首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fe3+-doped TiO2 (Fe-TiO2) porous microspheres were prepared by controlled hydrolysis of Ti(OC4H9)4 with water generated "in situ" via an esterification reaction between acetic acid and ethanol, followed by hydrothermal treatment. The samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic absorption flame emission spectroscopy (AAS), electron paramagnetic resonance (EPR) spectrum, X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectroscopy (DRS), and nitrogen adsorption-desorption methods. All of the undoped TiO2 and Fe-TiO2 samples exclusively consist of primary anatase crystallites, which further form porous microspheres with diameters ranging from 150 to 500 nm. The photocatalytic activity of Fe-TiO2 catalysts was evaluated from the photodegradation of methyl orange (MO) aqueous solution both under UV and visible light irradiation. Fe3+ doping effectively improves the photocatalytic activity under both UV light irradiation and visible light irradiation with an optimal doping concentration of 0.1 and 0.2%, respectively. The photocatalytic mechanisms of Fe-TiO2 catalysts were tentatively discussed.  相似文献   

2.
A type of nitrogen and cerium co-doped titania photocatalyst, which could degrade nitrobenzene under visible light irradiation, was prepared by the sol-gel route. Titanium isopropoxide, ammonium nitrate, and cerium nitrate were used as the sources of titanium, nitrogen, and cerium, respectively. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffusive reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and N(2) adsorption-desorption isotherm were employed to characterize the as-prepared photocatalyst. The degradation of nitrobenzene under visible light illumination was taken as probe reaction to evaluate the photoactivity of the co-doped photocatalyst. The commercial TiO(2) photocatalyst (Degussa P25), which was thought as a high active photocatalyst, was chosen as standard photocatalyst to contrast the photoactivity of the nitrogen and cerium co-doped titania photocatalyst. The results showed that the photocatalytic performance of the nitrogen and cerium co-doped titania was related with the calcination temperature and the component. The nitrogen atoms were incorporated into the crystal of titania and could narrow the band gap energy. The doping cerium atoms existed in the forms of Ce(2)O(3) and dispersed on the surface of TiO(2). The improvement of the photocatalytic activity was ascribed to the synergistic effects of the nitrogen and cerium co-doping.  相似文献   

3.
F-doped TiO2 loaded with Ag (Ag/F-TiO2) was prepared by sol-gel process combined with photoreduction method. The physical and chemical properties of the prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), high-resolution transmission electron microscope (HRTEM), UV-Vis diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). XPS analysis indicated Ag species existed as Ag0 in the structure of Ag/F-TiO2 samples. UV-Vis diffuse reflectance spectra showed that the light absorption of Ag/F-TiO2 in the visible region had a significant enhancement compared with the F-doped TiO2 (F-TiO2). PL analysis indicated that the electron-hole recombination rate had been effectively inhibited when Ag loaded on the surface of F-TiO2. The photocatalytic activities of the samples were evaluated for the degradation of X-3B (Reactive Brilliant Red dye, C.I. reactive red 2) under visible light (lambda > 420 nm) irradiation. Compared with F-TiO2, the sample of 0.50 Ag/F-TiO2 showed the highest photocatalytic activity. The interaction between F species and metallic Ag was responsible for improving the visible light photocatalytic activity.  相似文献   

4.
Nitrogen-doped titanium dioxide powders were prepared by wet method, that is, the hydrolysis of acidic tetra-butyl titanate using aqueous ammonia solution, followed by calcination at temperatures about 350 degrees C. The catalysts exhibited photocatalytic activity in the visible light region owing to N-doping. The light absorption onset of TiO(2-x)N(x) was shifted to the visible region at 459 nm compared to 330 nm of pure TiO(2). An obvious decrease in the band gap was observed by the optical absorption spectroscopy, which resulted from N2p localized states above the valence band of TiO(2-x)N(x) (compared to TiO(2)). The TiO(2-x)N(x) catalyst was characterized to be anatase with oxygen-deficient stoichiometry by X-ray diffraction (XRD), surface photovoltage spectroscopy (SPS) and X-ray photoelectron spectroscopy (XPS). The binding energy of N1s measured by XPS characterization was 396.6 eV (TiN bonds, beta-N) and 400.9 eV (NN bonds, gamma-N(2)), respectively. The photocatalytic activity of TiO(2-x)N(x) under visible light was induced by the formation of beta-N in the structure. Photocatalytic decomposition of benzoic acid solutions was carried out in the ultraviolet and visible (UV-vis) light region, and the TiO(2-x)N(x) catalyst showed higher activity than pure TiO(2).  相似文献   

