首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
盐藻在气升式光生物反应器中的光自养培养   总被引:2,自引:1,他引:2  
在气升式光生物反应器中进行了盐藻培养特性的研究,确定了盐藻在2.5 L气升式光生物反应器中培养的适宜条件为:温度30℃,光强1.6 mW/cm2,盐浓度16%,通气量20 ml/min. 扩大到20 L反应器培养盐藻生长良好. 采用气升式光反应器培养盐藻生长快,周期短,4~7 d后即可进入稳定期;最终细胞密度大,最大为1.6?106 cells/ml;藻液中胡萝卜素含量高,最高含量32 mg/L.实验表明气升式光生物反应器适合于盐藻的培养.  相似文献   

2.
通过对雨生红球藻在不同光质条件下生长的比较,确定了红色光有利于藻生长,进而用2.5 L气升式光照反应器在转光膜及普通PE膜下培养藻进行对比,结果显示雨生红球藻生物量、色素、光合活性等几项生物指标在转光膜条件下明显高于普通PE膜. 在气升式反应器内培养的藻细胞,接种9 d,虾青素含量可达3.57 mg/L,叶绿素浓度达到12.42 mg/L,干重提高8.8%以上.  相似文献   

3.
小球藻生物阴极型微生物燃料电池的基础特性   总被引:1,自引:0,他引:1  
利用自行设计的阴极管状光生物反应器式微生物燃料电池(MFC)作为实验模型,考察了阴极室投加小球藻后不同光暗周期下电池的产电、阴极溶氧及阴极藻的生长情况. 结果表明,阴极投加小球藻后,电池产电性能明显提高,光暗间歇组最大功率密度为24.4 mW/m2,持续光照组最大功率密度为27.5 mW/m2. 阴极溶氧及电化学分析证实溶氧是影响电压变化的主要因素,持续光照组溶氧较稳定,但比光暗间歇组光照阶段溶氧水平低;MFC阴极室培养小球藻不会对其造成毒害,光暗间歇时小球藻生长较好. 运行小球藻生物阴极型MFC采用光暗间歇培养较好,并可适当延长光照时间.  相似文献   

4.
采用单因素实验和均匀实验获得了适合于普通小球藻异养-光自养串联培养的培养基(HA-SK培养基),其关键是C/N比和保证足够的C, N供应. 采用该培养基在摇瓶中异养-光自养串联培养普通小球藻,异养培养结束时细胞密度达13.17 g/L,经过36 h光自养培养后藻体蛋白质和叶绿素含量分别达49.75%和30.17 mg/g. 用5 L生物反应器和1 L平板光生物反应器串联培养,藻细胞密度最高可达15.36 g/L,藻体蛋白质和叶绿素含量分别达54.78%和31.23 mg/g. 表明采用HA-SK培养基进行异养-光自养串联培养可实现普通小球藻的高密度高品质培养.  相似文献   

5.
针对传统管式光生物反应器中存在的附壁现象、光衰减现象以及光暗循环频率低等问题,设计了内置组合转子新型管式光生物反应器。以小球藻为培养对象,BG11为培养基,以光密度作为检测指标,比较了新型管式光生物反应器和锥形瓶静态培养对于微藻生长的影响。同时也分别比较了在不同光暗循环周期下(L∶D=18∶6和L∶D=24∶1),新型管式光生物反应器和锥形瓶静态培养对于微藻生长的影响。结果表明,在扩大培养10倍之后,光暗周期为L∶D=18∶6的对照组最终OD值、比生长速率均要大于L∶D=24∶1的对照组,其中新型反应器中最终OD值高出17.1%,比生长速率高出0.66%,锥形瓶中最终OD值高出13.63%,比生长速率高出6.67%。  相似文献   

6.
采用不同的光衰减模型对浓度0.06~2.68 g/L的蛋白核小球藻藻液中光的衰减特性进行对比. 结果表明,Cornet模型能较好地描述和预测藻液中光的衰减特性,光吸收系数Ea和光散射系数Es分别为0.0014和0.9022 m2/g;随藻细胞中色素含量增加,Lambert-Beer模型中的消光系数Ka和Es增大,而Ea减小. 与高藻细胞浓度相比,低藻细胞浓度时藻细胞中色素含量对藻液中光衰减程度影响更显著. 结合计算流体力学和Cornet光衰减模型计算了平板式光生物反应器中藻细胞受光特性参数,在相同的外部条件下,与3 L平板式光生物反应器相比,15 L平板式光生物反应器中的藻细胞时均光强平均下降35.5%,藻细胞光暗循环周期平均增加78.1%.  相似文献   

