首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zusammenfassung Hoden, Hypophysen und Daumenschwielen von Fröschen (Rana temporaria) wurden während eines Jahres, d.h. während eines spermatogenetischen Zyklus, untersucht. Der Zyklus wurde in die Stadien Involution, Vermehrung, Zystenbildung, Reifung (Spermiogenese), Ruhe und Brunst eingeteilt.Während der aktiven Spermatogenese (Mai bis August) zeigen die Leydigschen Zwischenzellen das Bild von inaktiven Zellen: Zellkern und Zytoplasma sind geschrumpft, im Zytoplasma befinden sich cholesterinhaltige Fettvakuolen, wenig Mitochondrien und ein spärliches ER. Dagegen scheinen die Zwischenzellen im Herbst wieder zu neuer Aktivität zu erwachen: Kern und Zytoplasma nehmen an Umfang zu, die Zahl und Größe der Fettvakuolen nimmt ab, das ER ist gut entwickelt und es erscheinen osmiophile Granula im Zytoplasma. Diese Aktivitätsphase dauert bis zur Brunst. Zu diesem Zeitpunkt verschwinden die osmiophilen Granula, während die Fettvakuolen wieder vermehrt auftreten. Übergangsformen zwischen Bindegewebszellen und Zwischenzellen oder Zellteilungen von Zwischenzellen wurden nicht beobachtet. Der Aktivität der Leydigzellen läuft eine Entwicklung der Daumenschwielen parallel.Während der relativen Funktionsruhe der Zwischenzellen im Sommer dürften die-Zellen des Hypophysenvorderlappens vermehrt Gonadotropine (FSH) ausschütten. Zur gleichen Zeit bieten die Stützzellen in den Samenkanälchen Zeichen erhöhter Aktivität. Letztere äußert sich u. a. im Auf- und Abbau von cholesterinhaltigen Fettvakuolen und einer anschließenden Glykogenbildung. Da die Stützzellen alle morphologischen Merkmale von steroidhormonproduzierenden Zellen tragen, wird angenommen, daß hypophysäres FSH spezifisch auf die Stützzellen der Samenkanälchen wirkt. Die Stützzellen könnten ihrerseits den Zustrom von Nährstoffen zu den Samenzellen regulieren und so einen direkten Einfluß auf den Ablauf der Spermatogenese ausüben.Durchgeführt mit Unterstützung durch die Deutsche Forschungsgemeinschaft. — Herrn Prof. Dr.W. Bargmann und Herrn Prof. Dr.A. von Kügelgen danke ich für die Überlassung von Arbeitsplätzen, Herrn Priv.-Doz. Dr.A. Oksche für Material, FrauGuttenberger für die Anfertigung lichtmikroskopischer Präparate.  相似文献   

2.
Zusammenfassung Das Auge der Weinbergschnecke ist ein mit einer Linse versehenes primitives Blasenauge, dessen Wand hinten von Seh- und Pigmentzellen, vorn von einer einfachen Schicht durchsichtiger Corneazellen gebildet wird. Es wird von einer bindegewebigen Kapsel umgeben, die aus einer Basalmembran und aus Schichten von Bindegewebsfibrillen aufgebaut ist. Das Innere der Augenblase wird durch eine kugelige, homogene, nichtzellig aufgebaute Linse ausgefüllt. Zwischen letzterer und der Augenwand befindet sich eine dünne Schicht von Glaskörper-substanz.Charakteristische Bestandteile der Pigmentzellen sind Pigmentgranula, Tonofilamente und verschieden große Körnchen mittlerer Elektronendichte. Stark osmiophile Gebilde, die aller Wahrscheinlichkeit nach dem Ergastoplasma angehören, zeigen sich in vielen Fällen nicht als Körnchen, sondern als fadenartige Elemente. Die Anordnung der letzteren spricht für die Anwesenheit von spiralig verlaufenden Filamenten. Die Sehzellen sind im wesentlichen bipolare Sinneszellen, deren Zellkörper und peripherer Fortsatz in der Retinaschicht liegen, während die zentralen Fortsätze das Auge am hinteren Pol als Sehnerv verlassen. Charakteristische Strukturelemente des Zytoplasmas sind runde Körperchen von gleichem, etwa 700 Å betragendem Durchmesser, die sozusagen das ganze Zytoplasma ausfüllen und in vielen Fällen unter dem Kern einen einzigen großen Biokristall bilden. Die Körperchen können auch im peripheren Fortsatz der Sehzelle gefunden werden. Ihre Natur und eventuelle Rolle werden diskutiert. Im Endteil des peripheren Fortsatzes, dem Sehkolben, befindet sich eine große Anzahl von Mitochondrien und eine recht verwickelte, aus Vacuolen und Tubuli bestehende Grundstruktur. Die freie Oberfläche des Sehkolbens trägt einen hohen Bürstensaum, der aus 350–800 Å dicken und durchschnittlich 8 langen Mikrovilli zusammengesetzt ist.  相似文献   

3.
Zusammenfassung Die Feinstruktur der kernhaltigen Thrombozyten des Haushuhnes wurde an 9 Weißen Leghorn licht- und elektronenmikroskopisch vergleichend untersucht. Bei guter Fixierung entsprechen die kernhaltigen Thrombozyten morphologisch denen der Säugetiere, doch fehlt das -Granulomer. Der Kern weist eine für den Thrombozyten charakteristische Chromatinverteilung auf, die von Aufhellungen durchsetzt ist. Im Cytoplasma lassen sich regelmäßig kleine Mitochondrien, endoplasmatisches Retikulum und ein deutlich ausgebildeter Golgiapparat nachweisen.Bei der Blutgerinnung (nach intravenöser Verabreichung von Thrombin) läßt sich in und an den kernhaltigen Thrombozyten der Beginn der Fibrinbildung verfolgen. Kernveränderungen lassen vermuten, daß im Kern gerinnungsphysiologische Aktivitäten vorhanden sind, doch sind weitere Untersuchungen erforderlich.Auf die Ultrastruktur der Erythrozyten, Lymphozyten und Monozyten wird kurz eingegangen. Es läßt sich Übereinstimmung mit den bisherigen Beobachtungen in den entsprechenden Zellen von Säugetieren feststellen.Mit Unterstützung durch die Heinrich-Hertz-Stiftung. — Assistent an der Medizinischen Klinik der Tierärztlichen Hochschule in Wien. Wien III., Linke Bahngasse 11.  相似文献   

4.
Zusammenfassung Der Periplast der begeißelten Trypanosomen (Trypanosoma Cruzi) und der Leishmaniaform besteht aus einer 130 Å dicken, dreigeschichteten Membran und den unmittelbar daruntergelegenen Fibrillen. Jede der beiden osmiophilen Membranschichten des Periplasten ist 45 Å dick; die osmiophobe Mittelschicht mißt 40 Å. Die Fibrillen sind 200–210 Å dick und liegen als wandverstärkende Röhrchen unmittelbar an der Innenfläche der Hüllmembran. Der helle röhrenförmige Innenraum der Fibrillen hat einen Querdurchmesser von 90–100 Å. Der seitliche Abstand der Fibrillen mißt etwa 320 Å.Der Blepharoplast ist ein etwas gekrümmter, scheibenförmiger Körper mit einem Längsdurchmesser von 0,75–1,35 und einem Querdurchmesser von 0,2–0,3 . Er liegt gemeinsam mit dem Basalkörperchen an der Geißelbasis. Der Blepharoplast gibt eine positive Feulgen-Nuklealreaktion und enthält Desoxyribonukleinsäure. Elektronenmikroskopisch finden sich im Innern des Blepharoplasten helixförmig angeordnete 125 Å dicke Fibrillen, die einen 35 Å im Querdurchmesser messenden helleren Innenraum aufweisen. Die Hülle des Blepharoplasten besteht aus einer mitochondrienähnlichen Doppelmembran, die an einigen Stellen auch Cristae bildet. An der zur Geißelbasis gerichteten Oberfläche des Blepharoplasten kommen knospenförmige und länglich ausgezogene mitochondrienähnliche Fortsätze vor, von denen wir vermuten, daß sie Mitochondrien nach Abschnürung vom Blepharoplasten darstellen. In diesen Fortsätzen finden sich zahlreiche Innenmembranen, die manchmal stark ineinander verzahnt sind. Offenbar werden sie von der Hüllmembran des Blepharoplasten gebildet. Es wird angenommen, daß der Blepharoplast ein mit Desoxyribonukleinsäure und Lipoproteinen, möglicherweise auch mit Atmungsfermenten besonders ausgestattetes Zellorganell ist, das sich zu teilen vermag, den Zellkern und die Zellteilung beeinflußt sowie produktiv an der Bildung der Mitochondrien beteiligt ist.Die Zellteilung der Parasiten beginnt mit einer Bildung von Tochterkörperchen durch die Basalkörperchen und der Ausbildung einer zweiten Geißel. Die Filamente der zweiten Geißel werden im Zytoplasma der Mutterzelle gebildet. Danach teilt sich der Blepharoplast quer zur Längsachse. Der Blepharoplast ist vor der Teilung etwa 1,35 lang und schwalbenförmig. Nach der Querteilung des Blepharoplasten erfolgt erst die Kernteilung und die Längsteilung des Zytoplasmas.Die Befunde wurden auf der 28. Tagung der Deutschen Gesellschaft für Hygiene und Mikrobiologie in Düsseldorf am 2. 5. 1961 von H. Schulz vorgetragen.  相似文献   

