首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
在Euler-Lagrange框架下,基于应用分形理论对凝聚态Al2O3夹杂物形貌结构进行定量分析的基础上,数值模拟研究了连铸中间包钢液中不同形貌凝聚态Al2O3夹杂物的运动行为.研究发现中间包钢液流场和夹杂物形貌尺寸共同影响夹杂物在钢液中的运动行为.随着尺寸的变大,簇群状和致密球形两种形貌Al2O3夹杂物上浮去除率都逐渐增加.在相同尺寸下,簇群状Al2O3夹杂物上浮去除率比致密球形Al2O3夹杂物低;随着尺寸的增加,簇群状Al2O3夹杂物上浮去除率相比于同尺寸致密球形Al2O3夹杂物降低得就越多.计算结果显示,与同尺寸的致密球形Al2O3夹杂物相比,直径为20、40、60和80μm的簇群状Al2O3夹杂物上浮去除率分别降低了4.8%、5.7%、6.4%和12.5%.  相似文献   

2.
稀土处理C-Mn钢显微组织和夹杂物演化   总被引:1,自引:0,他引:1  
对稀土处理C-Mn钢的夹杂物和显微组织进行分析,统计稀土处理C-Mn钢中针状铁素体形核核心尺寸,并将稀土处理钢在不同温度下淬火,研究稀土夹杂物生成和长大过程. 实验结果表明:C-Mn钢加入少量稀土后钢中夹杂物从MnS﹢硅铝酸盐夹杂转变为La2 O2 S﹢LaAlO3 ﹢MnS﹢硅铝酸盐夹杂,尺寸得到细化,显微组织也从马氏体﹢贝氏体组织变成侧板条铁素体、针状铁素体和块状铁素体组织;稀土处理C-Mn钢中针状铁素体有效形核核心的尺寸集中在1~4μm,主要是在钢液中形成,冷却和凝固过程形成的数量较少;稀土夹杂物在钢液温度和冷却及凝固过程容易碰撞黏合长大,上浮从钢液中去除, MnS能在稀土夹杂物颗粒间析出.  相似文献   

3.
钢液中气泡和夹杂物的去除   总被引:1,自引:0,他引:1  
熔池中钢液的流动、气泡以及夹杂物的大小都影响着钢液中夹杂物的去除率.研究表明,向上流动的钢液有利于夹杂物的上浮,几乎所有的夹杂物都能在钢液上升流中上浮.向下流动的钢液对夹杂物和气泡的上浮有阻碍作用,当气泡的直径小于1mm时其在钢液中将无法上浮.在钢包精炼吹氩过程中,应使用较小的吹氩量,一方面避免产生过大的气泡而降低底吹气体的利用效率,另一方面减小熔池内的钢液流速,促进气泡和夹杂物的上浮.但吹氩量也不宜过小,必须使气泡保持一定的尺寸来保证其充分上浮.在钢包精炼过程中选择吹氩量时,应综合考虑钢液流速和气泡大小的影响.  相似文献   

4.
Ti-Mg复合脱氧钢中夹杂物细化机制   总被引:1,自引:0,他引:1  
为了探讨钢中细小夹杂物的形成机制,采用扫描电镜和能谱仪表征了钢中夹杂物的形貌、尺寸、成分及数量,理论计算了脱氧产物的生成优势区图,讨论了夹杂物长大的影响因素.钢中夹杂物的组成以MgO-A12 O3-TiOx为核心,表面包裹析出MnS,钢液中未发现单独的Al2O3和TiOx夹杂;夹杂物的形貌为近球形,平均尺寸为1μm左右,数量在1000 mm-2以上.镁含量较高的钢中含有少量以MgO-Al2O3和MgO为核心的夹杂物,不利于夹杂物的球形化,镁含量宜控制在50×10-6以下.镁的脱氧能力强,形核临界尺寸小、形核数量多以及钢液中镁、铝和钛复合脱氧的高熔点产物的特性有效地控制了钢中夹杂物的扩散与碰撞长大趋势.  相似文献   

