首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
采用化学原位聚合合成聚吡咯涂覆碳纳米管,之后将其在氮气氛下热处理制备氮掺杂炭层包覆碳纳米管NCCNTs。利用该工艺,通过改变热处理温度,调控NC-CNTs组织结构和表面化学组成。比表面和孔结构分析显示,600,800和1 000℃热处理制备的氮掺杂碳纳米管NC-CNT600,NC-CNT800和NC-CNT1000的比表面积和孔体积依次显著增加,NC-CNT1000的比表面积和孔体积分别约是NC-CNT600的3倍和1.7倍。这是因碳纳米管表面聚吡咯层向氮掺杂炭层转化过程导致更多的微孔形成。然而,制备温度升高使NC-CNTs的氮含量降低,表面含氮官能团由吡咯型氮向吡啶型氮和石墨氮转化,NC-CNT1000含最高比例的石墨氮。作为无金属催化剂,NC-CNTs在碱性电解质条件下展现了明显的氧还原催化活性,但其氧还原活性并不与样品氮含量成正比。NC-CNT600和NC-CNT800的氧还原反应为两电子转移机制,而NCCNT1000表现为两电子和四电子转移混合机制,其展现出最高的氧还原催化活性和催化稳定性,这可能是其具有高的比表面积和孔体积,结合含氮官能团中高比例石墨氮的缘故。  相似文献   

2.
氮掺杂可以调控碳纳米管的电子结构及表面性质,以吡啶氮、吡咯氮(N-5)、石墨氮、氧化吡啶、-NO2及-NH2等形式进行掺杂的含氮官能团可提高碳纳米管的氧还原催化活性、赝电容、润湿性能及供电子特性。文章综述氮掺杂碳纳米管的3种制备方法:同步原位掺杂、碳化含氮物质、后处理,及其在氧还原反应、超级电容器和支撑材料方面的应用,并综述了不同种类含氮官能团的作用。  相似文献   

3.
氧还原反应(ORR)是燃料电池阴极重要的电化学反应过程,其自发反应进程缓慢,对氧还原反应起高效催化作用的催化剂面临价格昂贵、合成流程复杂、污染环境等问题,因此探索合成简单、环境友好的氧还原催化剂制备方法具有重要意义。铁氮共掺杂介孔碳材料(Fe-N/MC)是一种有巨大应用价值的非贵金属氧还原反应催化剂。本工作通过在马弗炉中的半封闭体系内高温碳化小分子前驱体得到介孔碳材料(MCM),再把获得的MCM与铁盐混合在管式炉中高温处理制备得到铁氮共掺杂介孔碳材料(Fe-N/MCMT)。该方法热解条件简单,无需模板剂和NH3、HF等有毒物质。由于MCM含有较高的氮和氧元素,有利于提升介孔碳材料表面的亲水性和配位能力,通过MCM和铁盐制备出的Fe-N/MCMT含有丰富的、催化ORR的Fe-Nx活性位点,其起始电位和半波电位分别为0.941和0.831 V(vs RHE),比商业化Pt/C催化剂的起始电位和半波电位分别正34和16...  相似文献   

4.
为提高直接甲醇燃料电池(DMFC)的氧还原反应动力学,减少商用Pt/C催化剂的使用,本工作提出将铁/氮共掺杂石墨烯(Fe/NG)作为DMFC的氧还原催化剂,并研究了Fe/NG的制备方法和催化活性。首先,通过水热法处理吸附有铁离子的聚苯胺/氧化石墨烯,并分别在700℃、800℃和900℃对其进行热处理,得到Fe/NG-700、Fe/NG-800和Fe/NG-900三种催化剂。然后,采用X射线衍射(XRD)和X射线光电子能谱(XPS)对三种Fe/NG催化剂进行表征,确定了铁元素以铁单质和四氧化三铁两种形式存在,氮元素以吡啶氮和石墨氮为主。最后,在氧饱和的0. 1 mol/L KOH碱性体系中,采用循环伏安法(CV)、旋转圆盘电极(RDE)、旋转环盘电极(RRDE)研究了三种Fe/NG催化剂的ORR催化机理,证明Fe/NG-700、Fe/NG-800、Fe/NG-900催化四电子过程中,双氧水产率保持接近0。Fe/NG-700、Fe/NG-800、Fe/NG-900具有与20%Pt/C相当的催化活性和循环稳定性,更优异的抗甲醇毒化能力,是一种潜在的直接甲醇燃料电池催化剂。  相似文献   