5.
Zusammenfassung Die Satellitenzellen des Spinalganglions der Eidechse (Lacerta muralis) wurden im normalen und experimentell veränderten Zustand — d. h. nach Durchtrennung des afferenten Axons und während der Hypertrophie der Nervenzellen des Spinalganglions, die der Ausdehnung des peripheren Innervationsgebietes folgt — licht- und elektronenmikroskopisch untersucht.Die Grundeigenschaften der Satellitenzellen der Eidechse sind denjenigen ähnlich, die in Spinalganglien der Säugetiere und Amphibien beobachtet wurden. Auch bei der Eidechse sind die Satelliten einkernige Einzelzellen, die eine geschlossene Hülle um den Zelleib bilden. Die Verbindungen zwischen den anliegenden Satelliten sind bei der Eidechse im allgemeinen weniger kompliziert als bei den Säugetieren. Die Dicke der Satellitenhülle variiert von einer Strecke zur anderen; in einigen Strecken liegt sie unter 2000 Å.Im Zytoplasma der Satelliten findet man stets Mitochondrien — deren Zahl für jeden 2-Schnitt dreimal geringer ist als jene, die in den entsprechenden Neuronen gefunden wurde —, das endoplasmatische Reticulum, vorwiegend von regellos angeordneten Zisternen gebildet, einen wenig entwickelten Golgi-Apparat und Ribosomen. Manchmal findet man auch Centriolen, Cilien ohne das zentrale Fibrillenpaar, Filamente (zahlreicher als in den Satellitenzellen der Säugetiere und weniger als in jenen der Amphibien), den Lysosomen ähnliche Granula und Granula mit gleicher Ultrastruktur wie die Lipofuszinkörnchen. Kleine Vesikel, die aus dem Golgi-Apparat entstehen, fließen anscheinend später zu vesikelhaltigen und elektronendichten Körpern zusammen. Die Bedeutung des Verhältnisses zwischen dem Golgi-Apparat, den vesikelhaltigen und den elektronendichten Körpern sowie der Endverlauf der beiden letztgenannten konnte nicht festgestellt werden.Die Durchmesser der Neurone und die Zahl der entsprechenden Satelliten wurden an Serienschnitten lichtmikroskopisch gemessen. Auf diese Weise wurde das Verhältnis zwischen Satelliten und Neuronen quantitativ festgestellt: es entspricht etwa demjenigen, das bei der Ratte festgestellt wurde.Bei erhöhter Stoffwechsel-Aktivität der Neurone, d. h. während der Regeneration des Axons und Hypertrophie des Zelleibes, zeigen die entsprechenden Satelliten folgende Veränderungen: Ihr Kern nimmt an Volumen zu (etwa 46% im Durchschnitt), das Kernkörperchen zeigt Veränderungen der Ultrastruktur, der Golgi-Apparat erscheint hypertrophisch, die aus dem Golgi-Apparat entstandenen kleinen Vesikel und die elektronendichten Körper scheinen zahlreicher geworden zu sein. Die Durchschnittszahl der Mitochondrien für jeden 2-Schnitt ist dagegen nicht wesentlich geändert. Diese Veränderungen können dahingehend gedeutet werden, daß während der erhöhten Stoffwechsel-Aktivität der Neurone auch die Aktivität ihrer Satellitenzellen ansteigt.Die Zahl der entsprechenden Satellitenzellen wächst im Verlaufe der Hypertrophie des Zelleibes durch Mitose. Auf diese Weise paßt sich die Masse der Satellitenzellen der erhöhten Neuronenmasse an.Die ermittelten Befunde stützen die früher vorgetragenen Hypothesen (Pannese 1960): a) die Satellitenzellen sind in der Lage, ihren Stoffwechsel zugunsten der Neurone zu aktivieren, b) sie sind stabile Elemente im Sinne Bizzozeros.  相似文献   