7.
用于微藻培养的气升式光生物反应器   总被引:16,自引:0,他引:16  
基于微藻光自养培养特性 ,构建了具有较大面积体积比的 15 L内外光源相结合的气升式光生物反应器 ,考察了两种不同形态藻细胞培养体系中 ,光强随细胞浓度及光程距离衰减的规律 ,得到了描述光衰减的数学关系式 ,即在鱼腥藻 712 0培养体系中为 I=I0 exp[- (0 .0 131+0 .987OD750 )·L],在聚球藻 70 0 2培养体系中为 I=I0 exp[- (- 0 .0 2 39+0 .0 777OD750 )·L],并据此对培养过程中光强沿反应器径向的动态分布情况进行了估算。在该反应器中进行了鱼腥藻 712 0和聚球藻 70 0 2两种蓝藻的光自养培养 ,藻细胞培养终密度分别达到 1.5 3g/ L和 3.4g/ L ,体积产率分别为 0 .31g L-1d-1和 0 .5 7g L-1d-1,说明该反应器适合于微藻的高密度培养  相似文献   

8.
为研究小球藻吸收转化CO2的适宜条件,提高小球藻对CO2的利用率及生物转化量,在同一光照条件下,建立了光生物反应器培养小球藻的光衰减模型,研究通气速率、入口CO2的体积分数、初始pH、藻液接种质量分数等因素对小球藻固碳效果的影响。结果表明:光衰减系数与藻细胞浓度呈线性关系,小球藻光衰减模型为I=I0exp[-(0.104 9+0.336 5OD685)L],当通气速率为200 mL/min,入口CO2体积分数为10%,初始pH为9.0,初始藻液质量分数为0.1时,小球藻生长速率、生物量产率、固碳率及叶绿素含量均较高。结果对微藻固碳效率及机制研究有重要的参考价值。  相似文献   

9.
石磊  杨俊红  康利改  罗梦圆  左鹏鹏  巩启涛 《化工进展》2014,(10):2735-2738,2757
细胞高密度培养有利于降低微藻规模化培养成本及其生物柴油制造的成本,曝气是影响微藻规模化高密度培养的重要因素之一。以普通小球藻(Chlorella vulgaris,FACHB-1227)为研究对象,采用BG11培养基,于新型套管式沿程曝气光生物反应系统中,以细胞密度为检测指标,实验研究了曝气间隔时间对藻液中细胞密度、藻液pH值、溶氧量变化的影响。控制每次曝气时气体流量为10L/min、持续时间为0.5h,培养周期为15天。结果表明,藻液中积累的溶解氧能够及时排除,进入生物质积累稳定期时,藻液的pH值基本恒定;微藻生长稳定期时(培养12天),曝气间隔0.5h时细胞密度为7.22×106个/mL,相比于1h、1.5h、2h分别提高了9.56%、41.02%和122.1%。可见,适当减少曝气间隔时间,可显著提高藻细胞密度。  相似文献   

10.
在3 L气升式光生物反应器中进行了产烃葡萄藻的培养. 批式培养时,葡萄藻消耗氮、磷的速度较快,培养液中氮、磷营养盐的缺乏限制了藻细胞进一步生长和增殖. 采取分批补料方式,使培养液中KNO3和K2HPO4浓度分别维持在100和30 mg/L,可克服氮、磷限制问题. 与批式培养相比,生物量从1.3 g/L增加到1.9 g/L,烃含量从占细胞干重的22%提高到29%,从而使烃产量从0.286 g/L增加到0.551 g/L,提高了92.6%.  相似文献   

11.
王红娜  马晓建 《化学工程》2011,39(4):21-24,53
以酸化油为原料,利用气升式反应器二步法生产生物柴油.通过实验优化出预酯化反应和酯交换反应的最佳工艺条件和气升式反应装置的最佳工艺参数.气升式反应器的最佳工艺操作参数为:预酯化反应,反应温度115℃,反应时间2 h,催化剂质量分数1%,甲醇通入速度6.5 L/h;酯交换反应,反应温度70℃,反应时间1 h,催化剂质量分数...  相似文献   

12.
1 INTRODUCTION Porphyridium cruentum is a kind of unicellular microalgae, which can live widely in freshwater, marine, brackish, and soil environment[1]. Great attention has been paid to its potential economic value such as the high content of essential high unsaturated fatty acids, especially arachidonic acid (AA) and eicosapentaenoic acid (EPA) (ca 50% in the total fatty acids), ploysaccharides, and synthetic pigments, especially phycoerythrin (PE)[2,3]. During cultivation, the cells…  相似文献   

13.
在上流式污泥床好氧颗粒污泥反应器中,以厌氧颗粒污泥为接种泥.采用人工配制的模拟废水为进水的条件下,成功培养出具有同步脱氮除磷的好氧颗粒污泥。颗粒污泥粒径在0.5~2mm,颗粒污泥沉淀速度在29~58m/h。MLSS为3077---4103mg/L。当COD的进水容积负荷为4.8kg/(m3·d)时,去除率高达96%以上。氨氮进水在160mg/L时,去除率达97%以上,出水氨氮在5mg/L以下。对总磷的去除率在22%-37%。主要是因为亚硝态氮浓度、COD/TN比和TN/TP比等对聚磷菌除磷有影响。  相似文献   