5.
系统分析了国内某钢厂复合脱氧工艺下Cr Mo石油钻杆钢夹杂物在EAF-LF-VD-CC流程中的析晶和衍变规律.由于铝酸盐的上浮,LF冶炼前钢中T[O]含量较低,冶炼过程中氮含量逐渐升高.电镜下钢中大尺寸夹杂物(50μm左右)只出现在LF-VD阶段,主要为低熔点的硅锰酸盐、包含Na2O的混合物和含有少量Ca O的镁铝尖晶石,中间包阶段大尺寸夹杂物完全消失.小尺寸夹杂物(<10μm)出现在精炼全过程中,主要成分是Mg、Al、Si和Ca的复合氧化物、Ca S以及二者的复合物,LF冶炼前到中间包阶段小尺寸夹杂物粒径相似,铸坯中其粒径稍微增加.随着精炼过程的进行,钢中小尺寸夹杂物的成分逐渐向复合氧化物的低熔点区域转移,夹杂物中Ca O和Mg O含量存在竞争关系.铸坯中大型夹杂物(>100μm)包括卷渣引起的复合夹杂,耐材剥落产生的Mg O-Ca O夹杂和钢液内生的铝酸盐夹杂.内生铝酸盐与精炼过程中小尺寸夹杂物成分相似,外层包覆Ca S,轧制过程中容易破碎成链状引发钻杆钢裂纹.建议适当延长VD处理后钢液的镇静时间,以去除钢中大型铝酸盐夹杂,提高钻杆钢质量.  相似文献   

6.
采用物理模拟方法,基于莫顿数相等及夹杂物运动行为相似准则,采用聚乙烯粒子模拟钢液中夹杂物,并采用高速摄像技术记录气泡及夹杂物颗粒的运动行为,分析了气泡尾涡对夹杂物去除的影响机理.实验结果表明:在气泡尾涡作用下,夹杂物运动轨迹表现为两种方式:一是夹杂物从气泡下端两侧向气泡尾涡靠近,随气泡上浮一段距离后上升速度变快,然后脱离气泡尾涡区;二是位于气泡上方的夹杂物,在不与气泡发生碰撞黏附的条件下,以回旋方式运动至气泡下方,然后在尾涡区内随气泡上浮,从而沿竖直方向以回旋方式上升.在相同上浮距离条件下,与小气泡相比,大气泡的尾涡去除夹杂物颗粒的效果更好.  相似文献   

7.
在应用分形理论对凝聚态Al2O3夹杂物形貌结构进行定量分析的基础上,建立了不同尺寸形貌凝聚态Al2O3布朗运动的控制方程。使用Matlab编程,对不同初始条件下钢液中微观区域内Al2O3夹杂物颗粒之间布朗碰撞聚合过程进行了可视化数值模拟研究。研究结果表明:钢液中微观区域内细小Al2O3夹杂物颗粒的布朗运动是大尺寸凝聚态Al2O3生成的重要原因。夹杂物粒子体积浓度和布朗运动步长对其布朗碰撞聚合过程影响较大。在高体积浓度、大运动步长的条件下,Al2O3夹杂物颗粒之间的布朗凝聚速率较大,同时更容易形成大尺寸、结构致密的凝聚态Al2O3。  相似文献   

8.
为了探讨低氧特殊钢中大尺寸DS类夹杂物的生成机理,通过ASPEX PSEM explorer自动扫描电镜对比分析国内外低氧特殊钢试样中夹杂物特征(国内、外试样各两个),发现国内试样中夹杂物平均尺寸大于国外试样,夹杂物的最大尺寸则数倍于国外试样:国内试样中夹杂物的最大尺寸分别为24.9和13.1μm,国外试样分别为7.6和7.5μm.对比国内外特钢试样中大尺寸与小尺寸夹杂物可发现二者成分基本相同,推断大尺寸DS类夹杂物可能是细小夹杂物碰撞长大而形成.通过分析大尺寸夹杂物的可能来源,在实验室通过高温共聚焦激光扫描显微镜观察夹杂物在钢中固/液相界面处的行为.结果发现,总氧降低至7×10-6时,尺寸5μm以下的微细夹杂物可被固/液相界面所捕捉,并在固/液相界面处发生碰撞、聚集、长大而生成大尺寸(>12μm) DS类夹杂物.  相似文献   

9.
结合酒泉钢铁集团公司实际生产参数,通过理论分析和计算,研究了钢液中夹杂物碰撞长大的影响因素及去除率.增加搅拌能,升高钢液温度都有利于促进夹杂物间的碰撞.在夹杂物碰撞过程中,湍流碰撞起主要作用.适合于碰撞去除的夹杂物半径在1~13μm之间,其去除率为41.2%~87.8%.  相似文献   