6.
Zusammenfassung Die morphologischen Veränderungen, die an den Spinalganglienzellen nach Durchtrennung ihres afferenten Axons auftreten, wurden bei Lacerta muralis untersucht. Die den Spinalganglien angehörenden Nerven wurden durch Schwanzamputation durchtrennt. Die licht- und elektronenmikroskopischen Befunde wurden systematisch verglichen.Bald nach Nervendurchtrennung kommt es an fast allen Spinalganglienzellen vorübergehend zu Schwellung des Zelleibes und — geringgradig — der Mitochondrien.Nach 7 Tagen sind zwei Nervenzellgruppen erkennbar, die eine sehr verschiedene Struktur aufweisen. Das endoplasmatische Reticulum der Neurone der ersten Gruppe, die ungefähr 12% der Nervenzellen des Ganglions ausmachen, hat ein normales Aussehen, die Neurofilamente sind zu dicken Bündeln zusammengeschlossen. Eine Deutung dieser Reaktionsweise war nicht möglich.Die Neurone der zweiten Gruppe — sie sind zahlreicher als die der Gruppe I — erscheinen unter dem Lichtmikroskop deutlich chromatolytisch. Elektronenmikroskopisch läßt sich ihr Zytoplasma folgendermaßen charakterisieren: Fehlen der parallel orientierten ergastoplasmatischen Strukturen und der Neurofilamente, Auftreten von geschlossenen Bläschen und von vorwiegend freien Ribosomen, Anhäufung von Mitochondrien um den Kern. Durch Aufschwellung und Fragmentierung der Tubuli und der Zisternen des endoplasmatischen Reticulums bilden sich die erwähnten geschlossenen Bläschen. Für eine Beteiligung des Kernkörperchens an diesem Vorgang spricht seine Volumenzunahme und seine Strukturveränderung. Während der Chromatolyse, die der Durchtrennung des Axons folgt, zeigt das Neuron eine vorübergehende Umdifferenzierung, so daß seine Struktur der des Neuroblasten weitgehend ähnelt.Nur wenige Neurone degenerieren infolge von Chromatolyse, die Mehrzahl gewinnt wiederum normale Struktur. Ihre Wiederherstellung beginnt mit der Fältelung der Kernmembran und Vergrößerung der Kernoberfläche und setzt sich mit dem Auftreten von ergastoplasmatischen Strukturen und zahlreichen Ribosomen vorerst in der Kerngegend, später auch im übrigen Teil des Zytoplasmas fort. Gleichzeitig treten die Neurofilamente wieder auf.Aufgrund der geschilderten Beobachtungen und bekannter biochemischer und histochemischer Angaben wird die Chromatolyse nicht als Ausdruck regressiver Erscheinungen aufgefaßt. Im wesentlichen handelt es sich um strukturelle Phänomene, die mit der Regeneration des Axons in Zusammenhang stehen.Wie bekannt, regenerieren bei der Eidechse nach der Schwanzamputation Haut, Muskeln und knorpeliges Skelett, während die Spinalganglien nicht regenerieren. Die letzten im Stumpf verbliebenen drei Spinalganglien-Paare innervieren den regenerierten Schwanzteil. Die Nervenzellen dieser Ganglien vermehren sich nicht, so daß sich durch die Schwanzregenerierung das Innervationsgebiet der einzelnen Zellen erheblich ausdehnt: in solchem Zustand hypertrophieren die Spinalganglienzellen.Während der Anfangsstadien der Hypertrophie beobachtet man im Zelleibe der Neurone ein stark entwickeltes Ergastoplasma und eine große, gut abgegrenzte Menge von sehr wahrscheinlich neugebildeten Neurofilamenten. Später findet eine allmähliche Vermischung der verschiedenen zytoplasmatischen Bestandteile statt. Dadurch erscheint der anfangs einheitliche, zytoplasmatische Sektor, welcher Neurofilamente enthält, in immer kleinere Zonen verteilt. Die Zahl der Mitochondrien in dem hypertrophierenden Zelleib steigt langsam und allmählich; aus der Volumenvergrößerung des Zelleibes resultiert jedoch, daß die Dichte der Mitochondrien verglichen mit der der Kontrollneurone stets geringer ist. Ist die Hypertrophie beendet, so erreichen die zytoplasmatischen Bestandteile wieder eine gleichmäßige Ausbildung und Verteilung, wie sie in den normalen Ganglienzellen vorhanden ist. Das hypertrophierte Neuron weist also am Schluß des Vorganges die gleiche Struktur wie die Normalneurone auf.In den hypertrophierenden Neuronen beobachtet man eine Vergrößerung der Kernkörperchen und eine Veränderung ihrer Struktur. Diese Veränderungen sind dieselben, die während der Axonregeneration vorkommen (vgl. vorhergehende Arbeit).Die Hypertrophie der Spinalganglienzellen bei Lacerta muralis besteht also hauptsächlich in der Vermehrung der Zellstrukturen (Neurofilamente, Zisternen des endoplasmatischen Reticulums, Mitochondrien).Durch Zunahme des peripheren Innervationsgebietes hypertrophieren vorwiegend die Spinalganglienzellen, die ein Volumen bis 4000 3 aufweisen, und zwar solche, die ein höheres Oberflächen/Volumen-Verhältnis besitzen und sich wahrscheinlich später differenzierten. Die Nervenzellen, welche ein Volumen von mehr als 4000 3 haben, hypertrophieren nicht. Im letzten Abschnitt dieser Arbeit wird die Ultrastruktur von Spinalganglienzellen verglichen, die sich in verschiedenen funktioneilen Zuständen befinden, nämlich Kontrollganglienzellen, chromatolytische Ganglienzellen, die das Axon regenerieren und keine spezifische funktioneile Tätigkeit ausüben, Ganglienzellen, die hypertrophieren und nicht spezifisch fähig sind. In den Ganglienzellen, die keine spezifische Funktion ausüben, liegen die Ribosomen überwiegend frei; das endoplasmatische Reticulum ist schwach entwickelt und äußerst einfach organisiert. Es wird von wenigen geschlossenen Bläschen gebildet. Dagegen ist das endoplasmatische Reticulum in den Ganglienzellen, welche eine spezifische funktionelle Tätigkeit ausüben, sehr entwickelt und sehr kompliziert gebaut; ergastoplasmatische Strukturen sind vorhanden. Es wird daher vermutet, daß in den freien Ribosomen des Zelleibes die zytoplasmatischen Proteine synthetisiert werden, in den ergastoplasmatischen Strukturen (Nissl-Schollen) dagegen hoch spezialisierte Proteine, die wahrscheinlich an einigen spezifischen Funktionen der Neuronen beteiligt sind.  相似文献   

7.
Zusammenfassung Die Untersuchungen beziehen sich auf das Grundzytoplasma der Spermatozyten und Spermatiden von Tachea nemoralis, Helix lutescens und Helix pomatia.Das Grundzytoplasma der Spermatozyten hat eine schon mikroskopisch nachweisbare Schichtung. Es besteht aus einem Ekto- und aus einem Entoplasma. Das erstere ist hyalin und einschlußfrei. Das letztere besteht aus einer lipoidarmen, zentralen, mitochondrienhaltigen und aus einer lipoidreichen, peripheren, zum Teil das Zentrosom unmittelbar umhüllenden, den Golgi-Apparat enthaltenden Phase. Der Golgi-Apparat und die Mitochondrien sind konzentrisch in bezug auf das Zentrosom angeordnet. Der erstere liegt näher dem Zentrosom als die letzteren.Die Zellen wurden durch verschiedene Mittel zur Bildung von Myelinfiguren veranlaßt. Die Myelinfiguren entstehen aus der Plasmamembran, aus der lipoidreichen Phase des Entoplasmas und aus der Hülle der Golgi-Apparatelemente. Dagegen konnten die Mitochondrien, das zwischen ihnen liegende Grundzytoplasma, die Binnenkörper der Golgi-Apparatelemente und das Ektoplasma niemals zur Bildung von Myelinfiguren veranlaßt werden. Die Lipoide sind also ungleichmäßig im Zytoplasma verteilt. Die strukturellen Veränderungen der lipoidreichen Phase, welche experimentell entweder durch Verflüssigung oder durch Verfestigung ihrer Substanz hervorgerufen werden können, werden näher beschrieben.Die lipoidreichen Schichten des Entoplasmas sind nach Vitalfärbung mit Chrysoidin schwach positiv doppelbrechend in bezug auf den Radius der Zelle. Die Oberfläche der lebenden ungefärbten Zelle ist dagegen schwach negativ doppelbrechend in bezug auf den Radius. Diese Doppelbrechung wird nicht auf die Plasmamembran, sondern auf das äußere Ektoplasma bezogen.Das Grundzytoplasma hat also submikroskopischen Schichtenbau. Die miteinander alternierenden Eiweißfolien und Lipoidlamellen sind jedoch teilweise gerüstartig miteinander verbunden, da die nachgewiesene Doppelbrechung nur schwach ist. Die Lipoidlamellen sind jedoch nicht gleichmäßig im Grundzytoplasma verteilt. Am zahlreichsten müssen sie in der lipoidreichen Phase des Entoplasmas und in der Plasmamembran sein. Gering ist dagegen ihre Anzahl im Ektoplasma, welches hauptsächlich aus Eiweißfolien aufgebaut sein muß. Die Lipoidlamellen und Eiweißfolien sind innen konzentrisch in bezug auf das Zentrosom und außen konzentrisch in bezug auf den Kern und das Zentrosom angeordnet. Diese submikroskopische Struktur muß sehr labil sein, da der Aggregatzustand des Grundzytoplasmas in der Mitte zwischen einem typischen Gel und einem typischen Sol steht.Während der Reifungsteilungen zerfallen die lipoidreichen Schichten in Fibrillen, welche in bezug auf ihre Länge schwach negativ doppelbrechend sind. Während der Mitose geht die submikroskopische Schichtenstruktur des Grundzytoplasmas teilweise, insbesondere im Inneren der Zelle, in eine submikroskopische Fibrillenstruktur über.Die submikroskopische Struktur des Golgi-Apparates wurde vom Verfasser schon früher beschrieben. Auch wurde die Doppelbrechung der Mitochondrien schon früher festgestellt. Die Moleküle der Glyzeride sind senkrecht zur Länge der sehr kurzen, stäbchenförmigen Mitochondrien orientiert.Die Literatur, welche sich auf die mikroskopisch faßbare Schichtung des Grundzytoplasmas in verschiedenen Zellen bezieht, wird besprochen. Die mikroskopische Struktur der Zellen ist nämlich der grobmorphologische Ausdruck einer feineren submikroskopischen Struktur. Auch kann aus der Schichtung der mikroskopischen Einschlüsse auf die Schichtung der Substanzen des Grundzytoplasmas geschlossen werden. Die auf diese Weise gewonnenen Vorstellungen über die submikroskopische Struktur des Grundzytoplasmas können polarisationsoptisch geprüft werden.Das Grundzytoplasma der Spermatozyten, Ovozyten und der somatischen Zellen besteht aus einem Ekto- und aus einem Entoplasma. Das letztere ist entweder homogen oder besteht aus einer lipoidarmen, mitochondrienhaltigen und aus einer lipoidreichen, mit dem Golgi-Apparat verbundenen Phase. Das Ektoplasma der Ovozyten, Spermatozyten, Amöbozyten, Leukozyten und Fibroblasten ist in der Regel hyalin und einschlußfrei. Dagegen ist es in einigen Fällen nachgewiesen, daß die Neurofibrillen, Nissl-Körper, Myofibrillen, Tonofibrillen, Epithelfibrillen und retikulären Bindegewebsfibrillen nur im Ektoplasma liegen. Deshalb ist die Vermutung naheliegend, daß die spezifischen mikroskopischen Komponenten der Nerven-, Muskel-, Epithel- und retikulären Bindegewebszellen Differenzierungsprodukte des Ektoplasmas sind. Dagegen scheinen die Sekretions-, Exkretions- und Reserveprodukte, ebenso wie der Golgi-Apparat und die Mitochondrien immer nur im Entoplasma zu liegen.Der Golgi-Apparat und die Mitochondrien sind entweder konzentrisch in bezug auf den Kern oder konzentrisch in bezug auf das Zentrosom angeordnet. Im letzteren Fall wird das Zentrosom entweder unmittelbar vom Golgi-Apparat umgeben, während die Mitochondrien nach außen von ihm liegen oder umgekehrt. In jungen Ovozyten können diese mikroskopischen Komponenten besonders dicht um das Zentrosom zusammengedrängt sein, ja das ganze Entoplasma kann einen fast kompakten, vom Ektoplasma durch eine Membran scharf abgegrenzten Körper bilden. In solchen Fällen haben wir es mit einem Dotterkern im weiteren Sinne zu tun. Seltener scheinen die mikroskopischen Komponenten regellos im homogenen Entoplasma zerstreut zu sein.Gewöhnlich besteht das Grundzytoplasma nur aus einer Ekto- und Entoplasmaschicht. Seltener alternieren zahlreichere Ekto- und Entoplasmaschichten miteinander. Auch kann das Entoplasma als ein Netzwerk von Strängen im Ektoplasma liegen. Die lipoidreiche und die mitochondrienhaltige Phase bilden gewöhnlich zwei verschiedene Schichten des Entoplasmas. Jedoch kann sich die lipoidreiche Phase auch als ein kompliziertes Lamellensystem, ein Faden- oder ein Netzwerk in der mitochondrienhaltigen Phase verteilen oder umgekehrt. Die lipoidreiche, mit dem Golgi-Apparat verbundene und die mitochondrienhaltige Phase können entweder konzentrisch in bezug auf den Kern oder wenigstens teilweise auch konzentrisch in bezug auf das Zentrosom angeordnet sein. Im letzteren Fall wird das Zentrosom entweder unmittelbar von der lipoidreichen Phase umhüllt, während die mitochondrienhaltige nach außen von ihr liegt oder umgekehrt. Auch scheint eine der beiden Phasen des Entoplasmas bisweilen einen kompakten Körper bilden zu können.Das Grundzytoplasma ungefähr isodiametrischer Zellen (Ovozyten, Spermatozyten, Amöbozyten, Fibroblasten, Nervenzellen) scheint also überall aus Eiweißfolien und Lipoidlamellen, welche entweder konzentrisch in bezug auf den Kern oder auch teilweise konzentrisch in bezug auf das Zentrosom angeordnet sind, aufgebaut zu sein. Die Lipoidlamellen sind in den einen Schichten des Grundzytoplasmas zahlreicher und in den anderen spärlicher. Die Eiweißfolien und Lipoidlamellen sind wohl zum Teil gerüstartig miteinander verbunden. Nur die Ausläufer dieser Zellen haben eine submikroskopische fibrilläre Struktur. Dagegen müssen wir annehmen, daß in sehr stark gestreckten Zellen (Muskelzellen, hohe Zylinderepithelzellen) das gesamte Grundzytoplasma eine mehr oder weniger deutlich ausgesprochene submikroskopische fibrilläre Struktur hat. An der Peripherie solcher Zellen kommt es vielleicht sogar zur Filmstruktur. In schwächer anisodiametrischen Zellen hat das Entoplasma, die Plasmamembran und vielleicht auch das äußerste Ektoplasma, wenn es frei von mikroskopischen Fibrillen ist wohl noch eine submikroskopische Folien- und Lamellenstruktur.  相似文献   

