影响,为淀粉的物理改性研究和加工应用提供理论依据。结果表明,干热处理使淀粉更易糊化,表现为3种玉米淀粉糊化温度降低,溶解度、膨胀度增加。湿热处理加大糊化难度,使3种玉米淀粉的糊化温度升高,膨胀度降低。热处理使玉米淀粉糊稠度、糊化焓值降低。蜡质玉米淀粉经热处理后,溶解度和老化率增加。流变性质测定结果表明,湿热处理不利于高直链玉米淀粉黏弹性凝胶的形成。  相似文献   

3.
目的:研究湿热处理温度对多孔淀粉理化性质的影响。方法:将湿热处理温度分别控制在110、115和120℃,在水分含量为15%条件下湿热处理1 h,研究在该条件下湿热处理对多孔淀粉结构和性质的影响。结果:在水浴温度为85℃条件下多孔淀粉溶解度随湿热处理温度的增加而增加,膨胀度随着湿热处理温度的增加而下降;多孔淀粉吸油率随湿热处理温度的升高而增加;多孔淀粉糊的透光率随湿热处理温度的升高而下降,淀粉糊冻融稳定性、起始糊化温度和热糊稳定性随着湿热处理温度的升高而增强,糊化峰值粘度随湿热处理温度的升高而降低;湿热处理温度对多孔淀粉的结晶结构影响不大,多孔淀粉依然为A型结晶结构,随处理温度的升高其结晶度略有降低;当湿热处理温度为115℃时,其抗性淀粉含量最高,达27.67%。结论:湿热处理温度对多孔淀粉理化性质有明显影响,且随着湿热处理温度的不同存在差异性。  相似文献   

4.
以小麦B淀粉为原料,在120℃和30%含水量条件下对小麦B淀粉进行反复湿热处理和连续湿热处理,分析并比较两种处理方法对淀粉结构、理化性质和消化特性的影响。结果表明:反复和连续湿热处理后,淀粉颗粒表面出现孔洞,淀粉双螺旋结构、结晶区和无定形区被破坏,淀粉分子发生重新排列和分布。这些变化导致淀粉的结晶度降低,糊化黏度下降,凝胶温度升高,解螺旋所需能量下降。同时,与连续湿热处理相比,反复湿热处理能更显著地改变淀粉的结构、理化性质和消化特性。本研究结果揭示了湿热改性淀粉的变性机理,为小麦B淀粉的深度开发利用提供试验依据。  相似文献   

5.
湿热处理改性淀粉的研究进展   总被引:2,自引:1,他引:2  
湿热处理是改性淀粉的一种新的物理方法。本文列举了不同种类淀粉的湿热处理条件,对湿热处理影响淀粉的理化性质如颗粒形貌、糊化性质、以及对酸和酶的敏感性等作了概述。最后阐述了湿热处理对淀粉作用的机理及发展。  相似文献   

6.
湿热处理是改性淀粉的一种新的物理方法。本文列举了不同种类淀粉的湿热处理条件,对湿热处理影响淀粉的理化性质如颗粒形貌、糊化性质、以及对酸和酶的敏感性等作了概述。最后阐述了湿热处理对淀粉作用的机理及发展。  相似文献   

7.
热处理改性淀粉具有操作简单、污染少、产品安全性高的优点,是最常用的淀粉物理改性方法。主要总结了干热处理、湿热处理和韧化处理对淀粉理化性质、结构性质和消化性质的影响,也总结了添加亲水胶体辅助热处理和多种热处理方法联合处理对淀粉理化性质及消化性质的影响。研究发现热处理改性能够提高淀粉热稳定性和抗消化能力。热处理改性对淀粉性质的影响与热处理改性方式、淀粉种类和来源有关,其中湿热处理和韧化处理过程水分含量较高,能使淀粉的溶胀力和溶解度发生显著改变。三种热处理方法均能够改变淀粉相对结晶度,湿热处理还能改变淀粉的结晶晶型。除韧化处理外,干热处理和湿热处理均能改变淀粉颗粒结构。添加亲水胶体辅助热处理或热处理方法联合处理能增强热处理改性对淀粉理化性质和消化性质的影响。这为热处理改性淀粉的进一步研究及应用提供参考。  相似文献   

