首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
生物除磷颗粒污泥去除Pb2+的效能机制   总被引:1,自引:0,他引:1       下载免费PDF全文
以好氧颗粒污泥的吸附作用和磷酸盐对重金属的螯合作用为基础,采用富含磷酸盐的生物除磷颗粒污泥作为吸附剂来处理含铅废水,考察了不同吸附条件(pH、Pb2+的初始浓度、吸附反应时间)下,颗粒污泥对Pb2+的去除效果。结果表明,除磷颗粒污泥在pH为4,初始Pb2+浓度为150 mg·L-1时,对铅的去除率最高(为99.9%);在吸附反应20 min时即可达到吸附平衡。生物除磷颗粒污泥对Pb2+的吸附可以用Langmuir模型拟合(R2=0.993),最大吸附量为49.5 mg·g-1。其中离子交换和磷酸盐与Pb2+的螯合作用对除磷颗粒污泥去除Pb2+起到重要作用;傅里叶变换红外光谱(FTIR)测定表明-COOH、-OH、磷酰基等多种官能团也参与了除磷颗粒污泥除Pb2+过程。  相似文献   

2.
以污泥和花生壳为原料,采用氯化锌为改性剂,于800 W的微波功率条件下热解10min,制备得到污泥-花生壳吸附颗粒。选取吸附时间、pH值和Pb~(2+)初始浓度3个因素,探究其对Pb~(2+)的吸附效果影响。结果表明,当吸附时间为80min时,pH值为6.54,Pb~(2+)溶液初始质量浓度为0.8mg·L~(-1)时,吸附颗粒对Pb~(2+)的吸附率最大,吸附效果最好。  相似文献   

3.
本研究采用城市生活污泥为原料,污泥活化后低温炭化所得的生物炭用作吸附剂去除水溶液中的Pb~(2+)、Cu~(2+)、Cd~(2+)、Cr~(6+)重金属离子。并对所得生物炭进行了表征,研究了溶液pH值、初始浓度、吸附时间对生物炭吸附能力的影响,并对吸附机理进行了分析。实验结果表明:所得生物炭对Pb~(2+)、Cu~(2+)、Cd~(2+)、Cr~(6+)的最大吸附值分别为250 mg/g、93.5 mg/g、44.4 mg/g、142 mg/g。生物炭对Pb~(2+)、Cu~(2+)、Cd~(2+)、Cr~(6+)的等温吸附曲线符合Langmuir方程,吸附动力学过程可以用伪二阶模型来描述。  相似文献   

4.
采用生物除磷颗粒污泥来去除Zn~(2+),考察了Zn~(2+)初始含量、污泥含量、p H、温度、反应时间和共存离子对Zn~(2+)去除效果的影响,并通过傅里叶变换红外光谱分析去除Zn~(2+)的主要官能团。结果表明,生物除磷颗粒污泥对质量浓度100 mg/L的Zn~(2+)的最大吸附量为29.55 mg/g,平衡吸附量为17.54 mg/g,优化p H为5、温度为25~35℃、污泥的质量浓度为1.0 g/L。Zn~(2+)的去除过程分为快速吸附、慢速吸附和吸附平衡3个过程,符合准2级动力学方程。Ca~(2+)、K~+、Mg~(2+)通过离子交换参与了Zn~(2+)的去除,去除Zn~(2+)的行为主要是依赖聚磷菌的作用来完成的,Zn~(2+)在细胞内的比例为33.52%;去除Zn~(2+)的主要官能团为脂碳链、羧基、伯醇、多聚糖、磷酸基和硫酸基团。  相似文献   

5.
将硫酸钙作为添加剂与污泥共热解制备硫酸钙/污泥基生物炭(SBC),并使用BET、SEM、FTIR和XRD表征,研究了其对Pb~(2+)的吸附去除特性。结果表明,硫酸钙已负载在生物炭表面并对去除Pb~(2+)有促进作用。当温度为25℃,初始pH为5,SBC投加量为0.4 g/L,吸附时间为240 min时,Pb~(2+)去除率可达99.69%。Langmuir等温吸附模型能更好地描述SBC对Pb~(2+)的吸附过程,最大吸附量为280.899 mg/g;SBC对Pb~(2+)的吸附更符合准二级动力学模型,该吸附过程可能以化学吸附为主;热力学分析表明SBC对Pb~(2+)的吸附是自发的吸热过程,升温有利于吸附。  相似文献   