5.
利用化学浸渍还原法,以原始和混酸活化碳纳米管,及聚苯胺改性制备的氮掺杂炭层包覆碳纳米管为载体,制备上述碳纳米管负载铂催化剂,研究比较它们作为质子交换膜燃料电池催化剂的电催化性能。透射电镜观察表明,以混酸活化碳纳米管为载体一定程度改善了铂粒子在碳管上的沉积形态和分散性,沉积的铂粒子大小约5~8nm,但铂粒子仍存在较明显的团聚现象;而因聚苯胺改性碳纳米管外层为均匀氮掺杂炭层,铂粒子能均匀分散沉积于氮掺杂层表面,其平均粒径约为2~4nm。电化学分析表明,混酸活化和氮掺杂炭层包覆碳纳米管都能够改善负载催化剂的电催化活性,尤其氮掺杂炭层包覆碳纳米管负载铂催化剂不仅具有最高氧还原活性,其负载催化剂同时展现了良好的循环稳定性。  相似文献   

6.
近年来,可逆燃料电池因其高效环保而备受关注,然而其进一步发展受到双功能氧催化剂的严重制约。作为一种极具开发前景的双功能氧催化剂,钴基钙钛矿成为该领域的研究热点。然而,其氧催化活性和稳定性尚需进一步改善。采用改性溶胶-凝胶工艺制备了Sr_(1-x)Sm_xCoO_3(SSC,x=0~0.6)系列氧催化剂,并对其氧催化活性与稳定性进行了研究。结果表明,Sm掺杂能有效改善SrCoO_3体系的双功能氧催化活性。其中,Sr_(0.7)Sm_(0.3)-CoO_3(SSC-30)具有最高的氧还原催化活性,其起始电位和半波电位可达0.798 V和0.638 V(vs RHE)。Sr_(0.8)-Sm_(0.2)CoO_3(SSC-20)具有最高的氧析出催化活性,其在10 mA/cm~2电流密度下的电位值可达1.692 V,对应的过电位η为462 mV。综合氧还原和氧析出催化活性的测试结果,SSC-30具有最佳的双功能氧催化活性,OER和ORR的电位差ΔE仅为1.071 V。此外,Sm掺杂还能进一步提高SrCoO_3的氧催化稳定性,其中SSC-30对氧还原与析出的催化稳定性均高于SrCoO_3。研究结果有望为双功能钴基钙钛矿的开发和应用提供理论指导。  相似文献   

7.
以VulcanXC-72碳作为催化荆载体,采用分步化学沉积方法制备了碳黑担载的Pt-WO3电催化剂.通过XRD、循环伏安等物理和电化学手段对催化剂样品进行了测试和表征,结果表明该催化剂具有更高的氧还原起始电位和峰值电位,表现出良好的电催化氧还原性能,可作为质子交换膜燃料电池阴极氧还原的电催化剂.  相似文献   

8.
修饰和改良载体是改善质子交换膜燃料电池阴极铂基催化剂性能的主要途径。以铁氮(FeN)掺杂活性炭(Black Pearl 2000,BP)为载体,获得负载型铂基催化剂。使用电化学方法对催化剂的氧还原反应活性以及稳定性进行测试,采用X射线衍射仪、比表面积和孔径分布测试、透射电子显微镜、X射线光电子能谱等分析手段对载体及催化剂结构进行表征。结果表明:Pt/FeN-BP催化剂与商业Pt/C催化剂的起始电位均为0.94 V,具有相当的氧还原反应初始活性;老化测试后,Pt/FeN-BP催化剂与商业Pt/C催化剂的起始电位损失分别约为10,30 mV,半波电位损失分别约为5,60 mV,Pt/FeN-BP催化剂的稳定性明显优于商业Pt/C催化剂。这是因为,铁氮掺杂碳载体具有适中的比表面积和孔径大小,Pt颗粒在载体上以小粒径的状态存在且老化测试后Pt颗粒无团聚现象,以及载体与Pt颗粒之间可能存在一定的相互作用。  相似文献   

