首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Metallothionein (MT) and cadmium (Cd) contents were determined in the subcellular fractions of the liver and kidneys of bank voles exposed for 6 weeks to elevated levels of dietary Cd-40 and 80 g g-1 dry weight. Hepatic and renal MT was detected exclusively in the cytosol, while Cd was found in the cytosol (73–79% of the total content), nuclei (14–18%) and particulates (4–9%). The concentration of MT in the cytosol as well as Cd content in the particular subcellular fractions appeared to be a dose-dependent. The absence of MT in the nuclear and particulate fractions implied that Cd present in these compartments was not bound to the protein that is considered to provide protection against the toxic metal. Therefore, it is assumed that this component of intracellular Cd could be responsible for the histopathological changes that occurred in the liver (granuloma and focal hepatocyte swelling) and kidneys (focal degeneration of proximal tubules) of bank voles exposed to the higher level of dietary Cd.  相似文献   

2.
Twenty-four male rats of the Wistar strain divided into four groups were injected sc with a dose of 0.8, 1.5, and 3.0 mg Cd/kg body wt as CdCl2 in saline, and saline alone to the control rats, three times a week for 3 wk. Cadmium levels of whole kidney homogenate, supernatant (cytosol), precipitate, and metallothionein (MT) fraction were measured. Histological changes of the renal proximal tubules were investigated by optical and electron microscopy. In the kidneys, Cd levels were increased with the increment of Cd dosage; 80–90% of Cd was contained in cytosol, and 55–75% was in MT fraction. Non-MT-Cd reached a maximum in the 1.5 mg Cd group, whereas that of the 3.0 mg Cd group showed some decline. With increasing Cd doses, the size of nuclei and nucleoli in the cells of proximal tubule showed significant enlargement and also an increase in the number of nucleoli on light microscopy. At higher doses, chromatin condensation of the tubular nuclei and vacuolar degeneration of the tubular cells were evident. On electron microscopy, perichromatin granules of the proximal tubular nuclei were increased in number, especially in the rats of Cd 0.8 mg and 1.5 mg/kg groups. As the Cd doses increased, ring-shaped nucleoli were increased in number and nucleolar segregation was observed more clearly. Moreover, in the 3.0 mg/kg Cd group, nuclear indentation and nucleoli containing compact dense granules were observed. In the cytoplasm, there was an increase of lysosomes, myelin bodies, ring-shaped mitochondria, and vesiculation; ultimate changes were degeneration and cell necrosis. The injured cells were heterogenously distributed in each nephron and this heterogeneity was attributed in the difference in Cd content and cell cycle in each cell of the nephron.  相似文献   

3.
In this work we have studied the accumulation of heavy metals in two brown trout (Salmo trutta) populations in their natural environment and the participation of metal binding to metallothionein (MT) in this process. Cd, Cu and Zn concentrations, total MT (including Cu MT) and Cd/Zn MT were measured in the gills, liver and kidney of trout inhabiting two rivers, one Cu-contaminated and the other Cd/Zn-contaminated, located at Røros, Central Norway. In both populations, high levels of Cu were found in the liver, whereas Cd was accumulated in liver and particularly in the kidney. The proportions of Cd/Zn MT and Cu MT in liver and kidney, but not in gills, reflected the accumulated and the environmental concentrations of these metals. The total Cu MT concentrations in the investigated tissues, however, were highest in trout from the river with the lowest ambient Cu concentration. It is suggested that MTs are of less importance in Cu-acclimated trout. The data also suggest that acclimation to a Cu-rich environment involves reduced Cu accumulation or increased Cu elimination. In trout from the Cd-rich environment, this metal was mainly bound to MT, whereas in trout from the Cu-rich environment Cd was also associated with non-MT proteins. These findings emphasize the importance to determine both Cd/Zn MT and Cu MT levels, when the participation of this protein in metal handling in trout tissues is investigated.  相似文献   