8.
对木薯淀粉进行湿热处理,研究了不同初始含水量对木薯淀粉结构和性质的影响.实验结果表明:经湿热处理后的木薯淀粉颗粒表面出现凹坑,随着初始含水量增加,淀粉颗粒表面凹坑的数量增加,同时黏结现象变得严重;湿热处理木薯淀粉的糊化温度随着初始含水量的增加而升高;经湿热处理后,木薯淀粉对酸和酶的敏感性增加,更容易被酸和酶水解.  相似文献   

9.
汪树生  王强  苏玉春 《食品科学》2009,30(13):77-80
利用烘箱和高压灭菌锅对水分含量分别为10%、18%、25%、30% 的玉米淀粉在121℃处理5h,研究淀粉性质发生改变的情况。实验结果表明,玉米淀粉经湿热处理后,淀粉颗粒中心出现凹坑,颗粒结晶程度增加,淀粉的糊化温度上升,糊液黏度降低,在相同的处理条件下,利用高压灭菌锅处理对淀粉的性质影响更为显著。湿热处理对淀粉的性质产生明显影响。  相似文献   

10.
热液处理对淀粉性质的影响研究   总被引:1,自引:0,他引:1  
对热处理、湿热处理和压热处理对多种淀粉的性质的影响结果作了总结,并概括地分析了产生影响的原因。综述了谷物类淀粉、薯类淀粉以及豆类淀粉在热液处理过程中的性质变化,包括理化性质、糊的流变学性质、热力学性质以及淀粉颗粒形态。热处理、湿热处理和压热处理都会降低淀粉的溶解度、膨胀度、粘度、透明度和冻融稳定性而提高抗性淀粉含量和抗酶能力。热处理和湿热处理过程中谷物类淀粉的胶体结构和结晶结构基本不变,保持了A形,而薯类淀粉则发生了从C形向A形的转变。湿热处理和热处理对淀粉颗粒形态的影响不如压热处理显著,压热处理淀粉颗粒几乎完全碎裂。  相似文献   

11.
Using non-conventional starch can benefit the industry since it can present different properties. It also can lead to new properties upon physical modification, which improves its derivate film properties. Therefore, the aim of this work is to evaluate the heat–moisture treatment (HMT) on pinhão starch and its effectiveness in film properties. After isolation using water as a solvent, the pinhão starch is treated by HMT for 16 h at 110 °C. Native and HMTed starches are used to produce biodegradable films. Pinhão starch and starch films chemical and physical properties are properly characterized. The HMT causes some changes in short-range ordered structures, reduces the relative crystallinity, and shifts the pinhão starch from C-type to A-type. Also, HMT decreases the peak viscosity and the breakdown, and improves thermal stability. These starch changes upon HMT reduces water vapor permeability, increases tensile strength, and elongation at the break of pinhão starch films. Desirable changes in starch and film properties are achieved by physically modifying pinhão starch using HMT, which is a promising alternative to chemical modifications.  相似文献   

12.
The effects of annealing (ANN) and heat-moisture treatments (HMT) on the physicochemical and functional properties of Sword bean starches were investigated. The pasting properties differ significantly among the starches, with peak viscosity ranging from 399.17 RVU to 438.33 RVU; however, all the starches exhibited ‘Type C’ class with restricted swelling. The HMT starches had the highest gelatinization temperature, while change in enthalpy of gelatinization, ΔHgel of the native starch, was higher (13.82 J/g) than that of the modified starches (1.39–6.74 J/g). The solubility and swelling power of all the starches increased as the temperature increased. The oil and water absorption capacity of the starches ranges between 3.24–3.91 g/g and 2.42–3.35 g/g, respectively. HMT (at 25 and 30% moisture level) changes the X-ray diffraction pattern of the starch from Type ‘B’ to Type ‘C’. The Scanning electron micrograph results revealed the starch granules with smooth ellipsoids and indentation in their centre, hydrothermal modification showed little effect on the morphology and size of the granules. Hydrothermal modification improved the physicochemical and functional properties of the starch without destroying the granule of the starch.  相似文献   