5.
In this paper, F-TiO(2) and TiN/F-TiO(2) nanoparticle photocatalysts were prepared by ball milling. The photocatalysts were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), terephthalic acid photoluminescence probing technique (TA-PL), X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflection spectroscopy (DRS). The photocatalytic activity of the photocatalysts was evaluated by photocatalytic degradation of methylene blue (MB) and rhodamine B (RhB). The results showed that the photocatalytic activity of the F-TiO(2) was much higher than that of TiO(2), and the photocatalytic activity of the TiN/F-TiO(2) was much higher than that of TiO(2) and F-TiO(2) under UV light irradiation. The optimum percentage of doped TiN is 0.2 wt.%. Compared with pure TiO(2), the photoabsorption wavelength range of the TiN/F-TiO(2) and F-TiO(2) photocatalysts red shifts and improves the utilization of the total spectrum. The effect of ball milling time on the photocatalytic activity of the photocatalysts was also investigated. The optimum ball milling time is 12 h. The mechanisms of influence on the photocatalytic activity of the photocatalysts were also discussed.  相似文献   

6.
An efficient method for the preparation of N-F-codoped visible light active TiO2 nanorod arrays is reported. In the process, simultaneous nitrogen and fluorine doped TiO2 nanorod arrays on the glass substrates were achieved by liquid phase deposition method using ZnO nanorod arrays as templates with different calcination temperature. The as-prepared samples were characterized by Raman spectroscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and UV-vis absorption spectra measurements. It was found that calcination temperature is an important factor influencing the microstructure and the amount of N and F in TiO2 nanorod arrays samples. The visible light photocatalytic properties were investigated using methylene blue (MB) dye as a model system. The results showed that N-F-codoped TiO2 nanorod arrays sample calcined at 450 °C demonstrated the best visible light activity in all samples, much higher than that of TiO2 nanoparticles and P25 particles films.  相似文献   

7.
Pd-modified TiO(2) prepared by thermal impregnation method was used in this study for photocatalytic oxidation of NO in gas phase. The physico-chemical properties of Pd/TiO(2) catalysts were characterized by X-ray diffraction analysis (XRD), Brunauer-Emmett-Teller measurements (BET), X-ray photoelectron spectrum analysis (XPS), transmission electron microscopy (TEM), high resolution-transmission electron microscopy (HR-TEM), UV-vis diffuse reflectance spectra (UV-vis DRS) and photoluminescence spectra (PL). It was found that Pd dopant existed as PdO particles in as-prepared photocatalysts. The results of PL spectra indicated that the photogenerated electrons and holes were efficiently separated after Pd doping. During in situ XPS study, it was found that the content of hydroxyl groups on the surface of Pd/TiO(2) increased when the catalyst was irradiated by UV light, which could result in the improvement of photocatalytic activity. The activity test showed that the optimum Pd dopant content was 0.05 wt.%. And the maximum conversion of NO was about 72% higher than that of P25 when the initial concentration of NO was 200 ppm, which showed that Pd/TiO(2) photocatalysts could be potentially applied to oxidize higher concentration of NO.  相似文献   

8.
The photocatalytic degradation of 2-chlorophenol (2-CP) irradiated with visible light over iodine doped TiO(2) (IT) modified with SnO(2) (SIT) nanoparticles has been investigated in this study. The structure and optical properties of the SIT catalysts have been well characterized by X-ray diffraction, the Brunauer-Emmett-Teller method, transmission electron microscopy, UV-visible absorption spectra and X-ray photoelectron spectroscopy. The effects of preparation conditions, such as SnO(2) content and calcination temperature, on the photocatalytic degradation efficiency have been surveyed in detail. The improved photocatalytic activity of SIT is derived from the synergistic effect between the SnO(2) and IT, which promoted the efficiency of migration of the photogenerated carriers at the interface of the catalysts and thereby enhanced the efficiency of photon harvesting in the visible region. The action of scavengers (fluoride ion, iodide ion, tert-butyl alcohol, and persulfate ion), as well as N(2) purging on the photodegradation rate reveal that the valence band hole is mainly responsible for the effective photocatalytic removal of 2-CP and the corresponding TOC reduction.  相似文献   