9.
为解决危废活性炭传统回收方式带来的资源浪费和环境污染等问题,本工作以抗生素脱色废活性炭为原料、氨气为氮源,采用高温热解再生法将氮元素通过sp2杂化键合进入到活性炭骨架中,制备了氮掺杂再生废活性炭氧还原反应(ORR)催化剂,分析了氮掺杂再生活性炭的物相组成、微观形貌、电化学性能。结果表明,当温度为1 000℃、退火时间为1 h时,所制备的N-RWAC-1000-1氧还原电催化性能最佳。N-RWAC-1000-1具有丰富的微孔和介孔结构,比表面积可达908 m2/g,在碱性介质中的起始电位为0.92 V(vs.RHE),半波电位为0.82 V(vs.RHE),均接近商业20%(质量分数)的铂碳催化剂。此外,氮掺杂再生炭拥有优于商业化铂碳的循环稳定性和甲醇耐受性,有望成为新的氧还原催化剂以期为抗生素脱色废活性炭的高值化利用提供了新的方向。  相似文献   

10.
采用模板复型辅助的化学气相沉积法(CVD)成功制备出一种非贵金属的氧还原反应(ORR)催化剂材料—包裹碳化钨纳米粒子的石墨化介孔碳(WC/MG)复合物。制备的介孔结构WC/MG复合材料不仅具有高氧还原反应电化学催化活性, 还表现出良好的电化学稳定性。在O2饱和的0.1 mol/L KOH电解质溶液中, 900℃制备的样品WC/ MG-900其半波电势(E1/2)和极限电流密度仅比商用贵金属催化剂Pt/C分别低50 mV 和 0.2 mA/cm2。Koutecky- Levich曲线和旋转环盘电极实验均表明, 该介孔结构的WC/MG复合材料表现出近似4电子的ORR反应途径, 具有可与Pt/C催化剂相比拟的ORR催化活性, 以及比Pt/C更优越的电化学稳定性和耐甲醇性能, 使得该介孔结构WC/MG复合物在氧还原电极材料中表现出良好的应用前景。  相似文献   

11.
采用溶液聚合法一步合成铁离子改性、植酸掺杂的聚苯胺,在800~900℃氩氢还原气氛下,将电催化析氢性能良好的磷化铁与磷化亚铁颗粒,负载在高温裂解聚苯胺高分子生成的网络多孔碳骨架上。制备了FeP(Fe_2P)纳米颗粒/多孔氮掺杂碳(NC)复合催化剂薄膜,通过扫描电子显微镜和X射线衍射分析表征了催化剂的微观结构。样品的催化性能采用线性扫描伏安法测试。结果表明,850℃条件下,得到的催化剂同时具有最好的电解水析氢及氧还原催化活性。  相似文献   

12.
以天然矿物纤水镁石为模板、蔗糖为碳源制备多孔碳纳米管, 并以硫脲为氮、硫源, 采用水热法制备氮/硫共掺杂的碳纳米管。结果表明, 掺杂碳纳米管继承了纤水镁石模板的柱状结构, 呈现中空管状, 增大了模板炭的比表面积和孔容。在6 mol·L-1 KOH电解液中, 电流密度为1 A·g-1时, 未掺杂碳纳米管的比电容为62.2 F·g-1, 氮掺杂之后碳纳米管的比电容为97.0 F·g-1, 氮/硫共掺杂的碳纳米管比电容为172.0 F·g-1, 氮/硫共掺杂后碳纳米管的电化学性能比未掺杂的提高近3倍; 循环1000次电容保持率达89%, 说明掺/硫共掺杂碳纳米管具有良好的电化学性能。此外, 组装的对称型超级电容器同样展示了良好的电容性能。  相似文献   