4.
This article is based on data on the levels of metals (Cd, Zn, Cu) and metallothionein (MT) determined radiochemically with203Hg in renal cortex and liver of 137 autopsy cases. From this number, for 23 cases, the gel filtration of the cytoplasmic fraction of the organs was performed. The molar content of metals in the MT fraction (Sephadex G-50) amounted to 46.9, 50.2, and 2.0% for Cd, Zn, and Cu in renal cortex, respectively, and to 8.3, 83.6, and 9.1% for Cd, Zn, and Cu in the liver, respectively. In parallel with the increase of Cd and MT in renal cortex, increasing saturation was found of the MT fraction by Cd, occurring at the expense of Zn and Cu. Equimolar amounts of Cd and Zn in the MT fraction are found at Cd level of 0.5 μmol Cd/g wet wt of renal cortex. In the liver, analogous dependency (elevation of %Zn, depression of %Cd and %Cu) were observed in relation to Zn and MT levels in this organ. The basic level of Zn (not bound with MT) was estimated at 0.5 μmol/g for both renal cortex and liver. A deficit of non-MT Zn in kidneys is proposed as an alternative mechanism of toxic Cd action.  相似文献   

5.
Distribution and retention of zinc in the presence of cadmium and copper was studied in rats exposed repeatedly to these metals. The experiment was performed on white rats of the Wistar strain. The animals were divided into four groups/five rats each: 1)65ZnCl2; 2)65ZnCl2+CdCl2; 3)65ZnCl2+CuCl2; and 4) control group. Rats were administered sc every other day for two weeks:65ZnCl2−5 mg Zn/kg; CdCl2−0,3 Cd/kg; and CuCl2−2 mg Cu/kg. The zinc content was measured in rat tissues by γ-counting. Effect of Cd and Cu on subcellular distribution of zinc in the kidney and liver and on the level of metallothionein were also examined. Whole body retention of zinc under the influence of cadmium was lower than that observed in animals treated with zinc alone. However, copper increased twofold the whole body retention of zinc. Cadmium elevated the accumulation of zinc only in the kidneys nuclear fraction and liver soluble fraction. In the kidneys and liver, copper elevated the accumulation of zinc, in the nuclear, mitochondrial, and soluble fractions. The level of metallothionein-like proteins (MT) in the kidneys after a combined supply of zinc and copper was significantly increased with respect to the group of animals treated with zinc alone. These results indicated complex interactions between cadmium, copper, and zinc that can affect the metabolism of each of the metals.  相似文献   

6.
The impact on palmiped Cairina moschata of two levels of dietary cadmium (Cd) contamination (C1: 1 mg kg−1 and C10: 10 mg kg−1) was investigated on liver gene expression by real-time PCR. Genes involved in mitochondrial metabolism, in antioxidant defences, detoxification and in DNA damage repair were studied. Metallothionein (MT) protein levels and Cd bioaccumulation were also investigated in liver, kidneys and muscle. Male ducks were subjected to three periods of exposure: 10, 20 and 40 days. Cd was mainly bioaccumulated in kidneys first and in liver. The concentrations in liver and kidneys appeared to reach a stable level at 20 days of contamination even if the concentrations in muscle still increased. Cd triggered the enhancement of mitochondrial metabolism, the establishment of antioxidant defences (superoxide dismutase Mn and Cu/Zn; catalase) and of DNA repair from 20 days of contamination. Discrepancies were observed in liver between MT protein levels and MT gene up-regulation. MT gene expression appeared to be a late hour biomarker.  相似文献   

7.
The study determined heavy metal concentrations and MT1 nucleotide sequence [phylogeny] in liver of the Kafue lechwe. Applicability of MT1 as a biomarker of pollution was assessed. cDNA-encoding sequences for lechwe MT1 were amplified by RT-PCR to characterize the sequence of MT1 which was subjected to BLAST searching at NCBI. Phylogenetic relationships were based on pairwise matrix of sequence divergences calculated by Clustal W. Phylogenetic tree was constructed by NJ method using PHILLIP program. Metals were extracted by acid digestion and concentrations of Cr, Co, Cu, Zn, Cd, Pb, and Ni were determined using an AAS. MT1 mRNA expression levels were measured by quantitative comparative real-time RT-PCR. Lechwe MT1 has a length of 183bp, which encode for MT1 proteins of 61AA, which include 20 cysteines. Nucleotide sequence of lechwe MT1 showed identity with sheep MT (97%) and cattle MT1E (97%). Phylogenetic tree revealed that lechwe MT1 was clustered with sheep MT and cattle MT1E. Cu and Ni concentrations and MT1 mRNA expression levels of lechwe from Blue Lagoon were significantly higher than those from Lochinvar (p<0.05). Concentrations of Cd and Cu, Co and Cu, Co and Pb, Ni and Cu, and Ni and Cr were positively correlated. Spearman's rank correlations also showed positive correlations between Cu and Co concentrations and MT mRNA expression. PCA further suggested that MT mRNA expression was related to Zn and Cd concentrations. Hepatic MT1 mRNA expression in lechwe can be used as biomarker of heavy metal pollution.  相似文献   

