首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a previous study, the seasonal prevalence was reported for stx+ Escherichia coli O157:H7 in feces and on hides and carcasses of cattle at processing. Overall, 1,697 O157:H7 isolates have now been characterized for the incidence of (i) eae(O157), hlyA, stx1, and stx2 in the recovered isolates and (ii) presumptive rough and presumptive nonmotile isolates. Seven O157:H7 isolates (0.4%) lacked stx genes, although they carried eae and hlyA. All but one of the isolates carried both eae and hlyA. Approximately two-thirds of the isolates (64% when one isolate per sample was considered) carried both stx1 and stx2. E. coli O157:H7 cells that harbored both stx1 and stx2 were more often recovered from hides in the fall (79% of the fall hide isolates) and winter (84% of the winter hide isolates) than in the spring (53%) and summer (59%). Isolates recovered from preevisceration carcasses showed a similar but not statistically significant trend. Twenty-three of the 25 O157:H7 isolates carrying stx1 but not stx2 were recovered during summer. Fifteen presumptive rough and 117 presumptive nonmotile stx+ O157:H7 isolates were recovered. Ten (67%) of the presumptive rough isolates were recovered during summer. Ninety-five of the presumptive nonmotile isolates (81%) were recovered during fall. Forty-eight percent of the false-positive isolates (175 of 363) tentatively identified as O157:H7 were O157+ H7- and lacked eae(O157), hlyA, and stx. These data suggest that in beef processing samples (i) there are minor seasonal variations in the prevalence of stx genes among E. coli O157:H7 isolates, (ii) presumptive rough and presumptive nonmotile stx+ O157:H7 isolates are present, (iii) E. coli O157:H7 isolates lacking stx genes may be rare, and (iv) O157+ H7- isolates lacking stx genes can result in many false-positive results.  相似文献   

2.
Cattle are an important reservoir of Escherichia coli O157:H7, which can lead to contamination of food and water, and subsequent human disease. E. coli O157:H7 shedding in cattle has been reported as seasonal, with more animals shedding during summer and early fall than during winter. North Dakota has relatively cold weather, especially in winter and early spring, compared with many other regions of the United States. The objective was to assess fecal shedding of E. coli O157:H7 in North Dakota feedlot cattle over the fall, winter, and early spring. One hundred forty-four steers were assigned randomly to 24 pens on arrival at the feedlot. Samples of rectal feces were obtained from each steer four times (October and November 2003, and March and April 2004) during finishing. On arrival (October 2003), 2 (1.4%) of 144 cattle were shedding E. coli O157:H7. The shedding increased significantly to 10 (6.9%) of 144 after 28 days (November 2003), to 76 (53%) of 143 at the third sampling (March 2004), and dropped significantly to 30 (21%) of 143 at the fourth (last) sampling (March 2004) before slaughter. Unfortunately, we were unable to sample the cattle during winter because of the extreme weather conditions. Sampling time significantly (P < 0.0001) influenced variability in E. coli O157:H7 shedding, whereas herd (P = 0.08) did not. The prevalence of E. coli O157:H7 shedding in North Dakota steers in fall and early spring was comparable to what has been reported in other parts of the United States with relatively warmer weather. Further research into E. coli O157:H7 shedding patterns during extreme weather such as North Dakota winters is warranted in order to fully assess the seasonal effect on the risk level of this organism.  相似文献   

3.
During a 2-year period from January 1998 to December 1999, intestinal content from 1541 cattle, 665 sheep and 1976 pigs were analysed for Escherichia coli O157:H7 using the immunomagnetic separation procedure. The animals originated from 848, 605 and 832 herds from the southwest part of Norway, respectively. E. coli O157:H7 was present in three samples from cattle from different herds, giving a herd prevalence of 0.35% and an animal prevalence of 0.19%. From pigs, E. coli O157:H7 was isolated from two pigs from different herds, giving a herd prevalence of 0.24% and an animal prevalence of 0.1%. A follow-up study revealed another positive testing pig from one of these herds. E. coli O157:H7 was not found from any of the 665 investigated sheep. By PCR analysis, all six E. coli O157:H7 isolates were shown to contain the genes encoding Shiga toxin 2 (stx2), the intimin protein (eae) and the H7 flagellum (fliC-H7). One of the cattle isolates also harboured the Shiga toxin 1 encoding (stx1) gene. The six isolates were differentiated into three pulse-field gel electrophoresis profiles. The results indicate that the occurrence of E. coli O157:H7 in cattle, sheep and pigs in the southwest part of Norway is low compared to other European countries.  相似文献   

