首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
随着城镇化进程加快,大量含难降解有机污染物的工业废水和生活污水因不合理处置而进入水体,对水环境质量造成严重威胁。过渡金属离子催化活化单过硫酸盐(PMS)产生活性氧去除水中难降解有机物的催化体系的研究已有大量文献报道,但存在金属离子二次污染和催化剂难以回收等问题。MoS2作为优异的二维半导体材料,在储能和催化领域颇具优势并实现产业化生产。在水处理领域,研究发现MoS2作为非均相金属催化剂能够有效活化PMS去除水中难降解有机物。本文主要综述了MoS2作为催化剂、金属离子助催化剂或复合型共催化剂活化PMS体系降解水中有机污染物的研究进展,归纳并比较上述催化体系对污染物的降解效能,对催化反应机制进行探讨分析,并针对目前存在的问题提出相关研究展望。   相似文献   

2.
臭氧化的负载型非均相催化剂制备及其作用机理   总被引:2,自引:1,他引:1  
在难降解废水处理的研究与实践中,负载型非均相催化臭氧化技术作为一种新型高级氧化技术受到了人们的高度关注,促进了负载型非均相催化剂制备及其作用机理研究的快速发展.综述了催化剂制备方法、载体表面属性、载体类型、载体上活性组分种类、负载量、催化剂配比等对负载型非均相催化剂催化活性的影响,并综述了负载型非均相催化剂的催化臭氧化功效和作用机理的研究进展;结合实际的水质状况,指出了其可能发展的方向.  相似文献   

3.
凹凸棒石(ATP)黏土因性能优异被广泛应用于复合材料的制备,系统总结了ATP基吸附剂、催化剂及储能材料的制备方法,综述了ATP黏土在吸附剂、催化剂及储能材料领域的研究进展。今后ATP基复合材料形貌结构控制及其在环保领域的应用仍然是研究的重点。  相似文献   

4.
李晨旭  彭伟  方振东  刘杰 《材料导报》2018,32(13):2223-2229
近年来,水体中富集的难降解污染物导致了诸多环境问题,传统水处理工艺并不能对其进行有效处理。高级氧化技术是目前处理难降解污染物的最有效方法。过渡金属氧化物非均相催化过硫酸氢盐(PMS)活化生成硫酸根自由基(SO_4~-·)处理水体中难降解污染物是近些年新兴的高级氧化技术,与以生成羟基自由基(·OH)为基础的传统高级氧化技术相比,该技术具有对pH适应范围更宽、中性条件下氧化性更强、自由基半衰期更长的优势,同时也克服了均相催化体系中金属离子的二次污染、难以重复利用的问题,受到环境领域学者的广泛关注,为去除水体中抗生素、激素等难降解污染物提供了新的思路和方法。然而,由于活性点位的减少,相较于均相催化,非均相催化的催化效率更低,同时也存在催化稳定性差、难以回收等不足。针对上述问题,近几年除了探寻对PMS的活化具有催化活性的新型过渡金属氧化物外,研究者主要从催化材料的负载、改性以及复合三方面进行尝试,并取得了丰富的研究成果,在发挥非均相催化经济、环保优势的同时,大幅提高了催化剂的催化效率及可回收性,为其步入实际应用做出了巨大的贡献。在众多过渡金属元素中,钴、铁、锰的氧化物已被证明对PMS的活化具有催化活性并得到了广泛的研究。其中,由于钴离子对PMS表现出最强的活化能力,因此对钴系氧化物研究得最早。随后,铁及锰的氧化物因环境友好、廉价易得的优势逐渐成为钴氧化物的替代品。近五年的研究工作将纳米碳、介孔材料以及金属-有机框架等引入催化剂的制备合成中,对过渡金属氧化物进行负载和改性,加强了催化材料的电子传递速度和化学稳定性,为解决催化剂的催化效率低与催化稳定性差等问题提供了有效方法。此外,以两种过渡金属元素为催化核心的二元复合材料,在降低催化剂制作成本的同时,还可以实现催化剂效能和稳定性的双重提高。文章介绍了钴系氧化物、锰系氧化物、铁系氧化物等三种能够催化PMS活化的一元非均相催化剂的研究进展,并阐述了二元复合催化剂的研究现状,总结了现阶段研究的不足并对未来的发展方向做出了展望,以期为制备经济高效的过渡金属氧化物催化剂提供参考。  相似文献   