8.
Zusammenfassung Die erstmals von uns im Subcommissuralorgan adulter Ratten mit dem Elektronenmikroskop aufgefundenen periodisch strukturierten Körper (PSK) werden ausführlich beschrieben. Sie liegen extracellulär in der Umgebung von Kapillaren; mithin kennzeichnet das angioarchitektonische Muster des Subcommissuralorgans bei der Ratte ihre Fundorte: sie finden sich im Hypendym oder zwischen den basalen Polen der subcommissuralen Ependymzellen. Die Mehrzahl der PSK liegt der Basalmembran der Kapillaren unmittelbar nach außen an; dabei läuft das Linienmuster der Körper meist steil auf die Basalmembran zu. Daneben werden PSK auch weiter entfernt von Gefäßen gefunden; sie zeigen dann häufig eine Beziehung zu frei im Gewebe endenden Abzweigungen der Basalmembran.Das Muster der PSK ist im Schnittbild durch osmiophile Linien, die in konstantem Abstand parallel laufen, charakterisiert; bei Osmiumfixierung und Einbettung in Epon 812 beträgt die mittlere Periode 940 Å. Zwischen je zwei dieser Hauptlinien (Linien I. Ordnung, etwa 140 Å breit) verläuft eine schwächere Zwischenlinie (Linie II. Ordnung, etwa 60 Å breit); drei feinere Linien (III. Ordnung) sind innerhalb der Periode asymmetrisch angeordnet und geben ihr eine polare Orientierung. Sonderbefunde an den Systemen werden mitgeteilt und diskutiert. — Es werden Argumente für die Auffassung vorgetragen, daß die PSK aus linearen Elementen aufgebaut sein müssen. Diese Filamente verlaufen senkrecht zu den Linien; sie sind die eigentlichen Träger der periodischen Zeichnung und stehen so gut in Register, daß sie in ihrer Gesamtheit das periodische Strukturmuster ergeben.Lichtmikroskopisch lassen sich die den PSK entsprechenden Objektstellen mit Bindegewebsfärbungen und Silberimprägnationen homogen darstellen; dagegen liefern Amyloid- und elektive Sekretfärbungen negative Ergebnisse. Aus histochemischen Reaktionen ist der Gehalt der PSK an Protein als sicher, der an sauren Mucopolysacchariden als wahrscheinlich anzunehmen. Die Filamente werden als Proteinstrukturen aufgefaßt, die in einer Matrix von Mucopolysacchariden eingebettet liegen können. In-vitro-Ergebnisse der Kollagenforschung und erste bekannt gewordene in-situ-Beobachtungen von ungewöhnlichen Kollagenformen im Auge und bei bestimmten Tumoren des Hörnerven stützen die dargelegte Vorstellung, daß die Filamente der PSK eine nicht faserige Kollagenformation darstellen, bei der die Tropokollagenmoleküle möglicherweise um ihre halbe Länge gegeneinander versetzt sind.Für die Entstehung der PSK scheint die Basalmembran der Kapillaren von wesentlicher Bedeutung zu sein. Ganz junge Ratten, bei deren Kapillaren die Basalmembran noch nicht voll ausgebildet ist, enthalten keine PSK im Subcommissuralorgan.Herrn Professor Dr. Benno Romeis zum 75. Geburtstag gewidmet.Mit Unterstützung durch die Deutsche Forschungsgemeinschaft. — Für präparatorische und photographische Arbeiten schulden wir Frau H. Asam großen Dank; des weiteren danken wir Frl. B. Fielitz und Frl. R. Beck. Die Schemata wurden von Herrn cand. med. A. Meinel gezeichnet. — Den Herren Prof. Dr. W. Grassmann, Prof. Dr. F. Miller, Dozent Dr. Dr. H. Hager, Dr. K. Blinzinger, München, und Dr. W. Schlote, Tübingen, verdanken wir wertvolle Anregungen und Diskussionen.  相似文献   