4.
The aim of this work was to determine if Escherichia coli isolates carrying the virulence genes eae and eltB and exhibiting the Ehly phenotype are present in feces and milk samples from healthy dairy cattle on farms. Isolates from calves showed a statistically higher prevalence of eae and eltB compared with isolates from older animals. The other factors tested (stx(1), stx(2), and Ehly) were not statistically different between the two groups. Two isolates originating from calf feces were identified as serotype O157:H7; one of these isolates carried stx(1) and eae, the other stx(2) and eae. E. coli isolated from milk contained stx(1), stx(2), and eltB. The results show that feces or milk from healthy dairy cattle may contain E. coli pathotypes that express virulence genes, indicating that these materials have zoonotic potential. The results also reinforce the idea that host age can influence the dynamics of virulence genes in E. coli from cattle.  相似文献   

5.
Shiga toxin-producing Escherichia coli (STEC) produce toxins that have been associated with several human illnesses. E. coli O157:H7 is the most well-studied STEC and was first associated with consumption of improperly cooked ground beef in 1982. E. coli O157:H7 is not the only foodborne STEC because other STEC serotypes are also associated with human illnesses. The objective of this study was to assess prevalence of STEC in 23 yearling beef (Angus) heifers grazing an irrigated grass pasture in spring (April), summer (July), fall (October), and winter (December) of 1999. A total of 86 fecal samples were rectally collected and were subjected to microbiological testing for the presence of STEC. Nine E. coli isolates from five heifers (one in spring and fall and three in winter) were toxic to Vero cells. Of these isolates, four were E. coli O157:H7, two belonged to the serogroup O6, one O39:NM, one O113:H-, and the final isolate was untypable. The STEC prevalence rate in our herd ranged from 4% (spring) to 15% (winter). Based on detecting both O157:H7 and non-O157:H7 STEC in our heifers, it is clear that screening fecal samples should not be limited to E. coli O157:H7. Identification of STEC-positive cattle prior to slaughter should help in reducing the risk of beef contamination with such foodborne pathogens if pre- and/or postharvest control measures are applied to such animals.  相似文献   

6.
Three experiments were conducted to evaluate the influence of vitamin D on fecal shedding of Escherichia coli O157:H7 in cattle. In the first experiment, two groups of cattle (beef and dairy) were assigned to a control treatment or to receive 0.5 × 10(6) IU vitamin D per day via oral bolus for 10 days. Fecal samples were collected before and throughout the dosing period for culture of E. coli O157:H7. No differences were observed for fecal shedding of E. coli O157:H7 among treatments for either beef or dairy animals. Serum concentrations of vitamin D were markedly higher (P < 0.0001) in treated beef cattle but only tended to be higher (P = 0.09) in the dairy cattle. In the second experiment, three successive vitamin D dosages (2,400, 4,800, and 9,600 IU/day; 14 days each) were administered to 14 dairy steers (7 steers served as controls), fecal samples were collected daily, and serum samples were collected weekly throughout the 42-day experimental period. No significant differences in fecal prevalence or serum vitamin D concentrations were observed for any of the vitamin D dosages. A third experiment sampled feedlot cattle (winter and summer) to determine whether serum vitamin D concentrations were correlated with fecal shedding of E. coli O157:H7. A fecal sample and a blood sample were obtained in each season from 60 randomly selected animals (total of 120 fecal samples and 120 corresponding blood samples). As expected, season was highly correlated (r = 0.66) with serum vitamin D concentration with higher concentrations (P < 0.01) observed in the summer. E. coli O157:H7 prevalence (percentage of positive samples) was not highly correlated (r = 0.16) with season, although the correlation tended to be significant (P = 0.08). The proportion of cattle shedding E. coli O157:H7 was 16.7 and 6.7% for the summer and winter collections, respectively. Results of this research do not support a correlation between vitamin D intake and E. coli O157:H7 shedding in cattle.  相似文献   