10.
为实现钢液的洁净化,在安泰集团90tBOF-90tLF-150×150mm~2CC生产线上,调整LF精炼中软吹氩流量,并在不同精炼工序和结晶器中取样,用光学显微镜和扫描电镜(SEM-EDS)的分析结果,研究软吹氩流量对ML08Al钢液中夹杂物行为及钙处理对夹杂物的影响。研究结果表明:250~300L/min的软吹氩流量能有效地脱除钢液中的夹杂物,对10μm的夹杂物脱除效果显著;在软吹前后,夹杂物平均尺寸从2.34μm减小到1.18μm,夹杂物面积分数从3 467.7μm~2/mm~2降低到413μm~2/mm~2.当软吹流量达到340L/min时,夹杂物的面积分数急剧上升,脱除效果变差。钙处理把铝脱氧产生的高熔点脆性Al_2O_3和MgO·Al_2O_3夹杂物变性为低熔点的钙铝酸盐类夹杂物;部分夹杂物变性为芯部是Al_2O_3外部包裹CaS的小尺寸球状复合夹杂物。  相似文献   

11.
电磁分离铝熔体中夹杂颗粒运动的模拟计算   总被引:2,自引:2,他引:0  
根据电磁流体力学(MHD)的基本理论,建立了在采用矩形电磁线圈和工频电源的条件下电磁分离铝熔体中夹杂颗粒的体积力、颗粒运动速度等数学模型·模拟计算结果表明,电磁体积力越大,分离力越大,夹杂颗粒运动速度越快;夹杂颗粒的粒径越大,颗粒运动速度越快;粒径大于30μm的夹杂颗粒运动速度较快,容易用电磁方法分离,粒径小于10μm的夹杂颗粒运动速度较慢,难分离·  相似文献   

12.
为明确钢中硫质量分数对Ti-Zr脱氧的E36船板钢中夹杂物的影响,在1873K下,在MoSi2电阻炉上用70mm×100mmMgO坩埚开展了3炉E36钢炼钢实验.结果表明,Ti-Zr脱氧钢中夹杂物主要以含TiOx和ZrO2成分的外围包裹MnS的球形夹杂物为主,典型夹杂物为Al2O3-TiOx-MnS,MgO-SiO2-Al2O3,Al2O3-SiO2-TiOx-ZrO2,TiOx-SiO2-Al2O3-MnS等.随着硫质量分数的增加,小于10μm的夹杂物所占比例逐渐提高到99.5%,夹杂物平均直径由1.7μm增大到2.3μm,夹杂物中平均硫质量分数和单个夹杂物中MnS所占的面积百分比均增加,w[S]=0.0015%时面积比为0.15%,w[S]=0.011%时面积比达到0.72%.  相似文献   

13.
对不同的泼尼松龙体系(包括溶液和混悬液)的喷雾干燥过程进行了考察。实验研究发现:直接喷雾干燥泼尼松龙溶液能够得到平均粒径为1.07μm且粒度分布窄的球形微粉;喷雾干燥羟丙基甲基纤维素(HPMC)溶液能够得到粒径在4?μm左右的囊状颗粒。当喷雾干燥混悬液时,在较低的进口温度下,喷雾干燥只能作为一种干燥手段来干燥混悬液中原有的颗粒,不能改变原有颗粒的形貌;在较高的进口温度下,喷雾干燥可以成为制备粒径在1~5μm的泼尼松龙和HPMC包合物的有效手段。另采用SEM对不同喷雾干燥条件下得到的样品进行分析与表征,对其形成过程进行研究,并对得到的产品在药物速释、控释方面的应用前景进行了探讨。  相似文献   

14.
本文研究了镁对H13模具钢中夹杂物的影响,对H13钢中夹杂物的变性进行了热力学计算,分析了镁对夹杂物成分、形貌和粒径分布的影响。结果表明,镁处理H13钢后,夹杂物由Al2 O3转变为MgO·Al2 O3,复合型夹杂物的析出位置也发生了改变,夹杂物粒径变小。镁处理使钢中1μm左右的夹杂物增多,2μm以上的夹杂物减少,随着镁含量的升高,粒径的变化更明显。铝质量分数为0.01%~0.03%的H13钢中,微量的镁就可促使MgO·Al2O3夹杂物形成,镁质量分数超过1×10^-4会导致H13钢中MgO·Al2O3完全消失,镁质量分数在3×10^-5~5.5×10^-5时钢液中镁铝尖晶石的数量达到最多。  相似文献   