8.
Samples of liver, renal cortex, and medulla were obtained from 55 forensic autopsies (0- to 95-yr-old Japanese). Metallothionein (MT) was determined by the Ag-hem or Cd-hem method. Zinc (Zn), copper (Cu), and cadmium (Cd) were determined by atomic absorption spectrophotometry. The mean levels of MT were 250 μg/g in the liver, and 394 μg/g (cortex) and 191 μg/g (medulla) in the kidney. Age-dependent changes were observed in both the liver and kidney. In the liver, MT level decreased during infancy and increased thereafter with age. Similar age-dependent changes in the levels of Zn and Cu were observed. In the kidney cortex, MT level increased with age, although no correlation was found after middle age. The levels of Cd and Zn also increased with age until middle age; however, they decreased thereafter. These results suggest that age-dependent changes in renal MT levels are associated with accumulation of Cd.  相似文献   

9.
Sodium selenite was administered to rats before, after, and simultaneously with mercuric chloride. In all animal groups, mercury was administered intravenously in doses of 0.5 mg/kg every other day for two weeks. Selenium was given intragastrically either in a single dose of 7.0 mg Se/kg or in repeated doses of 0.1 mg Se/kg every day for weeks. It was demonstrated that, depending on the administration schedule, selenium induced significant changes in the binding of mercury by soluble fraction proteins both in the kidneys and in the liver. In every exposure, the mercury content decreased mainly in the low-molecular weight proteins, and the level of metallothionein-like proteins was diminished in the both organs. In the kidneys, the mercury content showed a correlation with the level of metallothionein (r=0.78). Amounts of mercury below 10 μg/g kidney do not stimulate metallothionein biosynthesis in this organ. A distinct interaction effect was observed in the case of a simultaneous administration of equimolar amounts of both the metals in question.  相似文献   

10.
To evaluate the species specificity of Cd accumulation and the relationship of Cd with other essential metals and metallothionein (MT), the concentrations of Cd, Zn, Cu, and Fe in the liver and kidney and the MT concentrations in the soluble fractions of the liver and kidney were determined in Cd-uncontaminated nonhuman primates (11 species, 26 individuals) kept in a zoo and two wild-caught Japanese macaques. The compositions of metal-binding proteins in the soluble fractions were also investigated by high-performance liquid chromatography (HPLC). The hepatic Cd concentration was 0.03–14.0 μg/g and the renal Cd concentration was 0.35–99.0 μg/g, both varying greatly and being higher in nonhuman primates, which were more closely related to man. The hepatic Zn concentration was 24.0–176 μg/g and the renal Zn concentration was 13.5–138 μg/g, showing 7- to 10-fold differences, and a correlation (r=0.558, p<0.01) was found between renal Zn and renal Cd concentrations. It was proved that in the liver, MT is more closely correlated with Zn (r=0.795, p<0.001) than with Cd (r=0.492, p<0.01) and that in the kidney MT is correlated with both Cd (r=0.784, p<0.001) and Zn (r=0.742, p<0.001). HPLC analysis of metals bound to MT-like protein in chimpanzees, de Brazza’s monkeys, and Bolivian squirrel monkeys showed that more than 90% of Cd in both the liver and kidney, approx 40% of Zn in liver and 28–69% of Zn in kidney were bound to MT-like protein. The higher percentage Zn was bound to high-molecular protein.  相似文献   