9.
Zusammenfassung Bei der elektronenmikroskopischen Untersuchung glycerinierter Amöben konnte ein Substrat nachgewiesen werden, das für Kontraktionen verantwortlich ist, die während der Behandlung der Amöben mit Glycerin und nach Einwirken von ATP auf die Amöbenmodelle auftreten. Das kontraktile Substrat besteht aus fädigen Strukturen verschiedener Größe: Dünne Fadenelemente, die einen Durchmesser von 40–100 Å besitzen, bilden ein Netzwerk, das in Form von verzweigten Strängen das Cytoplasma der abgekugelten Amöbe durchzieht und unter der Zellmembran in ein schalenförmiges Geflecht übergeht. Dieses feinfädige Netzwerk schließt fast immer dickere, spindelförmige Filamente ein, deren Durchmesser 160–220 Å beträgt und die röhrenförmig sind. Wahrscheinlich stellen aber auch die dünneren Elemente feinste Röhren dar, die als seitliche Verzweigungen von den dickeren Filamenten ausgehen können.Die durch Glycerinextraktion ausgelöste Kontraktion der Amöben ist von einer Lageveränderung der fädigen Strukturen begleitet: Die ursprünglich offenbar gleichmäßig über das Cytoplasma verteilten Fadenelemente orientieren sich dabei allmählich um und bilden vernetzte Stränge, die im Elektronenmikroskop deutlich sichtbar sind. Die glycerinierten Amöben kontrahieren sich nach ATP-Zugabe noch einmal, doch ist diese Kontraktion relativ gering und wirkt sich im Feinstrukturbereich nur durch eine stärkere Verdichtung des fädigen Netzwerkes aus.Bei 0° C gehaltene, abgekugelte Amöben lassen nach der Fixierung mit einem Osmiumtetroxyd/Glutaraldehyd-Gemisch elektronenoptisch Filamente erkennen, die gehäuft im endoplasmanahen Ektoplasmaauftreten und überwiegend parallel zur Zellmembran verlaufen. Die orientierte Anordnung der Filamente im Ektoplasma steht offensichtlich mit den zur Abkugelung führenden Kontraktionsvorgängen bei Amöben in Beziehung und kann deshalb im Sinne eines Druckflußmechanismus gedeutet werden.
Summary The elctron-microscopical study of glycerinated amoebae reveals a substratum responsible for the contractions occurring during treatment with glycerine and afterwards with ATP. The contractile substratum consists of threadlike structures of various sizes. Thin filaments, 40–100 Å in diameter, form a network of reticulated strands running throughout the cytoplasm of the spherical amoeba models. This network changes gradually into a shell-like arrangement just beneath the plasmalemm. The network of thin elements often includes thick, spindle-like filaments of tubular nature about 160–220 Å in diameter. Probably the thin elements are also tubules, forming lateral ramifications of the thick filaments.During the glycerine induced contraction of amoebae the position of the threadlike structures is changed: the filaments, at the beginning of the extraction regularly distributed in the cytoplasm, gradually arrange themselves into reticulated strands. An additional contraction of the amoebae induced with ATP is relatively slight and results only in a further condensation of the network.After fixation with a mixture of osmium tetroxide and glutaraldehyde chilled, spherical amoebae also contain filaments, accumulated in the ectoplasm near the endoplasm and arranged in a position parallel to the cell membrane. This arrangement of ectoplasmic filaments seems to be involved in the process leading to the spherical form of the amoebae, and therefore point to a mechanism supporting the tube-wall-contraction theory of amoeboid movement.


Die Arbeit wurde durch Mittel der Kernforschungsanlage Jülich des Landes Nordrhein-Westfalen e. V. gefördert. Herrn Prof. Dr. K. E. Wohlfarth-Bottermann und Herrn Prof. Dr. N. Weissenfels danke ich für beratende Hilfe, Frl. stud. med. R. Mielke, Frau A. Meyer und Frl. I. Rosocha für technische Assistenz.

Meinem Vater zum 65. Geburtstag gewidmet.  相似文献   

10.
Zusammenfassung Es wurde das Auge der Süßwasserturbellarien Dugesia lugubris und Dendrocoelum lacteum mit dem Elektronenmikroskop untersucht. Im Feinbau stimmen die Augen beider Arten im wesentlichen überein. Das eigentliche Auge besteht aus dem Pigmentbecher und den zur Photorezeption differenzierten Nervenendigungen der bipolaren Sehzellen, den sog. Sehkolben. Das Cytoplasma der Pigmentzellen wird von durchschnittlich 1 großen kugeligen, mehr oder weniger homogenen Pigmentkörnchen erfüllt. Der Zellkern liegt in der äußeren pigmentfreien Zone des Cytoplasmas. Vor allem dort können auch das endoplasmatische Reticulum und die Mitochondrien beobachtet werden. Der sog. Pigmentbecher ist ein allseitig geschlossenes Gebilde, dessen pigmentfreier Teil von einer Verschlußmembran, der sog. Cornealmembran, gebildet wird. Diese Verschlußmembran ist ein cytoplasmatischer, nichtpigmentierter, lamellar gebauter Fortsatz der Pigmentzellen. Der distale Fortsatz der Sehzellen dringt durch die Verschlußmembran in das Innere des Auges ein. Im Inneren des Pigmentbechers wird der Raum zwischen den Sehkolben vom homogenen Glaskörper ausgefüllt. Dieser zeigt in osmiumbehandelten Präparaten eine mittlere Dichte und mit stärkerer Vergrößerung eine sehr feine fibrilläre Struktur. Der kernhaltige Teil der Sehzellen liegt außerhalb des Pigmentbechers. Der Kern ist verhältnismäßig locker gebaut, enthält einen kleinen exzentrisch liegenden Nucleolus und wird von einer doppellamellär gebauten Kernmembran begrenzt. Das Perikaryon besitzt eine feinkörnige Grundstruktur. Die Durchmesser der Körnchen wechseln von 50 bis zu mehreren 100 Å; ihre Struktur zeigt einen Übergang über die Vesiculae zu den Vakuolen des Cytoplasmas. Die verschieden großen Vakuolen des Cytoplasmas sind von einer hellen, homogenen Substanz erfüllt. Das Perikaryon enthält auch Mitochondrien. Die Grundstruktur der distalen Fasern der Sehzellen ist ähnlich wie die des Perikaryons, enthält aber auch 100–120 Å dicke Neurofilamente. Die Nervenfasern sind nackt und recht verschieden dick. Die distale Faser der Sehzellen durchbohrt die Verschlußmembran und setzt sich in den Sehkolben fort. Der Stiel — bei Dugesia lugubris — ist prinzipiell ebenso gebaut wie die Nervenfaser; er ist ihre intraokulare Fortsetzung. Auf diesem Stielteil sitzt der eigentliche Sehkolben. Er besteht im allgemeinen aus 2 verschiedenen Teilen: aus der in der Fortsetzung des Stieles liegenden Achsenzone und aus der Zone des Bürstensaumes (Stiftchenkappe). In der Achse des Sehkolbens liegen viele Mitochondrien. Die Struktur des Cytoplasmas der Achsenzone ist ähnlich wie jene im Perikaryon bzw. in der Nervenfaser. Auffallend sind in der Achsenzone viele von einer hellen, homogenen Substanz erfüllte, verschieden große Vakuolen. Ihre Zahl hängt vom Funktionszustand des Auges ab. Die Randzone des Sehkolbens ist der Bürstensaum, der von cytoplasmatischen Mikrozotten gebildet wird. Die Breite der Mikrozotten wechselt von 200–1000 Å. Die Dicke der etwas dunkleren Grenzmembran beträgt 50–70 Å, der Inhalt der Mikrozotten erscheint homogen. Der Bürstensaum gibt im Polarisationsmikroskop eine positive Doppelbrechung. Die Bürstensaumzone, die eine Vergrößerung der Membranoberfläche bewirkt, dürfte im Dienste der Photorezeption stehen.  相似文献   