7.
The seasonal prevalence of Escherichia coli O157:H7, Salmonella, non-O157 E. coli (STEC), and stx-harboring cells was monitored at three Midwestern fed-beef processing plants. Overall, E. coli O157:H7 was recovered from 5.9% of fecal samples, 60.6% of hide samples, and 26.7% of carcasses sampled before the preevisceration wash. This pathogen also was recovered from 1.2% (15 of 1,232) of carcasses sampled at chilling (postintervention) at approximate levels of <3.0 cells per 100 cm2. In one case, the E. coli O157:H7 concentration dropped from ca. 1,100 cells per 320 cm2 at the preevisceration stage to a level that was undetectable on ca. 2,500 cm2 at the postintervention stage. The prevalence of E. coli O157:H7 in feces peaked in the summer, whereas its prevalence on hide was high from the spring through the fall. Overall, Salmonella was recovered from 4.4, 71.0, and 12.7% of fecal, hide, and preevisceration carcass samples, respectively. Salmonella was recovered from one postintervention carcass (of 1,016 sampled). Salmonella prevalence peaked in feces in the summer and was highest on hide and preevisceration carcasses in the summer and the fall. Non-O157 STEC prevalence also appeared to vary by season, but the efficiency in the recovery of isolates from stx-positive samples ranged from 37.5 to 83.8% and could have influenced these results. Cells harboring stx genes were detected by PCR in 34.3, 92.0, 96.6, and 16.2% of fecal, hide, preevisceration carcass, and postintervention carcass samples, respectively. The approximate level of non-O157 STEC and stx-harboring cells on postintervention carcasses was > or = 3.0 cells per 100 cm2 for only 8 of 199 carcasses (4.0%). Overall, the prevalence of E. coli O157:H7, Salmonella, and non-O157 STEC varied by season, was higher on hides than in feces, and decreased dramatically, along with pathogen levels, during processing and during the application of antimicrobial interventions. These results demonstrate the effectiveness of the current interventions used by the industry and highlight the significance of hides as a major source of pathogens on beef carcasses.  相似文献   

8.
This study was designed to describe the percentage of cattle shedding Escherichia coli O157:H7 in Midwestern U.S. feedlots and to discover relationships between the point prevalence of cattle shedding the organism and the characteristics of those cattle or the conditions of their pens. Cattle from 29 pens of five Midwestern feedlots were each sampled once between June and September 1999. Feces were collected from the rectum of each animal in each pen. Concurrently, samples of water were collected from the water tank, and partially consumed feed was collected from the feedbunk of each pen. Characteristics of the cattle and conditions of each pen that might have affected the prevalence of cattle shedding E. coli O157:H7 were recorded. These factors included the number of cattle; the number of days on feed; and the average body weight, class, and sex of the cattle. In addition, the temperature and pH of the tank water were determined, and the cleanliness of the tank water and the condition of the pen floor were subjectively assessed. The samples of feces, feed, and water were tested for the presence of E. coli O157:H7. E. coli O157:H7 was isolated from the feces of 719 of 3,162 cattle tested (23%), including at least one animal from each of the 29 pens. The percentage of cattle in a pen shedding E. coli O157:H7 did not differ between feedyards, but it did vary widely within feedyards. A higher prevalence of cattle shed E. coli O157:H7 from muddy pen conditions than cattle from pens in normal condition. The results of this study suggest that E. coli O157:H7 should be considered common to groups of feedlot cattle housed together in pens and that the condition of the pen floor may influence the prevalence of cattle shedding the organism.  相似文献   

9.
The objective was to describe variability in prevalence, incidence, and duration of fecal shedding of naturally occurring E. coli O157:H7 by a group of feedlot cattle over time. One hundred steers, randomly assigned to 10 pens, were fed a high-concentrate finishing diet for 136 days (19 weeks). Rectal feces from each animal were tested for E. coli O157:H7 every week for 19 weeks. E. coli O157:H7 was recovered from each animal that completed the study and was detected from at least one animal every week. Average pen prevalence of cattle shedding E. coli O157:H7 varied significantly over time (P < 0.0001) and across pens (P < 0.0001), ranging from 1 to 80%. Pairwise comparisons of mean pen prevalence of E. coli O157:H7 between weeks and estimation of the predicted probability of an incident case of E. coli O157:H7 over time allowed the definition of three distinct phases--namely, the preepidemic, epidemic, and postepidemic periods. Average pen prevalence varied significantly over time (P < 0.01) and across pens (P < 0.001) for all time periods. The odds of an incident case were significantly greater during epidemic and postepidemic periods relative to the preepidemic period (P = 0.0002 and P = 0.03, respectively). Duration of infection was significantly longer for first or second infections that began during epidemic or postepidemic periods relative to the preepidemic period (P < 0.001). Both incidence and duration of shedding peaked during the epidemic period. Pen-level prevalence of cattle shedding E. coli O157:H7 was affected by both incidence and duration of shedding and could be explained by time- or pen-dependent risk factors, or both.  相似文献   