15.
本文通过真空感应熔炼+惰性气氛保护电渣重熔连续定向凝固制备FGH96合金,对FGH96合金中的非金属夹杂物进行对比研究。结果表明,活泼元素Al、Ti、Zr、Ce、B等有轻微的烧损,主要元素含量都在合金要求的范围之内,氧含量略有降低,达到了真空熔炼的水平,氮含量有较大幅度的降低,主要存在两种类型的夹杂物,呈球形的夹杂物是Al、Ti、Mg的复合氧化物和TiN。图像统计分析结果表明,和传统电渣重熔相比,电渣重熔连续定向凝固工艺重熔后FGH96合金中的非金属夹杂物面积百分比、100个视场中的夹杂物个数降低了50%以上,夹杂物的最大尺寸由16μm降低到5.5μm,这主要是与熔池的形状、深度和结晶方式有较大关系,传统电渣重熔过程中金属熔池的形状是V字形,深度约占铸锭直径的50%左右,而电渣重熔连续定向凝固过程中形成的熔池呈扁平状,深度占直径10-20%。  相似文献   

16.
对国内一钢厂EAF→LF→VD→CC工艺生产的高品质GCr15轴承钢进行系统取样,针对DS类非金属夹杂物随机性强的特点,利用能够进行大面积试样检测的ASPEX自动扫描电镜分析统计钢中非金属夹杂物的成分、尺寸、数量等信息。研究发现:GCr15轴承钢冶炼过程中非金属夹杂物主要为MgO- Al2 O3- CaO复合夹杂物和MnS,同时有少量的SiO2- Al2 O3和MgO-Al2 O3复合夹杂物;夹杂物尺寸主要集中在3~8μm,并有少量DS类夹杂物出现且尺寸范围波动很大,最大可以达70μm以上,形貌为圆形或近似圆形;VD有较强的去除夹杂物功能,经过VD真空精炼,夹杂物中CaO含量有增加趋势;吊包至铸坯过程,夹杂物成分向Al2 O3含量增多的区域移动,最终轴承钢铸坯中夹杂物成分位于高Al2 O3含量(≥80%),少量MgO (<20%)和低CaO(<5%)的区域;DS夹杂物的生成和去除具有较强的随机性。  相似文献   

17.
采用夹杂物原貌分析、扫描电镜和能谱分析、氧氮分析等手段系统分析了 IF 钢铸坯全厚度方向的洁净度变化及夹杂物分布规律.铸坯厚度方向全氧(T. O)和 N 质量分数平均值均为17×10-6.内、外弧表层1/16内 T. O、N 均高于平均值5%~10%,存在夹杂物聚集带;内弧1/4至外弧1/4区域 T. O、N 水平低于平均值5%~10%;表层1/16至1/4区域接近平均水平.共统计夹杂物963个,夹杂物平均粒径5.7μm,<5μm 占60%, < 10μm 占90%;Al2 O3夹杂主要存在表层5 mm 内,尺寸在2~10μm;TiN- Al2 O3和 TiN 粒子主要在距离表层5 ~ 80 mm,尺寸随深度增加而增大;TiN- TiS 和 TiS 夹杂主要在距离表面80~130 mm,尺寸1~5μm.从铸坯表层到中心主要夹杂物的分布依次是 Al2 O3、Al2 O3- TiN、TiN、TiN- TiS、TiS 和 MnS.  相似文献   

18.
高品质GCr15轴承钢二次精炼过程中夹杂物的演变规律   总被引:1,自引:1,他引:0  
采用FE-SEM/EDS研究了转炉流程生产的GCr15轴承钢LF、RH精炼过程中夹杂物的演变规律,分析了其演变机理。结果表明:钢中复合夹杂物的演变规律可归纳为:Al2O3→MgO·Al2O3→(CaO-MgO-Al2O3-(CaS))复合氧化物夹杂和Al2O3→(Al2O3-MnS)→(Al2O3-MnS-Ti(C,N))复合氧硫碳氮物夹杂2种方式。LF精炼过程脱硫作用明显,钢中的硫化物夹杂数量大幅减少。LF精炼初期钢中主要是MnS、Al2O3、TiN的单相夹杂物。LF精炼结束后钢中的夹杂物演变为Al2O3为核心外包氧化物及MnS、TiN、Ti(C,N)、CaS的复合夹杂物。精炼渣中的CaO和耐火材料中的MgO经还原后与钢中溶解氧反应导致LF精炼结束时D类夹杂物增加。RH及软吹处理进一步强化了去除钢中的硫化物,但D类及其与A、T类复合的夹杂物含量增加。在LF阶段,夹杂物尺寸主要集中在1~3μm范围内,到RH阶段,夹杂物尺寸则主要集中分布在小于1μm的粒度范围。最大夹杂物尺寸由10.79μm降到5.68μm,单位面积夹杂个数由372个/mm2降到258个/mm2。RH及软吹处理有效地降低了钢中大于3μm的夹杂物。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号