9.
采用溶胶-凝胶法制备铜掺杂的纳米二氧化钛颗粒。应用X射线衍射(XRD)、透射电子显微镜(TEM)、扫描透射电子显微镜(STEM)、X射线光电子能谱(XPS)和紫外-可见分光光度计(UV-Vis)技术对纳米二氧化钛颗粒的物相组成、平均晶粒尺寸、微观结构、化学态及光吸收性能进行表征。结果表明:Cu掺杂抑制TiO_2的相变,在650℃时Cu的氧化物CuO在TiO_2颗粒表面出现,掺杂的Cu离子以Cu^+的形式存在。掺杂Cu的TiO_2光吸收带边显著红移,随着Cu掺杂量的提高,样品光吸收度提高,随着温度的升高,样品紫外-可见光光谱吸收带边红移。  相似文献   

10.
为了提高TiO2/Ti光电极在可见光下的光电催化活性,采用阳极氧化法制备了一种新型的硫掺杂TiO2/Ti光电极.采用扫描电子显微镜、X射线衍射、X射线荧光光谱等技术对光电极进行了表面形貌、结晶形态、晶粒尺寸、硫的掺杂量和价态以及吸光性能表征.研究表明:硫掺杂TiO2/Ti光电极的最佳制备条件为:成膜电压160V、电流密度100mA/cm2、Na2SO3质量浓度750mg/L;所制备的光电极具有良好的光电催化氧化降解邻苯二甲酸二甲酯活性,并能有效地矿化其中间产物;与TiO2/Ti电极相比,硫的掺杂可以显著提高其在可见光下的光电催化性能.  相似文献   

11.
首先合成高结晶度的BiOBr纳米片,然后利用光化学气相沉积(PCVD)法将不同含量的Pd纳米粒子沉积在BiOBr纳米片上.运用N,一物理吸附.脱附、x射线粉末衍射(XRD)、透射电镜(TEM)、x射线光电子能谱(xIX3)、光致发光(PL)谱、紫外可见漫反射吸收光谱(uV-VisDRS)技术对合成的Pd/BiOBr进行了表征.考察了Pd含量对BiOBr光吸收性能和紫外光(A=254am)、可见光下对染料酸性橙Ⅱ的光催化降解性能的影响.结果表明,沉积Pd对样品的比表面积影响不大,Pd纳米粒子能在一定程度上增强催化剂对可见光的吸收能力,并显著抑制光生电子和空穴的复合.紫外光下,当Pd的质量分数为0.5%时,BiOBr催化降解染料的活性提高到1.6倍,而在可见光下含4%的Pd能使BiOBr表现出最高的催化活性,为纯BiOBr的1.5倍.  相似文献   

12.
A series of nitrogen and erbium co-doped TiO2 photocatalyst was prepared by sol-hydrothermal method. The structure and properties of the photocatalyst were characterized by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) method, X-ray photoelectron spectroscopy (XPS), and UV-vis diffuse reflectance spectra (DRS). The XRD and BET results showed that co-doping inhibited the increase of crystallite size and enlarged specific surface areas. XPS spectroscopy indicated nitrogen atoms were incorporated into TiO2 lattice, and erbium atoms mostly existed in the forms of Er2O3. A shift of the absorption edge to the lower energy and four absorption bands located at 654, 544, 524 and 489 nm attributed to the 4f transitions of 4I15/2 --> 4F2/9, 4I15/2 --> 4S3/2, 4I15/2 --> 2H11/2, 4I15/2 --> 4F7/2 of Er3+ were observed using DRS spectroscopy. The catalytic efficency was evaluated by the photocatalytic degradation of methyl orange (MO) under visible light irradiation. The results showed that the photocatalytic performance of the co-doped TiO2 was related with the hydrothermal temperature and the molar ratio of N/Ti, and they showed higher acitivites than pure TiO2. Results determined by fluorescence technique revealed that irradiation (lambda > 400 nm) of TiO2 photocatalyst dispersed in MO solution induces the generation of the highly active hydroxyl radicals (OH). It indicated the photocatalytic activities of TiO2 photocatalyst were correlation with the formation rate of hydroxyl radicals (OH) and other active oxygen species.  相似文献   