13.
碳纳米管优异的物理性质和可调的化学组成使其拥有广泛的应用前景。采用低温过程在碳骨架中引入磷原子预期带来可调的化学特性。本研究采用170℃下水热处理碳纳米管-磷酸混合物获得磷掺杂的碳纳米管。磷掺杂的碳管的磷含量为1.66%,比表面积为132m~2/g,热失重峰在纯氧环境下提升至694℃。当掺磷碳纳米管用于氧还原反应时,其起始电位为-0.20 V,电子转移数为2.60,反应电流显著高于无掺杂的碳纳米管。当其用作锂硫电池正极导电材料时,电极的起始容量为1106 m Ah/g,电流密度从0.1 C提升至1 C时容量保留率为80%,100次循环的衰减率为每圈0.25%。  相似文献   

14.
通过改良Hummers法制备氧化石墨(Graphite oxide,GO),采用爆炸辅助还原法将GO还原剥离并原位掺杂得到氮掺杂石墨烯(Nitrogen-doped graphene,N-RGO)。采用TEM、SEM、FI-IR、XPS、XRD及Raman等分析手段对N-RGO的形貌、组成以及结构进行了表征,利用旋转环盘电极技术测试了其电催化氧气还原活性。TEM和SEM结果表明,爆炸条件下GO被很好地剥离开来,得到只有几层厚度的石墨烯;FI-IR及XPS结果表明,GO中大部分含氧官能团被脱除,C/O原子比达到26.2,是目前所得GO还原程度非常高的方法之一,且氮元素成功掺杂进石墨烯晶格中,掺杂氮的原子质量分数约为2.11%;电化学测试结果显示,氧气还原的极限扩散电流由非氮掺杂石墨烯(Reduced graphene oxide,RGO)的0.24mA提高到N-RGO的0.49 mA,尽管爆炸辅助还原得到的RGO对氧气还原也显示出较好的催化活性,但掺杂之后的N-RGO具有更高的催化活性。  相似文献   

15.
时亚南  于立岩 《材料导报》2016,30(Z1):191-196
利用改进的Hummers方法制备了氧化石墨烯,通过原位化学还原与水热法分别合成镀镍石墨烯与氮掺杂石墨烯材料。通过扫描电镜、透射电镜、红外光谱、XRD等测试方法对样品的形貌结构进行表征,用CHI760电化学工作站研究了样品的电化学性能,两种材料均显示出良好的电化学活性。镀镍石墨烯在较低电压即可对醇进行催化氧化;尿素和氨水都能对氧化石墨烯进行有效地还原并对其完成氮掺杂,以尿素为氮源的掺杂石墨烯显示出较高的CCV比电容和良好的稳定性,而以氨水为氮源的氮掺杂石墨烯具有优良的CGCD电容性能。  相似文献   

16.
采用化学气相沉积法(CVD)制备了硼、氮共掺杂三维石墨烯与碳纳米管复合的非金属电催化材料(B-N-G-CNT)。利用扫描电子显微镜(SEM)、能谱仪(EDS)、透射电子显微镜(TEM)对B-N-G-CNT的形貌、结构及成分进行了表征,结果显示:三维石墨烯-碳纳米管呈有序多孔网状结构,石墨烯与碳纳米管形成稳定的化学结合,具有质量高、缺陷少等优点。运用循环伏安法(CV)、旋转圆盘电极(RDE)、电流时间曲线(i-t curve)等手段测试了B-N-G-CNT在碱性介质中的氧还原电化学性能,结果表明:在浓度为0.1 mol·L-1 的KOH溶液中,B-N-G-CNT复合材料具有比 B-N-G更高的起始电位和半波势能,其电子转移数接近4电子;同时B-N-G-CNT比商业Pt/C具有更高的稳定性。  相似文献   