11.
Zusammenfassung Die Region des Nucleus supraopticus der Maus wurde elektronenmikroskopisch untersucht. Folgende Ergebnisse wurden erzielt:Die neurosekretorischen Zellen sind durch einen stark entwickelten Golgi-Apparat und durch osmiophile Granula in seiner Lumina charakterisiert. Die Ansammlungen dieser Granula entsprechen wahrscheinlich den lichtmikroskopisch sichtbaren Neurosekretgranula.Die Granula sind elliptoid bis ovoid gestaltet und durch eine zarte Grenzmembran gegen das Neuroplasma abgegrenzt. Man kann zwei Arten von Granula, kleinere (1. Typ) und größere (2. Typ), unterscheiden. Die kleineren Granula besitzen Durchmesser von 1000–2000 Å. Zwischen ihrem Zentrum und ihrer Grenzmembran befindet sich meistens eine helle Zone. Die größeren Granula haben Durchmesser von 4000–6000 Å; ihr Inhalt wird von der Grenzmembran eng umschlossen. Zwischen beiden Granula besteht kein Übergang. Außer diesen osmiophilen Granula sieht man im Golgi-Feld multivesicular bodies, wenn auch in geringer Zahl.Die kleineren Granula sind ähnlich strukturiert und geformt wie die Golgi-Granula. Vermutlich stehen beide Gebilde zueinander in inniger genetischer Beziehung. Es konnte nicht entschieden werden, ob die größeren Granula (2. Typ) aus multivesicular bodies oder aus anderen Organellen hervorgehen.In den neurosekretorischen Zellen treten vorwiegend kugelige oder stabförmige Mitochondrien auf. Sie kommen im Perikaryon und im Fortsatz vor, sind jedoch im Golgi-Feld besonders reichlich angehäuft. Der Zelleib — ausgenommen das Golgi-Feld — ist mit Ergastoplasma gefüllt, dessen sackartig erweiterte Räume keine Sekretgranula enthalten.In seltenen Fällen treten Zentralkörperchen im Golgi-Feld und im peripheren Teil des Zelleibes auf. Im Neuroplasma des Fortsatzes befinden sich kleine osmiophile Granula mit Durchmesser 1000 Å bis zu 2000 Å. Sie ähneln den im Hinterlappen vorkommenden Elementargranula (Bargmann), andererseits den Granula des 1. Typs. Dagegen sind die den Granula des 2. Typs vergleichbaren Gebilde im Neuroplasma des Fortsatzes niemals zu finden.Die Kapillaren im Kerngebiet sind von einer Basalmembran umgeben, deren Dicke etwa 700 Å beträgt. An der Außenfläche der Basalmembran setzen die neurosekretorischen Zellen und ihre Fortsätze unmittelbar an. Eine poröse Bauweise des Endothels wurde nicht nachgewiesen.In den auf der Basalmembran fußenden Nervenendigungen sind keine oder nur wenige Sekretgranula festzustellen. Die Hauptaufgabe der Kapillaren des Kerngebietes dürfte daher nicht in der Aufnahme des Neurosekrets bestehen.  相似文献   

12.
Zusammenfassung Die zwischen die DrÜsenzellen der LieberkÜhnschen Krypten spärlich eingestreuten enterochromaffinen Zellen liegen der Basalmembran der DrÜse breit auf und kÖnnen mit ihrem schmalen, apikalen Zellpol die DrÜsenlichtung erreichen. Ihr Kern liegt nahe der Zellbasis. Im Cytoplasma werden Mitochondrien, mit Ribosomen besetzte Membranen des endoplasmatischen Reticulums und ein supranukleär gelegener Golgi-Apparat gefunden. Gelegentlich sind einzelne Lipidtropfen, runde bis ovale, membranbegrenzte KÖrper und BÜndel feiner Filamente zu beobachten.Das vorherrschende Element im Cytoplasma der Zellen sind die spezifischen (enterochromaffinen) Granula, deren nahezu kreisrunde Schnittprofile eine verhältnismäßig einheitliche (mittlere bis beträchtliche) elektronenoptische Dichte besitzen. Sie zeigen eine meist feingranuläre Innenstruktur und sind von einer Membran umgeben. Der mittlere Kugeldurchmesser der Granula wurde zu etwa 330 m errechnet. Der schmale, apikale Zellpol ist nahezu frei von Granula. Örtliche Beziehungen von enterochromaffinen Granula zu Membranen des endoplasmatischen Reticulums sind festzustellen. Im Bereich des Golgi-Apparates werden kleinere granuläre Strukturen gefunden, die vielleicht als Vorstufen enterochromaffiner Granula gedeutet werden dÜrfen.  相似文献   

13.
Zusammenfassung Die hellen, stark lichtbrechenden runden Körnchen in den n. Bl. der Pinealzellkerne treten meist erst nach Abbau der mit Methylgrün-Pyronin besonders gut hervorhebbaren Schollen auf. Der sonstige Inhalt der n. Bl. ist dann meist homogen und mit Lichtgrün färbbar. Diese hellen Körnchen scheinen von noch weicher Konsistenz zu sein, da Verschmelzungen zweier Körnchen beobachtet werden konnten. Nach den hellen Körnchen oder mit ihnen zusammen treten gelb gefärbte Granula auf, zwischen denen alle Farbübergänge vom lichten Gelb bis zum dunklen Braun vorkommen. Die farblosen und die gefärbten Granula sind meist rund und stark lichtbrechend. Die dunklen Pigmentkörnchen, die gleiche Farbe wie die im Cytoplasma liegenden Granula haben, sind meist etwa 0,8 groß. Es ist denkbar, daß die farblosen, stark lichtbrechenden Körnchen Vorstufen der späteren Pigmentkörnchen in den n. Bl. sind.Im Hämatoxylinpräparat findet man in einer großen Zahl von Kernen kleinste gelb gefärbte Massen frei im Kernraum, die sich von dem in den n. Bl. liegenden Pigment, abgesehen von der Größe, durch offenbar eckige Form unterscheiden. Vielleicht sind sie die farbgebenden Substanzen, welche in die farblosen Granula transportiert werden. Grundsätzlich kann der Inhalt der n. Bl. auf jedem Umwandlungsstadium nach der Art des Schleusenmechanismus in Cytoplasma entleert werden. Die Pigmentkörnchen pflegen dann meist noch etwas größer zu werden. Verschiedene Größe der Pigmentkörnchen in den n. Bl. deutet auf ein Wachstum der Pigmentgranula hin.Statistische Erhebungen zeigen, daß alle Pigmentkörnchen des Cytoplasmas aus dem Kern stammen können. Die so oft beobachtete Neigung der Pigmentkörnchen des Cytoplasmas, sich zu kleinen Gruppen zu vereinigen, ist ein Beweis dafür, daß die soeben aus dem Kern entleerten Pigmentkörnchen nicht gleich über das ganze Cytoplasma verstreut werden.Die n. Bl. sind fett- und eisenfrei, während gelegentlich in den Parenchymzellkernen Eisen frei im Kernraum gefunden wurde.Die Nuclealfärbung nach Feulgen ergibt, daß es nucleale Stoffe sind, die sich an der kernseitigen Wand der n. Bl. anreichern.Mit Unterstützung des Vereins der Freunde und Förderer der Medizinischen Fakultät.  相似文献   