11.
The present study was designed to investigate the effects of Zn administration on metallothionein concentrations in the liver, kidney, and intestine of copper-loaded rats. Male CD rats were fed a diet containing 12 mg Cu and 67 mg Zn/kg body wt. They were divided into either acute or chronic experimental protocols. Rats undergoing acute experiments received daily ip injections of either Cu (3 mg/kg body wt) or Zn (10 mg/kg body wt) for 3 d. Chronic experiments were carried out on rats receiving Cu ip injections on d 1, 2, 3, 10, 17, and 24, Cu injections plus a Zn-supplemented diet containing 5 g Zn/kg solid diet, or a Zn-supplemented diet alone. Rats injected Zn or Cu had increased MT concentrations in liver and kidney. Zn produced the most important effects and the liver was the most responsive organ. Rats fed a Zn-supplemented diet had significantly higher MT concentrations in liver and intestine with respect to controls. Increased MT synthesis in the liver may contribute to copper detoxification; the hypothesis of copper entrapment in enterocytes cannot be confirmed.  相似文献   

12.
The monitoring of heavy metals is important if adverse effects on health are to be avoided. In humans, metallothionein (MT) has been used as a biomonitor for the assessment of cadmium (Cd). In the present study, subjects drawn from the population of Tarragona Province (NE Spain) were investigated. Urinary MT, zinc (Zn), and copper (Cu) concentrations, corrected for creatine concentrations, were determined in 625 samples from healthy subjects aged between 10 and 65 yr. Mean values of MT and Cu in females were higher than those in males, with levels of 29.5 (23.8) vs. 22.7 (24.9) μg MT/creatinine (p<0.001) and 4.8 (6.1) vs 3.4 (4.9) μg Cu/g creatinine (p<0.001). No differences between males and females were observed with respect to urinary Zn: 78.0 (66.4) vs 73.0 (85.5) μg/g creatinine, respectively (p=0.332). Significantly higher MT, Zn, and Cu values were observed in the females aged 15–19 yr and, in the age group of 50–54 yr, only in the Zn and Cu values, when compared with those in males. Significant positive correlations of MT vs Zn and Cu as well as correlations of Zn vs Cu levels were observed in both genders. The present findings confirm the proposed role of MT as a biomonitor of mineral status.  相似文献   

13.
1. A short-term exposure of adult Wistar rats to Cu (50 μg/ml) and Cd (10.0 μg/ml drinking water) caused significant changes in the subcellular concentrations of Cd, Cu, Zn and metallothionein (MT) in the liver and kidney; the concentrations were close to the physiological values, however.2. To establish a relationship between these changes in the subcellular concentrations of Cd, Cu, Zn and the level of MT in the post-mitochondrial fraction of the liver and kidney, the analytical data (N = 42) were subjected to the multiple regression analysis.3. The analysis showed that MT synthesis in the liver was principally induced by small amounts of Cd (0.32–1.4 μg/g wet wt) whereas in the kidney a level of MT in the post-mitochondrial fraction correlated positively with the renal Cd and Cu, as well as with the level of this protein in the liver.4. The above results together with the positive correlation between the level of MT in the post-mitochondrial fraction and the concentration of Cu in this fraction, as well as the fact that under normal physiological conditions the capacity of MT (β-domain) in the liver and kidney was sufficient to bind 50–100% of the total post-mitochondrial Cu suggest that MT, first induced by small amounts of Cd, may be involved in the metabolism of Cu.  相似文献   