13.
Plasma-activated water (PAW) production and use is an emerging technology for enhancing product safety, extending shelf-life and quality retention, and promoting sustainable processing. At present, it has generated considerable attention for applications to starch and flour modification. This work presents an innovative approach to wheat flour (WF) modification using PAW and heat-moisture treatment (HMT), and compares this approach with distilled water (DW) treatment. As expected, PAW and HMT promoted flour granule clustering, increasing particle size. These treatments accelerated molecular interactions between wheat starch and non-starch components (e.g. proteins and lipids), which eventually increased resistant starch (RS) content. Addition of modified flour (30 g) to WF positively affected its rheological properties, and closely bound water content of the dough. The gluten protein network structure in the dough suffered varying degrees of damage. In conclusion, our results showed that PAW and HMT may provide a novel beneficial method for modifying wheat flour during food processing to obtain viscoelastic wheat flour products with nutritional functions.  相似文献   

14.
Sweetpotato starches were characterized to understand the changes upon modification by acid and heat‐moisture treatment (HMT) in the rheological, differential scanning calorimetry (DSC), and textural characteristics of starch isolated from the sweetpotato variety PSP‐21 and to compare these findings with those of commercially available arrowroot starch. The native sweetpotato starch had a Type A pasting profile characterized by a high peak viscosity (PV) (741.5 rapid viscoanalyzer unit [rvu]), with a high breakdown (378.8 rvu) and low cold paste viscosity (CPV) (417.6 rvu). After HMT, there was a marked decrease in the PV (639.1), a very slight breakdown (113.5 rvu) and an increase in CPV (759.5 rvu), more like a Type C pasting profile. However, acid modification did not notably change the pasting profile of native sweetpotato starch. The DSC characteristics were also affected significantly after modifications. The gelatinization temperature parameter to onset (To) decreased significantly after HMT and acid modification. The gelatinization enthalpy decreased during HMT from 15.98 to 14.42 J/g. The gel strength of acid‐modified starch was the highest compared with that of HMT and native sweetpotato and arrowroot starches.  相似文献   

15.
以绿豆淀粉为原料,采用湿热处理制备颗粒态抗性淀粉,并研究其颗粒形貌、直链淀粉含量、溶胀度、黏度及结晶性质等。试验表明:淀粉经过湿热处理后,抗性淀粉含量显著提高;湿热处理淀粉仍保持完整的颗粒外观,属于颗粒态抗性淀粉,部分淀粉颗粒表面出现了裂纹和凹坑,偏光十字强度有所减弱;湿热处理淀粉的直链淀粉含量明显增加,而溶解度、膨胀度和峰值黏度下降,淀粉糊化变得困难;X-射线衍射图谱表明原淀粉和湿热处理淀粉都为"A"型结晶,且湿热处理淀粉在15.2°、17.4°、22.9°左右的衍射峰强度有所加强。  相似文献   

16.
This study investigated the effects of sodium hypochlorite oxidation and a heat-moisture treatment of potato starch on the physicochemical, pasting and textural properties of potato starches in addition to the water vapour permeability (WVP) and mechanical properties of potato starch films produced from these starches. The carbonyl contents, carboxyl contents, swelling power, solubility, pasting properties and gel texture of the native, oxidised and heat-moisture treated (HMT) starches were evaluated. The films made of native, oxidised and HMT starches were characterised by thickness, water solubility, colour, opacity, mechanical properties and WVP. The oxidised and HMT starches had lower viscosity and swelling power compared to the native starch. The films produced from oxidised potato starch had decreased solubility, elongation and WVP values in addition to increased tensile strength compared to the native starch films. The HMT starch increased the tensile strength and WVP of the starch films compared to the native starch.  相似文献   

17.
Waxy, normal and high-amylose maize starches were subjected to heat-moisture treatment (HMT) and then added to wheat flour (WF) in different ratios (1%, 5% and 10%). The properties of blends and their cooked noodles were studied to investigate the effects of HMT starches. The incorporation of HMT starch in WF led to an increase in swelling power, peak viscosity and breakdown and to a decrease in setback, thus inhibiting retrogradation, hence enhancing resultant noodle softness. Compared to the same addition ratio of native starch to WF, HMT starch led to higher tensile strength and extensibility in resultant noodles. WF with added HMT starch had higher resistant starch than with native starch. This study showed that addition of HMT maize starch has potential to bring nutritional benefits. However, it is necessary to select the proper blending ratio and amylose content of starch to add, in consideration of its effect on noodle quality.  相似文献   