17.
利用气相沉积法,在低氧气氛下制备高缺陷的ZnO晶体。分别将样品在800℃、900℃、1000℃下通氧退火1h,对ZnO晶体做表面修饰。PL光谱实验和光催化降解亚甲基蓝实验表明ZnO晶体的氧空位、表面态和光催化活性间存在内在联系。1000℃下退火的样品表面缺陷程度多于800℃和900℃下退火样品,光催化活性也优于后两者。  相似文献   

18.
Fe-N/C催化剂在氧还原反应中的作用机理对于开发高效、可持续使用的非贵金属催化剂在聚合物电解质膜燃料电池中的应用至关重要,但目前仍存在很多的难以攻克的问题。为了揭示纳米结构与电化学活性的关系,本研究开发了一种具有高电化学活性的Fe-N/C氧还原催化剂,该催化剂含有Fe-N_x位点和被氮掺杂的碳纳米管包裹的Fe/Fe_3C纳米晶体两种具有氧还原反应电化学活性的纳米结构。尽管不含贵金属铂,本研究合成的Fe-N/C催化剂在碱性条件下仍显示出较高的ORR活性,半波电势为0.86 V(vs RHE),质量活性为18.84 A/g(0.77 V(vs RHE),极限电流密度为–4.3 mA·cm~(–2)。同时,电子转移数为3.7(0.2 V(vs RHE),说明Fe-N/C催化剂中4电子ORR反应的比例较高。石墨烯包覆的金属Fe/Fe_3C纳米晶生长N-CNTs后,材料的导电性有所提高,并且Fe-N_x活性位点在Fe/Fe_3C纳米颗粒表面分布均匀,改善了材料的电化学活性。本研究为非贵金属氧还原电催化剂的继续深入研究以及广泛应用于商业化生产提供了一定的借鉴和依据。  相似文献   

19.
以尿素为含氮前躯体,通过热转化法制备了质子交换膜燃料电池(PEMFC)氧还原催化剂Co-N-C及Co-Ti-N-C,考察了不同的尿素/金属比(R)、焙烧温度及钛含量等条件对Co-N-C及Co-Ti-N-C电催化剂氧还原催化活性和稳定性的影响。利用元素分析、热重、X射线衍射分析、X射线光电子能谱等方法对催化剂进行了表征,研究了催化剂的氧还原活性中心结构。结果表明,催化剂在热处理温度为800℃,尿素与金属Co的摩尔比R=12时的氧还原性能最佳,峰电位(Ep,c)达到0.142 V(vs.SCE)。催化剂Co-N-C经353 K硫酸溶液浸泡3 d后,催化剂Co-N-C的活性中心Co4N的含量增大,Ep,c正移至0.445 V(vs.SCE)。钛的掺杂没有改变催化剂的活性中心结构,明显提高了其在酸性介质中的稳定性。  相似文献   

20.
氧还原反应缓慢的动力学过程严重限制了燃料电池的能量转换效率, 而商用Pt/C催化剂成本太高、资源稀缺、稳定性差, 需要寻找合适的材料来取代商用的Pt/C催化剂。近年来, 氮掺杂多孔碳材料因其独特的物理和化学特性吸引了大量的关注。本文使用富含氮元素的可再生土豆作为生物质前驱体, 通过简单的一步热解过程和KOH活化方法相结合制备出了一系列氮掺杂多孔碳电催化剂; 并系统研究了KOH用量和活化温度对碳基体孔结构和电催化性能的影响。结果表明, 当活化温度为750 ℃、KOH与碳的质量比为3/1时, 所制备的催化剂(NPC-750)的氧还原活性最高, 起始电位和半波电位分别达到0.89和0.79 V (vs. RHE), 极限电流密度达到5.53 mA?cm -2。NPC-750优异的氧还原催化活性主要归因于其发达的孔结构、高的比表面积(1134.2 m 2?g -1)和合适的氮含量(1.57at%)。同时, 优异的循环稳定性和抗甲醇中毒性能进一步说明这些生物多孔碳材料是潜在的低成本氧还原电催化剂。此外, 这些高比表面积多孔碳在超级电容、吸附/分离、催化以及电池等领域也具有潜在的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号