14.
The accumulation of cadmium, its affinity for metallothioneins (MTs), and its relation to copper, zinc, and selenium were investigated in the experimental mudpuppy Necturus maculosus and the common toad Bufo bufo captured in nature. Specimens of N. maculosus were exposed to waterborne Cd (85???g/L) for up to 40?days. Exposure resulted in tissue-dependent accumulation of Cd in the order kidney, gills > intestine, liver, brain > pancreas, skin, spleen, and gonads. During the 40-day exposure, concentrations increased close to 1???g/g in kidneys and gills (0.64?C0.95 and 0.52?C0.76; n?=?4), whereas the levels stayed below 0.5 in liver (0.14?C0.29; n?=?4) and other organs. Cd exposure was accompanied by an increase of Zn and Cu in kidneys and Zn in skin, while a decrease of Cu was observed in muscles and skin. Cytosol metallothioneins (MTs) were detected as Cu,Zn?Cthioneins in liver and Zn,Cu?Cthioneins in gills and kidney, with the presence of Se in all cases. After exposure, Cd binding to MTs was clearly observed in cytosol of gills as Zn,Cu,Cd?Cthionein and in pellet extract of kidneys as Zn,Cu,Cd?Cthioneins. The results indicate low Cd storage in liver with almost undetectable Cd in liver MT fractions. In field trapped Bufo bufo (spring and autumn animals), Cd levels were followed in four organs and found to be in the order kidney > liver (0.56?C5.0???g/g >0.03?C0.72???g/g; n?=?11, spring and autumn animals), with no detectable Cd in muscle and skin. At the tissue level, high positive correlations between Cd, Cu, and Se were found in liver (all r?>?0.80; ???=?0.05, n?=?5), and between Cd and Se in kidney (r?=?0.76; n?=?5) of autumn animals, possibly connected with the storage of excess elements in biologically inert forms. In the liver of spring animals, having higher tissue level of Cd than autumn ones, part of the Cd was identified as Cu,Zn,Cd?Cthioneins with traces of Se. As both species are special in having liver Cu levels higher than Zn, the observed highly preferential Cd load in kidney seems reasonable. The relatively low Cd found in liver can be attributed to its excretion through bile and its inability to displace Cu from MTs. The associations of selenium observed with Cd and/or Cu (on the tissue and cell level) point to selenium involvement in the detoxification of excessive cadmium and copper through immobilization.  相似文献   

15.
The purpose of this study was to determine the relationship between concentrations of Zn and Cu and the activities of superoxide dismutase and glutathione peroxidase in the heart and liver of young rat pups whose dams were fed a diet supplemented with caffeine and/or Zn. Four groups of dams with their newborn pups were fed one of the following diets for 22 d: 20% protein basal diet; the basal diet supplemented with caffeine (2 mg/100 body wt); the basal diet supplemented with Zn (300 mg/kg diet); or the basal diet supplemented with caffeine plus Zn. The Cu levels in the livers of the pups were decreased by maternal intake of the caffeine and Zn diet. The maternal intake of the caffeine diet increased Mn-superoxide dismutase (MnSOD) activity and Cu, Zn-superoxide dismutase (CUZnSOD) in the heart of the pups. On the other hand, the activity of Cu,ZnSOD was significantly reduced in the liver of pups whose dams consumed a caffeine, Zn, or caffeine plus Zn diet. Cu, ZnSOD activity in the liver of the pups seems to be correlated with Cu levels in the tissue. Selenium-dependent glutathione peroxidase (GSH-Px) activities in the heart and liver showed no difference among the groups. The effect of dietary caffeine and/or Zn on the activity of antioxidant enzymes in the heart and liver were different in young rats. The activities of these enzymes in the heart were lower than in the liver of 22-d-old rats. Our experiments indicate that the heart has limited defenses against the toxic effects of peroxides when compared to the liver.  相似文献   

16.
The levels of metallothionein (MT), a biomarker of metal exposure, and of cytosolic metals (Zn, Cu, Cd), known as MT inducers, were investigated as variables of age (1 to 8 years) and tissue mass (liver, kidney, brain) of red mullet (Mullus barbatus). Within the age from 1 to 8 years the most significant increase is evident for cytosolic Cd in liver (43-fold) and in kidney (5-fold). MT and essential metals are constant with age or slightly increased. Over the growth period, statistically significant MT and metal increase is evident only between 1 and 6-8 years old specimens, while for Cd in liver and kidney cytosol significant increase already exists at 4 years old specimens. Metal distribution in all tissues follows the order: Zn>Cu>Cd, with even 500-800 times lower Cd levels than essential metal levels. Consequently, MTs follow the levels of essential metals, Zn and Cu, indicating MT involvement in homeostasis of essential metals. In contrast to kidney and brain, hepatic MT levels are not age-dependent. Inclusion of hepatic MT measurements and the associated cytosolic metals will be useful in the assessment of long-term metal effects in demersal fish M. barbatus.  相似文献   