18.
为了研究薏仁米除淀粉外的其他营养组分对水和热的屏障作用,对3 种薏仁米(大粒薏仁米(big Coix seed,BCS)、小粒薏仁米(small Coix seed,SCS)和半透明薏仁米(translucent Coix seed,TCS))进行湿热处理,分离提取得到薏仁米谷粒湿热处理(heat-moisture treatment,HMT)淀粉,运用扫描电子显微镜、普通光学显微镜、激光粒度仪、X射线衍射仪、傅里叶变换红外光谱仪、差示扫描量热仪等对HMT淀粉进行测定,比较处理前后淀粉的差异,探究HMT对淀粉形态、大小、结构、热特性的影响。结果表明,HMT使得淀粉颗粒表面破损、气孔增大、偏光十字减弱,淀粉双螺旋结构、结晶区和无定形区被破坏,淀粉与淀粉分子、蛋白质、脂类等的作用加强,淀粉分子有不同程度的重排。这些变化使得淀粉凝胶温度升高,晶体内异质性减弱,解螺旋所需能量下降,其中BCS淀粉的变化较小,直链淀粉含量高的TCS淀粉受HMT影响最大。因此,应依据HMT前后不同淀粉的变化在加工过程中进行合理的应用。  相似文献   

19.
The aim of this work was to study the effects of heat‐moisture treatment (27% moisture, 100°C, 16 h) and of enzymatic digestion (alpha‐amylase and glucoamylase) on the properties of sweet potato (SP), Peruvian carrot (PC) and ginger (G) starches. The structural modification with heat‐moisture treatment (HMT) affected crystallinity, enzyme susceptibility and viscosity profile. The changes in PC starch were the most pronounced, with a strong decrease of relative crystallinity (from 0.31 to 0.21) and a shift of X‐ray pattern from B‐ to A‐type. HMT of SP and G starch did not change the X‐ray pattern (A‐type). The relative crystallinity of these starches changed only slightly, from 0.32 to 0.29 (SP) and from 0.33 to 0.32 (G). The extent of these structural changes (PC > SP > G) altered the susceptibility of the starches to enzymatic attack, but not in same order (PC > G > SP). HMT increased the starches digestion, probably due to rearrangement of disrupted crystallites, increasing accessible areas to attack of enzymes. The viscosity profiles and values changed significantly with HMT, resulting in higher pasting temperatures, decrease of viscosity values and no breakdown, i.e., stability at high temperatures and shear rates. Changes in pasting properties appeared to be more significant for PC and SP starch, whereas the changes for G starch were small. Setback was minimized following HMT in SP and G starches.  相似文献   

20.
Mung bean starch was subjected to a range of heat-moisture treatments (HMT) based on different moisture contents (15%, 20%, 25%, 30%, and 35%) all heated at 120 °C for 12 h. The impact on the yields of resistant starch (RS), and the microstructure, physicochemical and functional properties of RS was investigated. Compared to raw starch, the RS content of HMT starch increased significantly, with the starch treated at 20% moisture having the highest RS content. After HMT, birefringence remained at the periphery of the granules and was absent at the center of some granules. The shape and integrity of HMT starch granules did not change but concavity was observed under scanning electronic microscopy. Apparent amylose contents of HMT starch increased and the HMT starch was dominated by high molecular weight fraction. Both the native and HMT starches showed A-type X-ray diffraction pattern. Relative crystallinity increased after HMT. The gelatinization temperatures (To, Tp, and Tc), gelatinization temperature range (Tc–To) and enthalpies of gelatinization (ΔH) increased significantly in HMT starch compared to native starch. The solubility increased but swelling power decreased in HMT starches. This study clearly shows that the HMT exhibited thermal stability and resistance to enzymatic hydrolysis owing to stronger interactions of starch chains in granule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号