10.
A 2-year study was conducted during the summer months (May to September) to test the effectiveness of feeding Lactobacillus acidophilus strain NP51 on the proportion of cattle shedding Escherichia coli O157:H7 in the feces and evaluate the effect of the treatment on finishing performance. Steers (n = 448) were assigned randomly to pens, and pens of cattle were assigned randomly to NP51 supplementation or no supplementation (control). NP51 products were mixed with water and applied as the feed was mixed daily in treatment-designated trucks at the rate of 10(9) CFU per steer. Fecal samples were collected (n = 3,360) from the rectum from each animal every 3 weeks, and E. coli O157:H7 was isolated by standard procedures, using selective enrichment, immunomagnetic separation, and PCR confirmation. The outcome variable was the recovery of E. coli O157:H7 from feces, and was modeled using logistic regression accounting for year, repeated measures of pens of cattle, and block. No significant differences were detected for gain, intakes, or feed efficiency of control or NP51-fed steers. The probability for cattle to shed E. coli O157:H7 varied significantly between 2002 and 2003 (P = 0.004). In 2002 and 2003, the probability for NP51-treated steers to shed E. coli O157:H7 over the test periods was 13 and 21%, respectively, compared with 21 and 28% among controls. Over the 2 years, NP51-treated steers were 35% less likely to shed E. coli O157: H7 than were steers in untreated pens (odds ratio = 0.58, P = 0.008). This study is consistent with previous reports that feeding NP51 is effective in reducing E. coli O157:H7 fecal shedding in feedlot cattle.  相似文献   

11.
Fecal samples from 2,930 slaughtered healthy cattle were examined with the following goals: (i) to monitor the shedding of Escherichia coli O157, Salmonella, and Campylobacter in cattle; and (ii) to further characterize the isolated strains. The percentage of the 2,930 samples that tested positive for E. coli O157 by PCR was 1.6%. Thirty-eight strains from different animals that agglutinated with Wellcolex E. coli O157 were isolated. Of the six sorbitol-negative strains, five tested positive for stx2 genes (two times for stx2c and three times for stx2), and one strain tested positive for stx1 and stx2c genes. All sorbitol-negative strains belonged to the serotypes O157:H7- and O157:H7 and harbored the eae type gamma 1 and ehxA genes. The 32 sorbitol-positive strains tested negative for stx genes and belonged to the serotypes O157:H2, O157:H7, O157:H8, O157:H12, O157:H19, O157:H25, O157:H27, O157:H38, O157:H43, O157:H45, and O157:H-. All O157:H45 strains harbored the eae subtype alpha 1 and therefore seem to be atypical enteropathogenic E. coli strains. Whereas none of 1,000 examined samples was positive for Salmonella, 95 of 935 (10.2%) samples were positive for Campylobacter, and all strains were identified as C. jejuni. Sixteen Campylobacter strains were resistant to tetracycline, five were resistant to nalidixic acid/ciprofloxacin, four were resistant to streptomycin, and one was resistant to nalidixic acid/ciprofloxacin and streptomycin. Fecal shedding of zoonotic pathogens in slaughter animals is strongly correlated with the hazard of carcass contamination. Therefore, the maintenance of slaughter hygiene is of crucial importance.  相似文献   

12.
The effect of direct-fed microbials (DFM) on fecal shedding of Escherichia coli O157:H7 and Salmonella in naturally infected feedlot cattle was evaluated in a clinical trial involving 138 feedlot steers. Following standard laboratory methods, fecal samples collected from steers were evaluated for change in the detectable levels of E. coli O157:H7 and Salmonella shed in feces after DFM treatment. Sampling of steers was carried out every 3 weeks for 84 days. A significant reduction (32%) in fecal shedding of E. coli O157:H7 (P < 0.001), but not Salmonella (P = 0.24), was observed among the treatment steers compared with the control group during finishing. The probability of recovery of E. coli O157:H7 from the feces of treated and control steers was 34.0 and 66.0%, respectively. Steers placed on DFM supplement were almost three times less likely to shed E. coli O157:H7 (odds ratio, 0.36; 95% confidence interval, 0.25 to 0.53; P < 0.001) in their feces as opposed to their control counterparts. The probability of recovery of Salmonella from the feces of the control (14.0%) and the treated (11.3%) steers was similar. However, the DFM significantly reduced probability of new infections with Salmonella among DFM-treated cattle compared with controls (nontreated ones). It appears that DFM as applied in our study are capable of significantly reducing fecal shedding of E. coli O157:H7 in naturally infected cattle but not Salmonella. The factors responsible for the observed difference in the effects of DFM on E. coli O157:H7 and Salmonella warrants further investigation.  相似文献   