13.
Nanocrystalline photocatalysts of TiO2 codoped with yttrium and nitrogen were prepared by the sol–gel method and investigated by X-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), the Brunauer–Emmett–Teller (BET) surface area measurement, X-ray photoelectron spectroscopy (XPS) and ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS), respectively. Slight red-shifts of the Raman peak at 144 cm?1 were observed in the doped samples after the incorporation of Y3+ and N3? into the lattice of TiO2. The N doping caused the improvement of visible light absorption because of the formation of the N 2p states isolated above the valence band maximum of TiO2. Whereas, the absorption property of the pure or N doped TiO2 was depressed after the introduction of Y. The photocatalytic activities of the samples were evaluated by monitoring the degradation of methylene blue (MB) solution. The codoped sample with N and 0.05 at.% Y exhibited an enhanced photocatalytic efficiency. It is suggested that the charge trapping due to the Y doping and the visible light response due to the N doping are responsible for the enhanced photocatalytic performance in this sample. However, the photocatalytic activity of the codoped TiO2 was suppressed step by step as the Y doping level increased, which could be attributed to the formation of photogenerated charge carriers recombination centers at the Y substituting sites.  相似文献   

14.
A simple method for preparing highly daylight-induced photoactive nanocrystalline C,N,S-tridoped TiO2 powders was developed by a solid-phase reaction. The as-prepared TiO2 powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-vis diffuse reflectance spectra, N2 adsorption-desorption measurements and transmission electron microscopy (TEM). The photocatalytic activity was evaluated by the photocatalytic oxidation of formaldehyde under daylight irradiation in air. The results show that daylight-induced photocatalytic activities of the as-prepared TiO2 powders were improved by C,N,S-tridoping. The C,N,S-tridoped TiO2 powders exhibited stronger absorption in the near UV and visible-light region with red shift in the band-gap transition. When the molar ratio of CS(NH2)2 to xerogel TiO2 powders (prepared by hydrolysis of Ti(OC4H9)4 in distilled water) (R) was kept in 3, the daylight-induced photocatalytic activities of the as-prepared C,N,S-tridoped TiO2 powders were about more than six times greater than that of Degussa P25 and un-doped TiO2 powders. The high activities of the C,N,S-tridoped TiO2 can be attributed to the results of the synergetic effects of strong absorption in the near UV and visible-light region, red shift in adsorption edge and two phase structures of un-doped TiO2 and C,N,S-tridoped TiO2.  相似文献   

15.
Square-like B doped TiO2 nanocrystals were first synthesized by a mild solvothermal method with H3BO4 and titanium isopropoxide as the precursors, and isopropyl alcohol as reaction medium. Then, Ag nanoparticles were deposited on TiO2-B nanosquares by photo-deposition. The as-synthesized products have been investigated by photocatalytic reaction test and characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and UV–vis diffuse reflectance spectra (DRS). The results showed that boron was successfully doped into TiO2 nanosquares under solvothermal condition. The obtained Ag/TiO2-B composite showed high efficiency in degradation of acid orange II under visible light irradiation. The high photocatalytic performance could be attributed to the synergistic effect of B doping and the plasmon photocatalysis role of the deposited silver nanoparticles over TiO2.  相似文献   

16.
In this work, we describe a novel facile and effective strategy to prepare micrometer-long hybrid nanofibers by deposition of CdS nanoparticles onto the substrate of hydrated bacterial cellulose nanofibers (BCF). Hexagonal phase CdS nanocrystals were achieved via a simple hydrothermal reaction between CdCl(2) and thiourea at relatively low temperature. The prepared pristine BCF and the CdS/BCF hybrid nanofibers were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), UV-vis absorption spectroscopy (UV-vis), and X-ray photoelectron spectroscopy (XPS). The results reveal that the CdS nanoparticles were homogeneously deposited on the BCF surface and stabilized via coordination effect. The CdS/BCF hybrid nanofibers demonstrated high-efficiency photocatalysis with 82% methyl orange (MO) degradation after 90 min irradiation and good recyclability. The results indicate that the CdS/BCF hybrid nanofibers are promising candidate as robust visible light responsive photocatalysts.  相似文献   