6.
通过微波热解的方法,制备污泥-玉米秸秆和污泥-大豆秸秆吸附颗粒。研究不同吸附时间、pH值和Cd~(2+)初始浓度对废水中Cd~(2+)的吸附效果影响。结果表明,污泥-玉米秸秆对Cd~(2+)的吸附效果好于污泥-大豆秸秆颗粒。10℃和25℃条件下,两种吸附颗粒对Cd~(2+)的吸附率随着吸附时间的增加而增加,而35℃条件下,吸附时间为90min时,吸附率达到最大。当pH范围为2~7时,污泥-玉米秸秆和污泥-大豆秸秆对Cd~(2+)的吸附量分别为8.25mg·g~(-1)和2.33mg·g~(-1)。随着Cd~(2+)溶液初始浓度的增加,两种吸附颗粒对Cd~(2+)的吸附量呈现增加趋势。  相似文献   

7.
从含重金属废渣堆积区的土壤中筛选分离出一种对重金属Pb~(2+)和Cd~(2+)具有高耐受性的功能菌株,采用包埋法制成固定化生物吸附剂,用于吸附废水中的重金属,考察了重金属的初始浓度、吸附时间、废水pH值及吸附剂添加量等因素对吸附性能的影响.结果表明,筛选出的菌株为短杆菌,对Pb~(2+)和Cd~(2+)的最大耐受浓度分别为2200和700 mg/L;吸附剂投加量为10 g/L、废水pH为6时,Pb~(2+)和Cd~(2+)达最大吸附率,分别为87.77%和57.50%;Pb~(2+)和Cd~(2+)基本可在40 min内被快速吸附达平衡,最大吸附量分别为114.3和82.12 mg/g;废水初始pH为5?7利于吸附;Pb~(2+)和Cd~(2+)初始浓度增加使吸附率降低,且Pb~(2+)初始浓度比Cd~(2+)初始浓度对吸附速率影响更大.Langmuir和Freundlich吸附方程拟合表明,Pb~(2+)和Cd~(2+)的吸附主要为单分子层表面吸附;Pseudo-second order动力学方程拟合表明,吸附过程的限速步骤主要为化学吸附,且Pb~(2+)比Cd~(2+)更易被吸附.  相似文献   

8.
为研究以病死猪以炭化焚烧法制备的肉骨生物炭对水溶液中Pb~(2+)的吸附特性,分析了吸附时间、吸附剂用量、Pb~(2+)的初始含量等因素对吸附效果的影响。结果表明,对于50 mL质量浓度400 mg/L的Pb~(2+)溶液,当溶液初始pH为5.5、肉骨生物炭投加量为200 mg、吸附时间为240 min时,肉骨生物炭对Pb~(2+)的吸附效果达到最佳,吸附量为99.37 mg/g,Pb~(2+)去除率达到99%以上。肉骨生物炭对Pb~(2+)的动力吸附过程可以由准2级动力学模型很好地拟合;Langmuir方程描述的单分子层吸附模型能更好地拟合其等温吸附过程,饱和吸附量为106.4 mg/g。相比于玉米秸秆生物炭,肉骨生物炭对Pb~(2+)有更大的吸附容量和更快的吸附速率,是性能较好的Pb~(2+)吸附材料。  相似文献   

9.
以氧化石墨烯(GO)、FeCl_3·6H_2O及聚(4-苯乙烯磺酸-共聚-马来酸)钠盐(PSSMA)为主要原料,通过简便一步溶剂热法制备了阴离子聚电解质修饰磁性氧化石墨烯(MGO@PSSMA),并将其用于水溶液中重金属Pb~(2+)、Cu~(2+)的吸附去除。采用FTIR、SEM、TEM、VSM和DLS对制备的MGO@PSSMA进行了表征。考察了溶液pH、吸附时间、溶液初始质量浓度对Pb~(2+)、Cu~(2+)在MGO@PSSMA及未经PSSMA修饰磁性氧化石墨烯(MGO)上吸附的影响。探讨了吸附等温过程、吸附动力学及吸附作用机理。结果表明:MGO表面引入PSSMA可有效增加其对Pb~(2+)、Cu~(2+)的吸附量。在pH=5,溶液初始质量浓度为300 mg/L时,MGO@PSSMA对Pb~(2+)和Cu~(2+)的实际吸附量达141.1和104.8 mg/g。当溶液初始质量浓度为150 mg/L时,MGO@PSSMA对Pb~(2+)和Cu~(2+)的吸附平衡时间分别为2和1.5 min。MGO@PSSMA对Pb~(2+)、Cu~(2+)的吸附动力学及吸附等温数据分别符合准二级吸附动力学模型和Langmuir吸附等温模型。使用乙二胺四乙酸(EDTA)和HCl可实现MGO@PSSMA的有效再生;通过外加磁场作用可实现MGO@PSSMA的回收再利用。  相似文献   