14.
以转hTNF-α基因聚球藻7002为对象,在摇瓶培养下对其生长条件进行了初步研究. 结果表明,当光照强度为100 μmol/(m2×s)时,藻细胞生长速率最大;35oC为其最佳培养温度;氯化钠浓度为12~24 g/L生长良好,最适浓度为24 g/L;转hTNF-α基因的聚球藻7002能利用铵盐和硝酸盐为氮源,其中硝酸盐对其生长最有利,硝酸钠最适浓度为1 g/L;加入有机碳源可以显著促进藻细胞生长,其中5 g/L的蔗糖对其促进作用最明显.  相似文献   

15.
Arthrospira platensis (Spirulina) is an important source of pharmaceuticals and nutraceuticals such as γ‐linolenic acid (GLnA). Effects of several parameters including carbon source (glucose, ethanol, and acetic acid), type of addition (batch or fed‐batch), light intensity (2.0, 3.5, and 5.0 klx) were investigated in the mixotrophic cultivation of Spirulina (using both light and carbon source). The obtained Spirulina was analyzed in terms of biomass, lipid, and GLnA production. Compared to photoautotrophic conditions (i.e., when using light without external carbon source), the biomass concentration was found to be higher when Spirulina was grown mixotrophically. Similarly, the lipid content as well as the GLnA was found at higher levels when using mixotrophic conditions. Effects of different light intensities under photoautotrophic and mixotrophic conditions were studied. The highest final biomass concentration (2.17 g/L), lipid yield of culture medium (128 mg/L), and GLnA yield of the culture medium (32 mg/L) were obtained at the highest light intensity of 5.0 klx. It was also demonstrated that the biomass, lipid, and GLnA production under different light intensities, using ethanol and acetic acid, could be comparable and even better than those of glucose. Practical applications: Spirulina is an attractive source of functional components such as γ‐linolenic acid (GLnA). Results of this study suggest that carbon sources such as ethanol and acetic acid can also be used for the production of GLnA by Spirulina under mixotrophic cultivation (using light and external carbon source).  相似文献   

16.
研究设计了可产生波长小于200 nm真空紫外光的光化学反应器,首次利用该波段的光在该反应器中进行了CO2光解反应的研究。用氮气为发光介质对其进行光强标定,实验表明主要产生120、149、174 nm波长的光(N原子谱线);实验条件下CO2光解后生成产物CO,结果表明光源电流一定时产生CO的量与光源工作气体的压力有关,在CO2和N2反应物系中,光源内发光介质N2的压力在2 500 Pa左右时CO的产率最大,而在该反应物系中加入甲烷后,CO的产率明显增大。  相似文献   

17.
研究了光强的衰减与鱼腥藻7120细胞浓度和光程的关系,并通过回归分析,得出了光强基于细胞密度和光路长度衰减的关联式,为预测培养过程中的光强变化和调控提供了依据. 同时,在15 L气升式反应器中,研究了恒定光强和渐变光强下藻细胞的生长情况,探讨了光强变化对藻细胞生长的影响,并对培养过程中细胞倍增时间作了比较,进一步说明了光强在藻细胞培养中的重要作用.  相似文献   

18.
BACKGROUND: Previously, tachyplesin gene (tac) has been successfully transferred into Undaria pinnatifida gametophytes using the method of microprojectile bombardment transformation. The objectives of this study were to compare and evaluate the performance of bubble‐column and airlift bioreactors to determine a preferred configuration of bioreactor for vegetative propagation of transgenic U. pinnatifida gametophytes, and to then investigate the influence of light on vegetative propagation of these gametophytes, including incident light intensity, photoperiod and light quality to resolve the problems of rapid vegetative propagation within the selected bioreactor. RESULTS: Experimental results showed that final dry cell density in the airlift bioreactor was 12.7% higher than that in the bubble‐column bioreactor under the optimal aeration rate of 1.2 L air min?1 L?1 culture. And a maximum final dry cell density of 2830 mg L?1 was obtained within the airlift bioreactor using blue light at 40 µmol m?2 s?1 with a light/dark cycle of 14/10 (h). Polymerase chain reaction (PCR) analysis indicated that genes (bar and tac) were not lost during rapid vegetative propagation within the airlift bioreactor. CONCLUSION: The airlift bioreactor was shown to be much more suitable for rapid vegetative propagation of transgenic U. pinnatifida gametophytes than the bubble‐column bioreactor in the laboratory. The use of blue light allows improvement of vegetative propagation of transgenic U. pinnatifida gametophytes. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
崔欢庆  严伟  汪万强  黄琳 《广东化工》2012,39(6):350-351
以活性炭为载体,用溶胶凝胶法制备TiO2/AC负载型催化剂,用XRD对其进行了表征。以甲基橙为目标降解物,以紫外灯为光源对催化剂进行了光降解研究。考察了催化剂煅烧温度、催化剂用量、光催化反应时间、催化剂重复使用次数等对催化剂活性的影响。结果表明:催化剂煅烧温度500℃,催化剂用量为0.8 g/L,光催化反应时间为2 h,甲基橙降解率最高,可达到97.26%。催化剂再重复使用5次后,对甲基橙的降解率仍然可达到91.48%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号