5.
近年来,对常规的铁基材料进行硫化改性已经成为抑制铁材料团聚和氧化,提高其反应活性的重要技术手段.通过硫化铁基材料可构建非均相氧化体系,该体系反应更高效且适用范围更广,在水处理中具有广阔的应用前景.综述了常见的硫化含铁物质作为非均相类Fenton催化剂去除水体难降解有机污染物的研究进展,探讨了经硫化处理后不同种类的铁化合...  相似文献   

6.
非均相催化剂的研制一直是生物柴油领域的研究热点,而其中的负载型催化剂以其制备材料广、活性高、重复利用性好等优点成为生物柴油制备的首选催化剂。本研究综述了以金属氧化物及复合物、活性炭和分子筛为主要载体的负载型固体酸碱催化剂最新研究进展,包括催化剂的制备、催化性能和存在的问题。最后,展望了负载型固体催化剂在生物柴油产业的应用前景。  相似文献   

7.
难降解性有机物来源广泛,性质稳定,能在环境中长期残留,对人类健康和生态环境造成危害。纳米光催化剂因其氧化性强、分解率高、低价安全等优点,在处理难降解性有机物的研究和应用上备受关注。综述了难降解性有机物处理技术的研究现状,阐述了纳米光催化剂处理难降解性有机物的机理和研究进展,并预测了未来光催化技术的发展方向。  相似文献   

8.
生物柴油是环境友好的替代燃油,由天然油脂与低级醇通过酯交换反应制备。采用固体酸催化剂制备生物柴油较为简单,同样适用于低等级、高度酸性以及含有水的油的酯化和酯交换反应,且不形成皂化物,还可以有效避免传统均相酸碱催化酯交换工艺中存在的产品分离困难和废催化剂的二次污染问题。研究非均相固体酸催化剂在生物柴油生产中的应用,对于正在兴起的中国生物柴油产业具有重要的意义。详细介绍了各种固体酸,包括硫酸化的金属氧化物、磺酸离子交换树脂、磺酸改性的介孔二氧化硅材料、磺化碳基催化剂、杂多酸和酸性离子液体作为酯化和酯交换反应中的非均相催化剂的研究进展。  相似文献   

9.
随着国民经济发展和人民生活水平的不断提高,聚苯乙烯(PS)产品的多样化、专业化成为了市场竞争和用户需求的发展趋势。聚合物催化加氢工艺作为提高PS专用料性能的重要改性手段,近几年来已成为不饱和聚合物化学改性领域的研究热点。文中主要综述了国内外PS非均相催化加氢制备聚环己烷基乙烯(PCHE)体系中加氢工艺的改进、加氢催化剂的设计优化及反应机理研究的新进展。阐述了催化剂的结构设计、物化性能以及反应过程中传质扩散阻力等对PS加氢活性的影响,探讨了PS非均相催化加氢体系中的"Blocky"加氢机理,提出未来PS非均相加氢催化剂研究重点应该放在催化剂的结构设计上,既要保证聚合物分子与活性中心高接近性,又要实现在加氢体系中的传质扩散与催化剂载体上活性位点高分散的最佳平衡。同时,为进一步提高加氢催化剂的综合性能,需要加强对聚合物加氢反应机理和催化剂合成改性技术的基础性研究。  相似文献   