10.
坡缕石黏土进行简单提纯后,和海藻酸钠、纯水充分混合(物料比为坡缕石∶海藻酸钠∶水=100 g∶9 g∶77 m L),并在潮湿密闭环境下浸润24 h,制成粒径5 mm颗粒。(105±2)℃干燥后,焙烧2 h,制备颗粒状坡缕石吸附剂,采用XRD、BET进行表征,通过静态吸附实验探讨了pH值、Pb~(2+)初始浓度、反应时间和反应温度对吸附的影响,确立了颗粒化吸附剂对Pb~(2+)的吸附动力学和吸附等温线。结果表明,在颗粒化后,坡缕石黏土主要XRD衍射峰得以保留;600℃下烧结,使比表面积降低,而孔容积增大。随着pH值增大,坡缕石颗粒吸附剂对Pb~(2+)的吸附量增加;随着初始浓度的增加,颗粒吸附剂对Pb~(2+)的吸附去除率逐渐降低,平衡吸附量则逐渐上升。当pH值为5.0,Pb~(2+)初始浓度2 500 mg/L时,平衡吸附量达59.85 mg/g。吸附动力学符合颗粒内扩散模型。颗粒化坡缕石吸附剂对Pb~(2+)的吸附符合Langmuir吸附等温式,属于吸热反应。  相似文献   

11.
利用机械球磨法将零价铁(Fe~0)颗粒负载到疏水性、高硅比的ZSM-5分子筛上,成功制备出Fe~0/ZSM-5复合材料,研究了此复合材料对水溶液中Pb~(2+)的去除性能。XRD结果表明,Fe~0/ZSM-5复合材料保持了ZSM-5分子筛的晶体结构,元素点映射表明零价铁颗粒均匀地负载在ZSM-5分子筛上。实验结果表明,在30℃,初始Pb~(2+)浓度为1~100mg·L~(-1),pH值为3.0,Fe~0/ZSM-5复合材料投加量为0.2 g·L~(-1),反应时间为60 min条件下,Pb~(2+)的最大去除率和最高吸附量分别为78.05%和102 mg·g~(-1)。研究发现在去除Pb~(2+)的过程中伴随着Fe~(2+)的释放以及pH值的升高,且反应过程中释放出Fe~(2+)会加速Fe~0表面的给电子过程,增加其表面活性位点,进而进一步提升对Pb~(2+)的还原去除。研究表明,反应过程符合一级反应动力学。  相似文献   

12.
吴良彪  王建荣 《安徽化工》2017,(6):92-94,96
用13X分子筛作为去除铅离子吸附剂,研究各实验条件下对废水中Pb~(2+)的去除效果。考查了废水的pH、Pb~(2+)起始浓度对去除率的影响,Pb~(2+)起始浓度和吸附时间对吸附容量的影响。优化最佳条件为:控制废水的pH=8,Pb~(2+)浓度为200mg/L,搅拌时间为30min,分子筛投加量在5~6g/L时,13X分子筛对Pb~(2+)的去除率可达到92%左右。研究表明,13X分子筛对Pb~(2+)的吸附机理以离子交换吸附为主,符合Langmuir等温吸附模型。  相似文献   

13.
采用机械掺杂法制备了聚苯胺/聚苯乙烯(PANI/PS)共混物,并用红外光谱表征了复合材料的目标结构。研究了pH、Pb~(2+)初始浓度以及吸附时间、温度对PANI/PS复合材料吸附Pb~(2+)的性能影响,并拟合了Pb~(2+)吸附过程的动力学模型和等温模型。结果表明:pH为4.5时,PANI/PS复合材料对Pb~(2+)的吸附容量最大,所需吸附平衡时间为50 min。PANI/PS复合材料对Pb~(2+)的吸附容量随着Pb~(2+)初始浓度的增大而增大,当Pb~(2+)浓度大于300 mg/L时,对Pb~(2+)的吸附容量变化速率放缓。PANI/PS复合材料对Pb~(2+)的吸附过程遵循Langmuir等温模型与准二级动力学方程,在15~50℃为自发吸附过程。  相似文献   

14.
研究磁性水热炭对Pb~(2+)的吸附,采用原子吸收光谱仪测定Pb~(2+)的浓度,控制单因素变量法研究了投加量、pH、时间和初始离子浓度等对Pb~(2+)的吸附研究。结果表明,在初始离子浓度50 mg/L,投加量为0.05 g、pH 5.0,温度30℃以及吸附时间2 h时,吸附去除率达到93.88%,吸附量为46.94 mg/g。用准二级动力学方程模拟实验数据,相关系数可达到0.999 9,吸附过程可用Langmuir吸附等温模型来描述,说明磁性水热炭对Pb~(2+)的吸附过程为单分子层的化学吸附。  相似文献   