17.
N-doped TiO2 nanocrystalline powders were prepared by the sol-gel method using various N precursors, including triethylamine, hydrazine hydrate, ethylenediamine, ammonium hydroxide, and urea. The samples were characterized by X-ray diffraction, N2 adsorption isotherms, transmission electron microscopy, ultraviolet-visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The photocatalytic activities of as-prepared samples under irradiation of visible light (lambda > 405 nm) were evaluated by photodecomposition of methyl orange. The alkalinity of N precursor was found to play a key role in the gel process. The N precursor with moderate alkalinity causes TiO2 nanoparticles to be sol-transformed into a loosely agglomerated gel. This transformation facilitates the preparation of an N-doped TiO2 powder with small nanocrystal size, large specific surface area, and high N doping level and results in high visible light photocatalytic activity. The N in TiO2 with N is binding energy at 399-400 eV may be assigned to the N-H species located in interstitial sites of TiO2 lattice which is the active N species responsible for the visible light photocatalytic activity. The N species of N 1s peak at 402 and 405 eV are ineffective to the visible light photocatalytic activity and may inhibit the photocatalytic activity. Moreover, a TiO2 nanoparticle powder with large specific area can be achieved by using urea as a template and then by using ammonium hydroxide to transform the sol into gel.  相似文献   

18.
(N, F)-codoped anatase TiO2 nanocrystals with active visible light response were prepared by using a simple sol-gel approach. X-ray photoelectron spectroscopy measurements suggested that the substitutional N and F species replaced the lattice oxygen atoms in TiO2 nanocrystals. Such nanocrystals showed strong absorption from 400 to 550 nm, which was mainly induced by nitrogen doping. The phase transformation from anatase to rutile was hindered by fluorine doping at high calcination temperatures, which was verified by XRD patterns. The N2 adsorption-desorption isotherms revealed the absence of mesopores in these nanocrystals. The (N, F)-codoped TiO2 nanocrystals showed satisfying photocatalytic activity on the photo-degradation of methylene blue under visible light.  相似文献   

19.
Superior photoactive TiO(2) nanopowders with high crystallinity and large surface area were synthesized by a hydrothermal process in the presence of cetyltrimethylammonium bromide and a post-treatment with ammonia. The prepared photocatalysts were characterized by X-ray diffraction (XRD), Raman spectroscopy, N(2) adsorption-desorption, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), UV-vis diffuse reflectance spectra (DRS) and surface photovoltage spectroscopy (SPS). The prepared nanocrystallites were highly resistant to thermal sintering, and the calcinations up to 900 degrees C were shown to enhance the crystallinity of the anatase phase without any rutile phase and the separation rate of photoinduced charges of TiO(2) particles. It remained as large as 196 and 125 m(2)/g even after calcinations at 700 and 800 degrees C, respectively. The photocatalytic activity of prepared photocatalysts was obviously higher than that of commercial Degussa P25 on the photodegradation of methylene blue and phenol in water under ultraviolet-light irradiation, and the sample calcined at 800 degrees C afforded the highest photocatalytic activity.  相似文献   

20.
Dong F  Zhao W  Wu Z 《Nanotechnology》2008,19(36):365607
A novel method was developed for preparing high specific surface area (156.2?m(2)?g(-1)) one-dimensional TiO(2) nanostructures co-doped with C, N and S by the nano-confinement effect. A nonmetal doping source (thiourea) was first intercalated into the inner space of H-titanate nanotubes prepared by the hydrothermal method, and then calcined at 450?°C for 2?h in air. The as-prepared C, N and S co-doped TiO(2) nanowires exhibited high visible light and enhanced UV-vis activities in photocatalytic degradation of toluene in the gas phase. The samples were characterized by x-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, fast Fourier transform analysis, x-ray photoelectron spectroscopy, UV-vis diffuse reflectance spectra and photoluminescence. The?results indicated that the anatase nanowires grew along the [101] direction. Doping TiO(2) nanowires with C, N and S could not only broaden the light adsorption spectra into the visible region (400-600?nm), but also inhibit the recombination of photo-induced carriers. A?mechanism is proposed to elucidate the nano-confinement effect of H-titanate nanotubes in the formation of C, N and S co-doping. Based on this mechanism, the effect of C, N and S co-doping on the band structure of TiO(2) nanowires is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号