14.
Zusammenfassung Es wurde über die Acridinorange-Vitalfluorochromierung des Mäuseasciteskarzinoms unter besonderer Berücksichtigung der intraplasmatischen Speicherung des Farbstoffs in granulärer Form berichtet.Die Untersuchungen wurden an lebenden Zellen mit der kombinierten Phasenkontrast-Fluoreszenzmikroskopie durchgeführt und die Ergebnisse dann den Bildern gegenübergestellt, die nach Fixation und Färbung der vitalfluochromierten Zellen zu erreichen waren.Im wesentlichen wurden die Verhältnisse nach Injektion sehr hoher Acridinorangedosen untersucht, aus Vergleichsgründen aber auch die Wirkung geringerer Farbstoffmengen und anderer, verwandter basischer Farbstoffe.Nach Injektion von 8 mg des stärker wirksamen gereinigten Acridinorange kommt es zunächst zu dem Symptomenkomplex der initialen FarbstoffÜberschwemmung. Er ist im wesentlichen gekennzeichnet durch die diffuse, sehr labile Rotfluoreszenz der gesamten Zelle, wobei offen gelassen wird, ob die Rotfluoreszenz im Kernbereich auf Überlagerung entsprechend fluoreszierender Cytoplasmabestandteile, oder auf leicht reversibler Farbstoffadsorption an der Kernmembran beruht.Die Bedeutung dieses Fluoreszenzmodus liegt in dem gelungenen Nachweis, daß diffuse Rotfluoreszenz aller Zellareale mit dem Weiterleben der Zellen vereinbar sein kann. Der Nachweis der erhaltenen Vitalität läßt sich nicht nur durch den weiteren Ablauf des Färbeprozesses, sondern auch durch die Überimpfung solcher acridinorange-überschwemmter Zellen führen.Dieses Stadium der massiven Farbstoffaufnahme ist von dem der nachfolgenden Farbstoffspeicherung durch eine Phase getrennt, in dem die Zellen trotz reichlichen Farbstoffangebots nicht fähig sind, das Acridinorange in granulärer Form zu sammeln. Geringere Farbstoffmengen werden wesentlich schneller im Cytoplasma zu rotleuchtenden Körnchen konzentriert. Es wird daher die Auffassung vertreten, daß durch die initiale Farbstoffüberschwemmung eine reversible Zellschädigung, als solche kenntlich durch den weiteren Ablauf der Vitalfärbung, verursacht wird.Im Stadium der Farbstoffspeicherung wird das Acridinorange im Cytoplasma unter aktiver Mitwirkung der lebenden Zellen in gut abgegrenzten, leuchtend rot fluoreszierenden Gebilden gespeichert. Es wird erneut die Frage diskutiert, ob nicht dieser Konzentrationsvorgang, in Analogie zu ähnlichen, bereits entsprechend gedeuteten Prozessen in der Zellpathologie als Koazervatbildung aufgefaßt werden könne.Teilnehmer an der Bildung solcher Komplexkoazervate sind im wesentlichen Nukleoproteide der Zelle und der Farbstoff.Entstehung, Wachstum und Rückbildung der Koazervate wurden an vitalen Zellen im kombinierten Phasenkontrast-Fluoreszenzmikroskop und in gefärbten Präparaten untersucht.Ein Frühstadium wird von einem Spätstadium abgegrenzt. Im Frühstadium sind die Koazervate groß, wasserreich, labil, dem Fixations- und Färbeprozeß nicht gewachsen. Der Übergang vom Früh- in das Spätstadium wird im Phasenkontrastmikroskop von einem Gestaltwechsel angezeigt:Die großen, gelb-glänzenden Frühkoazervate werden durch Dehydratation zu dichten, grau-gelben oder schwarzen Körnchen bei zunächst gleichbleibender Rotfluoreszenz.Diese dehydrierten Gebilde des Spätstadiums färben sich mit May-Grünwald-Giemsa-Lösung tief dunkelblau; mit Methylgrün grün, mit Pyronin rot, bei kombinierter Methylgrün-Pyroninfärbung mit erhöhtem Pyroninanteil rot, mit modifizierter Gallocyaninchromalaunfärbung tiefblau. Allgemein färben sie sich mit den basischen Farbstoffen dann, wenn der Färbeprozeß so schnell abläuft, daß die immer noch labilen Koazervate in der Zelle erhalten werden können.Die Färbeergebnisse werden mit dem hohen Gehalt der Koazervate an Nukleoproteinen, speziell an Ribonukleinsäure, in Zusammenhang gebracht.Besonders hervorgehoben werden die Unterschiede in der Koazervatbildung zwischen Tumorzellen und Histiozyten des Mäuseascitescarcinoms. Die Tumorzellen wieder zeigen Verschiedenheiten zwischen kleinen, stark basophilen Zellen (A-Zellen) und größeren schwach basophilen (B-Zellen). Die letzteren scheinen leichter und in größerem Ausmaß Koazervate zu bilden.Die Histiozytengranula werden schneller und reichlicher gebildet als die der Tumorzellen. Sie sind bereits wenige Stunden nach Fixation und Färbung nachweisbar. Da das Volumen der Koazervate über den ursprünglichen Umfang der dazugehörigen Histiozyten hinauswachsen kann, wird angenommen, daß die Histiozyten während der Koazervatbildung Nährstoffe und Eiweiß aus der Suspensionsflüssigkeit aufnehmen können. Im Frühstadium nehmen die Koazervate auch weiter Farbstoff aus der Umgebung auf, den sie sogar benachbarten Zellstrukturen (Kern) zu entziehen vermögen. Sie behalten stets ihren basophilen Charakter.Im Gegensatz zu den Histiozyten, die einen Großteil oder gar ihre gesamte basophile Plasmagrundsubstanz in den Granula zu sammeln vermögen, ist der Anteil der Nukleoproteide, den die lebende Tumorzelle in die Koazervate abgibt, im Verhältnis zur vorhandenen Gesamtmenge relativ gering: Auch im Anschluß an starke Granulabildung läßt sich nach Fixation und Färbung eine im wesentlichen unveränderte Basophilie des Grundplasmas nachweisen.In der vitalen Zelle besteht eine unterschiedliche Affinität anderer basischer Farbstoffe zu den bereits gebildeten Acridinorangekoazervaten: Neutralrot vermag Acridinorange zu verdrängen, Pyronin und Trypaflavin dagegen nicht. Hinsichtlich seiner Fähigkeit zur Koazervatbildung nimmt jedoch das Acridinorange absolut eine Sonderstellung ein und wird hierin von keinem anderen Farbstoff erreicht. Mögliche Beziehungen dieser Eigenart zu physikalisch-chemischen Merkmalen des Farbstoffs werden besprochen.Art und Ausmaß der Koazervatbildung werden als unmittelbar abhängig von der Zellstruktur aufgefaßt. Mögliche Zusammenhänge werden unter Berücksichtigung elektronenmikroskopischer Befunde sowie neuere Anschauungen über den Nukleinsäurestoffwechsel diskutiert.Die Relationen zwischen den unter Farbstoffeinwirkung neugebildeten Koazervaten und präexistierenden Cytoplasmaeinschlüssen werden erörtert. Unterscheidungsmöglichkeiten sind nicht immer gegeben. Gesetzmäßigkeiten in der Lokalisation fluoreszierender Einschlüsse, Anfärbung solcher Einschlüsse nach dem erwiesenen Zelltod sprechen für die Anwesenheit präformierter Plasmaeinschlüsse.Hinweise werden auf die mögliche praktische Bedeutung der Koazervatbildung gegeben.In Zellen des Ascitestumors lassen sich nach der oben angegebenen Methode Koazervate in starkem Ausmaß erzeugen. Die koazervattragenden Zellen lassen sich als Testobjekte verwenden, in denen der Einfluß verschiedener Medien allgemein auf die Fluoreszenzeigenschaften und speziell auf die fluoreszierenden Koazervate studiert werden kann. Insbesondere lassen sich Rückbildungs- bzw. Abbauvorgänge verfolgen. Besonders verträglich sind albuminhaltige Medien. Allerdings extrahieren sie mitunter den Farbstoff ziemlich schnell aus den Zellen. Frühkoazervate werden zurückgebudet, ohne Spuren in der Zelle zu hinterlassen. Spätkoazervate werden nach fortschreitender Dehydratation wahrscheinlich so abgebaut, wie auch andere ausgesonderte proteinhaltige Plasmabestandteile.  相似文献   

15.
Zusammenfassung Im Gefolge großer chromosphärischer Eruptionen der Sonne treten starke Erhöhungen des Protonenfluxes im gesamten Planetenraum auf. In der Umgebung der Erde folgt der Aufbau und Zerfall eines solchen solaren Protoneneinbruchs sehr verwickelten Gesetzen. Die absolute Intensität des Teilchenstromes sowohl wie sein Energiespektrum erleiden fortlaufende tiefgehende Veränderungen, die sich vorwiegend auf Reichweiten beziehen, die für die Tiefendosisverteilung in einem Objekt von der Größe des menschlichen Körpers von Einfluß sind. Vergleichende Messungen einer Reihe großer Eruptionen erlauben die Aufstellung eines synthetischen Maximalereignisses, das die Berechnung der Dosisleistung und Gesamtdosis und deren Tiefenverteilungen in einem Gewebephantom erlaubt. Die Ergebnisse einer solchen Berechnung werden im einzelnen vorgelegt. Sie zeigen die großen Veränderungen, denen die Dosisleistung und Tiefendosis im zeitlichen Ablauf unterworfen sind. Die Abschätzung der tatsächlichen Strahlenbelastung für solche Ganzkörperbestrahlungen mit stark abfallender und sich fortwährend ändernder Tiefendosis erscheint auf Grund des derzeit verfügbaren experimentellen Materials in der Radiobiologie nicht möglich. Die Kilogrammröntgendosis im besonderen ist für diesen Zweck ungeeignet, da sie die für die in Frage stehenden Strahlenfelder charakteristischen starken Änderungen der Strahlenbelastung in oberflächlichen Schichten des Körpers nur sehr unvollkommen wiedergibt.Herrn Professor Dr. Dr. h. c. Dr. h. c. B.Rajewsky zum 70. Geburtstag am 19. Juli 1963 gewidmet.  相似文献   