13.
Food-producing animals can be reservoirs of pathogenic Escherichia coli strains that can induce diseases in animals or humans. Contamination of food by E. coli O157:H7 raises immediate concerns about public health, although it is not clear whether all E. coli O157 isolates of animal origin are equally harmful to humans. Inversely, the pathogenic potential of atypical E. coli O157 isolates and several non-O157 serotypes often is ignored. We used a DNA microarray capable of detecting a subset of 346 genes to compare the virulence-associated genes present in eight E. coli O157 isolates from human cases, 14 antibiotic-resistant and/or hypermutable E. coli O157 isolates from beef cattle, and four antibiotic-resistant, sorbitol-negative, non-O157 E. coli isolates from healthy broiler chickens. Hybridization on arrays (HOA) revealed that O157 isolates from beef cattle and humans were genetically distinct, although they possessed most of the same subset of virulence genes. HOA allowed discrimination between hypermutable and antibiotic-resistant O157 isolates from beef cattle based on hybridization results for the stx2 and ycgG genes (hypermutable) or ymfL, stx1, stx2, and hlyE(avian) genes (resistant). However, the absence of hybridization to gene yfdR characterized human isolates. HOA also revealed that an atypical sorbitol-fermenting bovine O157 isolate lacked some genes of the type 3 secretion system, plasmid pO157, and the stx1 and stx2 genes. This isolate had a particular pathotype (eaeA(beta) tir(alpha) espA(alpha) espB(alpha) espD(alpha)) not found in typical E. coli O157:H7. HOA revealed that some non-O157 E. coli isolates from healthy chickens carried genes responsible for salmochelin- and yersiniabactin-mediated iron uptake generally associated with pathogenic strains.  相似文献   

14.
The aim of this study was to characterize Shiga toxigenic Escherichia coli (STEC) by PCR using strains isolated from ham, beef, and cattle in Colombia. A total of 189 E. coli strains were tested for the presence of the uidA, stx1, and stx2 genes, and identification was confirmed by the automated PCR BAX system for E. coli O157:H7. Genes encoding Shiga-like toxins (stx) were found in eight (6.06%) of 132 strains previously isolated from minced beef; four (50%) of these strains yielded amplification products for both toxin genes (stx1 and stx2), and four (50%) yielded products only for the stx2 toxin. None of the strains analyzed were positive by PCR for the presence of the single base-pair mutation in the uidA gene from E. coli O157:H7; these results were confirmed by the BAX system analysis. A multiplex PCR assay was standardized for the three genes. Results from this study confirmed previous data about the low prevalence of E. coli O157:H7 and Shiga-like toxins in Colombia and is the first known report of the prevalence of non-O157 enterohemorrhagic E. coli in this country.  相似文献   

15.
Beef steers (n = 252) were used to evaluate the effects of dietary supplement on fecal shedding of Escherichia coli O157:H7. Seven pens of 9 steers (63 steers per treatment) were fed diets supplemented with or without yeast culture (YC) or monensin (MON) and their combination (YC × MON). YC and MON were offered at 2.8 g/kg and 33 mg/kg of dry matter intake, respectively. Environmental sponge samples (from each pen floor, feed bunk, and water trough) were collected on day 0. Rectal fecal grab samples were collected on days 0, 28, 56, 84, 110, and 125. Samples were collected and pooled by pen and analyzed for presumptive E. coli O157:H7 colonies, which were confirmed by a multiplex PCR assay and characterized by pulsed-field gel electrophoresis (PFGE) typing. On day 0, E. coli O157:H7 was detected in 7.0% of feed bunk samples and 14.3% of pen floor samples but in none of the water trough samples. The 71.4% prevalence of E. coli O157:H7 in fecal samples on day 0 decreased significantly (P < 0.05) over time. E. coli O157:H7 fecal shedding was not associated with dietary treatment (P > 0.05); however, in cattle fed YC and YC × MON fecal shedding was 0% by day 28. Eight Xba I PFGE subtypes were identified, and a predominant subtype and three closely related subtypes (differing by three or fewer bands) accounted for 78.7% of environmental and fecal isolates characterized. Results from this study indicate that feeding YC to cattle may numerically decrease but not eliminate fecal shedding of E. coli O157:H7 at the onset of treatment and that certain E. coli O157 subtypes found in the feedlot environment may persist in feedlot cattle.  相似文献   