10.
近代工业的快速发展造成大量难降解的新型有机污染物进入水体,亟需经济、高效的难降解有机污染物污染控制和削减技术。近年来,基于硫酸根自由基(SO4·–)的高级氧化技术(SR-AOPs)具有强氧化性、宽pH耐受性以及方便操作性等优势而备受关注。不同种类的金属氧/硫化物、碳基材料、金属-非金属复合材料以及有机金属材料等被用来活化过硫酸盐产生活性氧,从而实现对有机污染物的氧化降解和进一步矿化。其中,层状双金属氢氧化物(Layered double hydroxides, LDHs)因其独特的层状结构优势、阴离子可交换性和客体分子可调节性,在活化过硫酸盐方面表现出优良的反应活性和催化优势。本论文从催化剂类型、催化性能与机制以及降解体系影响因素等方面,综述了LDHs及其复合材料作为非均相催化剂活化过硫酸盐的研究现状,并对催化体系持续改进以及未来发展提出相关展望。  相似文献   

11.
正传统石油基聚合物膜材料在其服役周期完成后,既难再生、回收又难降解处理,从而造成环境污染压力。生物基聚合物微孔膜有望解决这一问题。在一次性水深度过滤膜、血液净化及污水处理兼碳源缓释膜方面具有应用前景。中科院宁波材料所刘富研究员带领的液体分离与净化团队近年来系统开展了生物基聚合物微孔膜的可控合成制备及应用研究。针对聚乳酸微孔膜的结构控制及制备方面已经制备了梯度结构的微孔膜,及表面肝素化/类肝素化改性微孔膜。如通过多巴  相似文献   

12.
Sb掺杂钛基SnO2电极的制备、表征及其电催化性能研究   总被引:20,自引:0,他引:20  
采用电沉积 热氧化法制备了含有中间层的Sb掺杂钛基SnO2 电催化电极(Ti/SnO2),采用SEM、EDX以及 XRD 等检测方法对所制备电极的表面形貌、元素组成及结构进行分析,并以苯酚为目标有机物,研究所制备电极对有机污染物的电催化降解能力。研究结果表明所制备 Ti/SnO2 电极可在较短时间内将苯酚彻底降解,其较大的真实表面积以及电极中间层的存在是所制备电极性能提高的重要原因。阳极极化曲线扫描(LSV)的分析结果表明所制备的 Ti/SnO2电极具有较高的阳极析氧电位,有利于有机物的阳极氧化降解。  相似文献   

13.
针对临泽地区低品位凹凸棒石黏土利用率低的问题,用预富集处理的临泽红色低品位凹凸棒石黏土(PPCI)为载体,利用高锰酸钾和草酸铵为反应前驱体,通过氧化还原法制备MnOx/PPCI复合催化剂,并用于常温下降解室内空气中甲醛效果评价.结果表明,Mn负载量为33.6wt%的复合催化剂具有优异性能,动态实验中,当进气甲醛浓度为1...  相似文献   

14.
申曙光  王涛  秦海峰  代光  李焕梅 《功能材料》2012,43(12):1598-1601
采用磁性碳纳米管(CNTs)、葡萄糖、炼焦酚渣为碳源,制得碳基固体酸催化剂.通过XRD、FTIR、13C NMR和SEM/TEM对其结构和活性基团进行表征,并且以经过预处理的微晶纤维素为纤维素模型物,以总还原糖得率为考察指标,利用制备的碳基固体酸非均相催化水解纤维素,比较了3种碳源制得的碳基固体酸在水解纤维素中的水解效率.研究结果表明,与传统原料葡萄糖制得的碳基固体酸相比,酚渣基固体酸碳环上除了含有酚羟基、羧基和磺酸基外,还含有其它碳基固体酸不具备的烷基侧链,这一结构优势对碳基固体酸催化剂的催化活性具有促进作用,能够提高碳基固体酸催化剂的水解效率;碳纳米管固体酸尽管具有致密的碳层结构、磺化后磺酸密度低,但高比表面积使其在非均相催化水解纤维素中表现出较高的活性.  相似文献   

15.
本文综述了ZnO基纳米复合光催化材料的基本结构与性能、光催化效果及其作用机理;系统概述了可见光响应型ZnO基纳米复合光催化材料在有机物污染物降解、光催化制氢和抗菌等方面的应用,并对其进一步研究提出了思路和建议。相信随着基础研究与应用实践的不断深入,ZnO基纳米复合光催化材料最终会在高效催化剂、环境净化、太阳能转换等方面得到长久发展与广泛应用。  相似文献   