16.
Zusammenfassung Die Rindenvakuolen der Ooocyten von Süßwasserteleosteeren wurden während aller Stadien der Oogenese und des befruchteten Eies physiologisch und histochemisch untersucht; als Untersuchungsmaterial dienten vorwiegend die Oocyten der Cyprinoiden Leuciscus rutilus, Abramis brama, Cyprinus carpio und Tinca vulgaris.Die Rindenvakuolen entstehen dicht unter der Oocytemnembran im peripher verdichteten Grundcytoplasma. Die Rindenvakuolenbildung ist mit Abschluß des Oocytenstadiums II beendet.Die Rindenvakuolen der untersuchten Süßwasserteleosteer bestehen aus einem System von ineinandergeschachtelten Vakuolen, die in hypotonischen Medien extrem verquellen. Ihre bedeutende Rolle bei der Bildung des perivitellinen Saftraums wird nachgewiesen.Die Rindenvakuolen ergeben in wäßriger Lösung mit Toluidinblau und anderen metachromatischen Farbstoffen typische Metachromasie, die in den einzelnen Vakuolentypen unterschiedlich ausfällt. Die Metachromasie verschwindet sofort nach Alkoholbehandlung.Die äußeren und mittleren Vakuolen enthalten größere Mengen von Eiweißen, die Tryptophan und Tyrosin bzw. -Aminogruppen besitzen. In den inneren Vakuolen konnten Eiweiße nicht mit Sicherheit nachgewiesen werden. In den äußeren und mittleren Vakuolen sind speichelresistente Polysaccharide enthalten. Der Ausfall der Eiweiß- und Polysaccharidnachweise war zum Teil stark abhängig von der Fixierungsart. Der Glykoproteidcharakter und die chemische Zusammensetzung der Polysaccharidkomponente werden diskutiert.  相似文献   

17.
Zusammenfassung Es wurden die Änderungen in der Ultrastruktur der Leberzellen von 14 bis 21 Tage alten Rattenembryonen beschrieben.Die Ultrastruktur der Leberzellen ändert sich zwischen dem 14.–21. Tag kontinuierlich. In der Hauptsache verändert sich das Zytoplasma; der Charakter des Kernes ist in dieser Zeit fast gleichbleibend. Die Änderungen im Zytoplasma betreffen einmal seine Organellen, zum anderen das Hyaloplasma. Die Mitochondrien ändern ihre Größe, Form und Struktur. Die Zahl der langgezogenen Formen der Mitochondrien nimmt zu. Die Cristae mitochondriales, die zuerst vorwiegend blattförmig gestaltet sind, ändern sich in tubulöse Gebilde um. Die Intensität der Färbbarkeit der mitochondrialen Matrix erhöht sich. Die Lysosomen kommen in der Embryonalzeit in geringerem Maße vor, ihre Form und Struktur ist einheitlich. Die Bestandteile der basophilen Substanz — Ribosomen und endoplasmatisches Retikulum — sind in allen untersuchten Stadien gut ausgebildet. Im Verlaufe des 14.–17. und des 20.–21. Tages überwiegen die parallel angeordneten Membranen, am 18.–19. Tag dagegen die säckchenförmigen Strukturen des endoplasmatischen Retikulums. Der Golgi-Komplex, zum größten Teil aus feinen Bläschen bestehend, ist um den 18. Tag am stärksten entwickelt. Glykogen kann man vom 18. Tag an im Hyaloplasma als kleine, einige 100 Å große Körnchen beobachten. In den folgenden Tagen nimmt ihre Zahl rasch zu und ihre Größe erreicht etwa 2000 Å. Die Lipoidteilchen sind in der embryonalen Zeit ständige Bestandteile des Zytoplasmas der Leberzellen. Die Zellmembran ist zum größten Teil glatt. Sie läuft nur entlang den Gallenkapillaren und an der Fläche gegen den Disseschen Raum in Mikrozotten aus. Die Entwicklung der Mikrozotten ist in der pränatalen Periode noch nicht beendet.Bei der Auswertung der Befunde wurde auf einige funktionelle Merkmale, die mit der Entwicklung der Ultrastruktur der Leberzellen zusammenhängen, hingewiesen.  相似文献   

18.
Walter Url 《Protoplasma》1964,58(2):294-311
Zusammenfassung An Oberepidermiszellen der Zwiebelschuppen verschiedener Sorten vonAllium cepa wurden mit positivem Phasenkontrast und negativem Anoptralkontrast Beobachtungen durchgeführt und mit einem neuen Mikroblitzgerät von Reichert Mikrophotographien angefertigt.Die Golgi-Körper sind von den Mitochondrien deutlich zu unterscheiden. Während die knapp nach der Präparation verkürzten Mitochondrien zumindest schwach oval sind, haben die Golgi-Körper einen kreisrunden Umriß und einen deutlich schwächeren Phasenkontrast. Wenn sie sich drehen sieht man auf ihre Schmalseite und erkennt die Scheibenform.In allen Fällen beinhaltet das Plasma lange dünne, schlauchförmige intraplasmatische Vakuolen. Bei leichter Alteration und Verlangsamung der Strömung verkürzen und verdicken sich die Vakuolen und zerfallen dann auch in einzelne Bläschen. Ihre Verteilung und ihr Verhalten zeigt viele Züge, die dem Endoplasmatischen Retikulum zugeschrieben werden, doch ist ihre Dimension zu groß.Neben den altbekannten, etwa 1 großen, Sphärosomen finden sich immer wesentlich kleinere (0,3 und darunter) Körper, die besonders im Dunkelfeld dasselbe optische Verhalten zeigen. Zwischen den beiden gibt es keine Übergänge in der Größe.In selteneren Fällen finden sich im Plasma dünne fadenförmige Gebilde mit einem Durchmesser von 0,3 und darunter. Sie liegen frei im Plasma oder sind in anderen Fällen offenbar am Kern adhäriert.  相似文献   

19.
Zusammenfassung Die Spermatogonien sind haploid, die Oögonien diploid, die Chromosomenzahl beträgt bei Haplothrips statices n=15. Die Ganglienzellen und die Nervenmutterzellen sind bei Männchen haploid, bei Weibchen diploid.Haploid sind bei den Männchen auch die Zellen der Epidermis, der Tracheenmatrix und des Hinterdarniepithels mindestens bis zur Pronymphe.Es findet demnach während der Entwicklung der von Haplothrips keine allgemeine Aufregulierung (Diploidisierung) der Zellen statt.Fettkörper, Mitteldarmepithel, Malpighigefäße und Oenocyten werden polyploid bis zu 32n. Dabei teilen sich im Fettkörper mindestens noch die 16-ploiden Zellkerne. Während im Mitteldarmepithel, den Malpighigefäßen und vermutlich auch im Fettkörper das Verhältnis der Polyploidie von l2 entsprechend der haploiden Ausgangsbasis der männlichen Zellen erhalten bleibt, wächst die Mehrzal der Oenocyten bei den Männchen stärker als bei den Weibchen.Mit Unterstützung der Deutschen Forschungsgemeinschaft.  相似文献   

20.
Zusammenfassung Es wird über elektronenmikroskopische Befunde an Einschlußkörpern in den Kernen menschlicher Leberepithelzellen berichtet. Die bei 7 klinisch lebergesunden Patienten beobachteten Kerneinschlüsse sind Einstülpungen von Zytoplasma in unterschiedlich tiefe und verschieden geformte Einbuchtungen des Zellkerns. Diese Einstülpungen werden als Ausdruck einer physiologischen Stoffwechselsteigerung (Vergrößerung der Stoffaustauschfläche zwischen Kern und Zytoplasma) der Leberepithelzelle gedeutet.Bei der elektronenmikroskopischen Untersuchung von 56 menschlichen Leberpunktaten wurden außer diesen Kerneinschlüssen nur bei Patienten mit hämochromatotischer Leberzirrhose und Hämosiderose der Leber kernfremde Substanzen in Form von Ferritingranula (= Eisenhydroxydmizellen des Ferritins) in den Leberzellkernen gefunden.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号