16.
This study was conducted to identify the origin of Escherichia coli O157:H7 contamination on steer hides at the time of harvest. Samples were collected from the feedlot, transport trailers, and packing plant holding pens and from the colons and hides of feedlot steers. A total of 50 hide samples were positive for E. coli O157:H7 in two geographical locations: the Midwest (25 positive hides) and Southwest (25 positive hides). Hide samples were screened, and the presence of E. coli O157: H7 was confirmed. E. coli O157:H7 isolates were fingerprinted by pulsed-field gel electrophoresis and subjected to multiplex PCR procedures for amplification of E. coli O157:H7 genes stx1, stx2, eaeA, fliC, rfbEO157, and hlyA. Feedlot water trough, pen floor, feed bunk, loading chute, truck trailer side wall and floor, packing plant holding pen floor and side rail, and packing plant cattle drinking water samples were positive for E. coli O157:H7. Pulsed-field gel electrophoresis banding patterns were analyzed after classifying isolates according to the marker genes present and according to packing plant. In this study, hide samples positive for E. coli O157:H7 were traced to other E. coli O157:H7-positive hide, colon, feedlot pen floor fecal, packing plant holding pen drinking water, and transport trailer side wall samples. Links were found between packing plant side rails, feedlot loading chutes, and feedlot pens and between truck trailer, different feedlots, and colons of multiple cattle. This study is the first in which genotypic matches have been made between E. coli O157:H7 isolates obtained from transport trailer side walls and those from cattle hide samples within the packing plant.  相似文献   

17.
Fecal shedding of Escherichia coli O157:H7, the prevalence of Escherichia coli O157:H7 in pens and on carcasses and hides, and cattle performance as a result of daily dietary supplementation with Lactobacillus-based direct-fed microbials (DFMs) were evaluated in a feeding trial involving 180 beef steers. Steers were evaluated for shedding of E. coli O157:H7 by an immunomagnetic separation technique on arrival at the feedlot, just before treatment with the DFMs, and every 14 days thereafter until slaughter. Composite pen fecal samples were collected every 14 days (alternating weeks with animal testing), and prevalence on hides and carcasses at slaughter was also evaluated. Feedlot performance (body weight gain and feed intake) was measured for the period during which the DFMs were fed. Gain efficiency was calculated as the ratio of weight gain to feed intake. Lactobacillus acidophilus NPC 747 decreased (P < 0.01) the shedding of E. coli O157:H7 in the feces of individual cattle during the feeding period. E. coli O157:H7 was approximately twice as likely to be detected in control animal samples as in samples from animals receiving L. acidophilus NPC 747. In addition, DFM supplementation decreased (P < 0.05) the number of E. coli O157:H7-positive hide samples at harvest and the number of pens testing positive for the pathogen. Body weight gains (on a live or carcass basis) and feed intakes during the DFM supplementation period did not differ among treatments. Gain efficiencies on a live-weight basis did not differ among treatments, but carcass-based gain/feed ratios tended (P < 0.06) to be better for animals receiving the two DFM treatments than for control animals. The results of this study suggest that the feeding of a Lactobacillus-based DFM to cattle will decrease, but not eliminate, fecal shedding of E. coli O157:H7, as well as contamination on hides, without detrimental effects on performance.  相似文献   