16.
饶涵  马永梅  李思悦 《功能材料》2022,53(3):3011-3019
抗生素的广泛应用以及难降解特性对生态环境造成极大危害,如何高效经济地去除抗生素残留成为当前研究的热点和挑战.利用水热法制备了多波段光响应的复合催化剂NaYF4:Yb,Tm@TiO2用于高效光催化降解抗生素.复合催化剂中的上转换材料可将近红外光转换为紫外光,协同用于对盐酸四环素(TC)的高效降解.为了进一步提升复合催化剂...  相似文献   

17.
光降解水中有机污染物是解决环境问题非常有前途的策略。主要介绍了近年来光催化降解有机污染物的国内外最新研究进展,重点介绍了钛酸盐光催化剂、钽酸盐光催化剂、铌酸盐光催化剂、无机层状化合物、金属硫化物、Z型光催化反应体系。着重总结了金属硫族化合物催化剂降解有机污染物存在的问题及可行的解决方案,并对以后可见光催化降解有机物的研究发展趋势进行了展望。  相似文献   

18.
甘油碳酸酯(Glycerol carbonate,GC)是一种重要的化工新型材料,在气体分离膜、聚氨酯泡沫、油漆涂料和洗涤剂等方面应用广泛。利用甘油和尿素两种廉价易得的原料来制备GC,不仅可以有效解决生物柴油生产过程中大量甘油副产物难处置的问题,同时产生的氨气可与CO_2反应生产尿素,有效实现二氧化碳的化学固定,是一种绿色经济且环境友好的反应工艺。本文对尿素醇解法制备GC的催化剂进行了系统综述,将涉及到的催化剂进行了归纳,如锌基催化剂、镁基催化剂、钨基催化剂、功能化离子液体催化剂和其他催化剂,并着重对这几类催化剂的制备方法、催化效率和相应的反应机理进行了总结,以期为新型高效催化剂的制备提供参考。最后,对尿素醇解工艺的发展及新型催化剂的制备提出了展望。  相似文献   

19.
许俊强  郭芳  李军  刘奇 《材料导报》2014,(16):51-54
采用微沸回流体系处理制备非均相负载型Cu/Al2O3催化剂。采用XRD、BET和SEM技术分析了该材料的结构、织构参数和表观形貌。选择以H2O2为氧化剂,甲基橙催化氧化降解反应为模型反应评价催化剂的催化性能。表征分析结果表明采用微沸回流体系处理的催化剂比常规过量浸渍的催化剂的形貌颗粒直径更小,其比表面积更大,活性组分的分散度更高。反应后催化剂易分离回收,解决了Fenton反应中催化剂难回收的问题。优化后最佳工艺为:m(H2O2)/m(Cu/Al2O3)=2/1,反应温度70℃,催化剂颗粒粒度0.3~0.4mm,搅拌速度900r/min,Cu/Al2O3(N)催化剂对甲基橙的去除率达到90%以上,比传统催化剂对甲基橙的去除率提高20%。通过Arrhenius方程计算,得到该反应的表观活化能为40.7kJ/mol。  相似文献   

20.
采用静电纺制备聚丙烯腈纳米纤维,将其浸泡在盐酸羟胺溶液中进行改性,获得偕胺肟改性聚丙烯腈纳米纤维(AO-PAN),再将AO-PAN与三氯化铁溶液在室温下反应,得到聚丙烯腈铁的配合物(Fe-AO-PAN),并采用SEM、FT-IR和EDAX能谱分析方法对其进行表征。然后将其作为非均相Fenton反应催化剂用于活性橙K-GN染料的氧化降解反应中,同时研究了吸附不同Fe3+量的聚丙烯腈纳米纤维对脱色率的影响,并用可见光分光光度计测量不同降解程度的染料吸光度。结果表明,偕胺肟改性聚丙烯腈纳米纤维与Fe3+发生了配位反应,从而制成了Fe-AO-PAN纳米催化剂,而且催化剂中Fe3+含量的增加会促进活性橙K-GN染料的氧化降解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号