15.
在N,N-二甲基甲酰胺中,以次磷酸钠为催化剂,采用柠檬酸对氢氧化钠处理过的玉米芯进行化学改性,制备得到生物吸附剂,并研究其对Pb~(2+)的吸附性能。通过探讨投加量、吸附时间、Pb~(2+)溶液的不同吸附温度、pH等因素研究改性玉米芯对废水Pb~(2+)吸附性能的影响。结果表明,改性的玉米芯投加质量为0.5 g、pH为7、Pb~(2+)初始质量浓度为100 mg/L时,吸附性能较好,吸附平衡时间t为120 min,最大吸附率为88.10%、最大吸附量为35.24 mg/g。可以用准二级动力学方程和Langmuir方程描述改性玉米芯的吸附过程。  相似文献   

16.
《应用化工》2016,(2):286-290
以碱化香蕉皮吸附剂去除溶液中的Pb~(2+),考察了NaOH浓度和碱化时间对碱化效果的影响,探讨了吸附剂粒径、时间、pH、吸附剂用量、Pb~(2+)初始浓度及温度等对吸附性能的影响,并研究了吸附平衡和吸附动力学过程。结果表明,NaOH浓度为0.5 mol/L,碱化时间为8h时制备的碱化香蕉皮吸附性能较佳;最佳吸附条件为:吸附剂粒径60目,时间8h,pH为5,吸附剂用量1.0 g,Pb~(2+)初始浓度500 mg/L及温度为20℃。此时,吸附率可达74.5%,吸附量35.7 mg/g。等温吸附实验表明,碱化香蕉皮对Pb~(2+)的吸附平衡较好地符合Langmuir等温式。吸附过程动力学符合拟二级动力学模型,说明其吸附主要是单分子层的化学吸附。  相似文献   

17.
以木薯淀粉为原料,微波辅助接枝丙烯酸合成了水凝胶(SAH)。采用SEM、FTIR、XPS对SAH进行了表征,考察了SAH对Pb~(2+)的吸附机理;进一步考察了微波功率、pH、吸附温度、吸附时间和Pb~(2+)的初始浓度对吸附的影响。结果表明,SAH具有三维多孔结构,主要通过与Pb~(2+)形成双配位络合物实现对Pb~(2+)的吸附。微波功率为300 W时制备的SAH,在pH为6.09、吸附时间为60 min、Pb~(2+)初始浓度为0.005 mol/L、吸附温度为30℃的条件下,吸附量可达561 mg/g。SAH可重复利用,重复使用4次后其吸附量为458 mg/g。吸附过程符合准二级动力学模型和Langmuir等温吸附模型。  相似文献   

18.
以给水污泥为吸附剂,采用单因素实验,考察了多种因素对含磷废水中磷去除效果的影响。在磷初始浓度为50mg·L~(-1)、吸附剂投加量20 g·L~(-1)、pH值为4.5、吸附时间10h的条件下,磷去除率达93.15%。采用Lagergren一级动力学模型、伪二级动力学模型、颗粒内扩散模型、双常数模型,对吸附效果进行拟合分析。动力学研究结果表明,各浓度的实验数据均能较好地符合伪二级动力学模型。当磷溶液的初始浓度为50mg·L~(-1)时,实验结果符合一级动力学模型;当磷溶液的初始浓度分别为100mg·L~(-1)、150mg·L~(-1)时,颗粒内扩散模型和双常数模型对实验结果有较好的拟合效果。Langmuir和Freundlich等温吸附模型均符合污泥活性炭对含磷废水的吸附特性,热力学参数的计算结果表明,该吸附过程是自发的吸热反应。  相似文献   

19.
通过平板涂布法,从电镀污泥中筛选得到1株吸附Cu~(2+)性能优良的菌株,鉴定其为假单胞菌,并将其制成固定化生物吸附剂。研究了包埋比、吸附时间、温度、Cu~(2+)初始质量浓度、pH值、投加量对固定化生物吸附剂去除Cu~(2+)的影响。结果表明:当包埋比为1∶5、吸附时间为60min、温度为35℃、Cu~(2+)初始质量浓度为100mg/L、pH值为6、投加量为10g/L时,固定化生物吸附剂对Cu~(2+)的去除率可达到85.2%。  相似文献   

20.
彭琪贵  施泽明  王新宇 《广州化工》2020,48(17):50-52,93
水体中镉、铅污染日益严重,如何净化被镉、铅污染的水体是目前污染防治的迫切问题。本文以针铁矿为吸附材料,控制水溶液中Cd~(2+)、Pb~(2+)的初始浓度、pH和离子强度的不同,研究针铁矿对Cd~(2+)、Pb~(2+)的吸附特性。研究结果显示:针铁矿吸附Cd~(2+)符合Langmuir吸附模型;吸附Pb~(2+)符合Langmuir和Freundlich吸附模型;随pH升高,对Cd~(2+)、Pb~(2+)吸附量先上升后趋于平衡;随着NaNO_3浓度升高,对Cd~(2+)、Pb~(2+)吸附量先下降后上升。整体可知,在废水处理中,针铁矿可作为理想的除镉和铅的吸附材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号