18.
This study was conducted to develop an experimental model that could assess the ability of Escherichia coli O157:H7-inoculated fecal pats to mimic a super shedder (>10(4) CFU/g of feces) within a feedlot environment. The day before the study began, 48 steers that had been negative for E. coli O157:H7 in feces for three consecutive weeks were sorted into three treatment groups, with two replicate pens per treatment and 8 steers per pen. Steers within the pens (20.50 by 10.75 m) were exposed to control feces or feces inoculated with two levels of a mixture of five strains of nalidixic acid-resistant E. coli O157:H7 (low level, 10(2) CFU/g; high level, 10(5) CFU/g). Five 300-g fecal pats were introduced into the pens twice daily (10:00 a.m. and 2:30 p.m.) on days 0 through 6 and days 14 through 20. Pats were placed in the pen at random locations to mimic defecation of a steer within the pen. Fecal grab samples, hide swab samples (500-cm2 area of the rump), natural fecal pat samples (freshly voided), and rope samples (1.22-m-long manila rope) where obtained at multiple times during the 49-day trial to evaluate the spread of nalidixic acid-resistant E. coli O157:H7 throughout the feedlot environment and among penmates. Immunomagnetic separation and selective media were used to detect E. coli O157:H7. Nalidixic acid-resistant E. coli O157:H7 was detected in 13 high-level treatment fecal grab samples, 7 high-level treatment hide swab samples, 1 low-level hide swab sample, and 2 high-level rope samples. For both fecal grab and hide swab samples, the overall prevalence of E. coli O157:H7 in the high-level group was greater (P < 0.01) than that for the pooled low-level and control groups. Addition of inoculated fecal pats to pens increased transmission of E. coli O157:H7 among penmates, but cattle that acquired E. coli O157:H7 shed the bacterium for only a short time at low levels. Transmission of E. coli O157:H7 from the feces of super shedders to naive penmates may contribute to the observed transient nature of shedding of E. coli O157:H7 among feedlot cattle.  相似文献   

19.
Escherichia coli O157:H7 causes foodborne illness in humans; cattle are considered a primary reservoir for the organism, and transmission is often through contaminated food products or water. The objective of this study was to determine the genetic diversity of E. coli O157:H7 within a single individual bovine fecal sample based on pulsed-field gel electrophoresis (PFGE) typing. Fecal samples (n=601) were collected from dairy and beef cattle at three separate facilities, and E. coli O157:H7 was isolated by enrichment, immunomagnetic separation, and plating on selective medium. The prevalence of E. coli O157:H7 was 46 (7.7%) of 601. From each positive fecal sample, up to 10 putative colonies were tested, and isolates from samples with at least seven positive colonies were subtyped using PFGE and tested for six major virulence genes by multiplex PCR. A total of 254 E. coli O157:H7 isolates from 27 samples met these criteria and were included in PFGE analysis. Fifteen PFGE subtypes (<100% Dice similarity) were detected among the 254 isolates, and there were no common subtypes between the three locations. Seven (26%) of 27 fecal samples had E. coli O157:H7 isolates with different PFGE subtypes (mean=2.1) within the same sample. The virulence gene profiles of different isolates from the same sample were always identical, regardless of the number of PFGE types. The results of this study suggest that determining the PFGE pattern of a single isolate from a bovine sample may not be sufficient when comparing isolates from feces, hides, or carcasses, because multiple PFGE subtypes are present.  相似文献   

20.
Samples were collected from 26 organic and conventional farms and 12 county fairs in Minnesota during 2001 and 2002 to identify the presence of Escherichia coli O157. Immunomagnetic separation was used for isolation of E. coli O157. Isolates were further characterized by the presence of virulence marker genes (stx1, stx2, eaeA, E-hly, katP, etpD, and espP), antimicrobial susceptibility profiles, and genotypes. During 2001, E. coli O157 was isolated from 16 (5.2%) of 305 fecal samples and from 7 (36.8%) of 19 farms. During 2002, E. coli O157 was isolated from 6 (4.5%) of 132 fecal samples from weaned calves at 4 (23.5%) of 17 farms. During 2001 and 2002, cattle manure samples were collected from 12 county fairs, and E. coli O157 was isolated from 19 (11%) of 178 samples and 9 (75%) of 12 county fairs. Among 40 E. coli O157 isolates, 17 isolates (43%) had both the stx1 and stx2 genes, and 21 strains (53%) had the stx2 gene only. Thirteen percent of O157 isolates were resistant to tetracycline, and 25% were resistant to sulfadimethoxine. Heterogeneity of E. coli O157 strains was demonstrated by the presence of 22 different pulsed-field gel electrophoresis (PFGE) patterns. Four PFGE patterns matched those of isolates previously found in humans. The presence of E. coli O157 at county fairs suggests the potential for transmission to the public, who may have contact with cattle or their environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号