17.
Two homogenous fractions of hepatic metallothioneins ((Cd,Zn) MT-1 and (Cd,Zn) MT-2) and renal metal binding proteins ((Bi,Cu) BP-1 and (Bi,Cu) BP-2) were isolated from rats exposed to heavy metals and specific antisera to them were produced in rabbits.These antisera were tested by immunodiffusion and immunoelectrophoresis for their ability to bind different fractions of hepatic Cd,Zn -metallothionein and renal (Bi,Cu)-, (Hg,Cu)- and (Cd,Cu)-binding proteins. It was found that anti (Bi,Cu) BP antisera did not cross-react with hepatic (Cd,Zn) MT-1 and (Cd,Zn) MT-2. Strong immunological cross-reactions were detected between anti (Bi,Cu) BP antisera and individual forms of (Cd,Cu)-, (Hg,Cu)- and (Bi,Cu)-binding proteins isolated from rat kidneys.  相似文献   

18.
采用静水法生物测试研究铜(Cu2+)、锌(Zn2+)和镉(Cd2+)对唐鱼(Tanichthys albonubes)胚胎和初孵仔鱼的急性毒性及安全浓度评价。结果显示,Cu2+对唐鱼胚胎12、24h LC50分别为2.4092mg/L和0.4039mg/L;Zn2+和Cd2+对唐鱼胚胎24h LC50分别为372.9mg/L和50.0mg/L。Cu2+对唐鱼初孵仔鱼12、24和48h LC50都是0.3228mg/L,其安全浓度为0.0986mg/L;Zn2+对唐鱼初孵仔鱼24、48h LC50分别为72.44mg/L和25.17mg/L,其安全浓度为0.9116mg/L;Cd2+对唐鱼初孵仔鱼24、48h LC50分别为36.5mg/L和20.59mg/L,其安全浓度为1.9654mg/L。结果表明,重金属元素对唐鱼胚胎和初孵仔鱼毒性依次为Cu2+〉Cd2+〉Zn2+。  相似文献   

19.
The effect of oral zinc (Zn) treatment was studied in the liver, kidneys and intestine of Long-Evans Cinnamon (LEC) rats in relation to metals interaction and concentration of metallothionein (MT) and glutathione (GSH). We also investigated the change in the activity of antioxidant enzymes and determined the biochemical profile in the blood and metal levels in urine. We showed that the Zn-treated group had higher levels of MT in the hepatic and intestinal cells compared to both untreated and basal groups. Tissue Zn concentrations were significantly higher in the Zn-treated group compared to those untreated and basal, whereas Cu and Fe concentrations decreased. The antioxidant enzyme activities in the Zn-treated group did not change significantly with respect to those in the basal group, except for hepatic glutathione peroxidase activity. Moreover, the biochemical data in the blood of Zn-treated group clearly ascertain no liver damage. These observations suggest an important role for Zn in relation not only to its ability to compete with other metals at the level of absorption in the gastrointestinal tract producing a decrease in the hepatic and renal Cu and Fe deposits, but also to MT induction as free radical scavenger.  相似文献   

20.
Cadmium was administered subcutaneously to male Wistar rats, 0.1 mL/rat in 0.9% saline 3 times a wk for 4 wk at 3 mg Cd/kg. Saline was administered to control animals in an equivalent manner, without Cd. After the end of the dosing period, the distribution and excretion of Cd, Cu, Ca, Zn, and Fe were observed in some organs and excreta for 35 d (1, 7, 14, 21, 28, and 35 d). Cadmium dosing caused significant disturbances in the metabolism of Zn, Cu, Fe, and Ca, especially during the recovery period. Growth in Cd-dosed animals did not accelerate, even after 5 wk of recovery. There was evidence of mobilization of some elements among organs. Accumulation of Cd occurred in liver, kidney, and spleen during dosing, and during the recovery period it was retained in kidney and testes (for 2 wk) and cleared steadily in liver and RBC (for 5 wk), but increased in spleen (first 3 wk). The pattern of Cd excretion was closely associated with the binding of Cd with metallothioneins in kidney and liver for the first 21 and 7 d, respectively. This was associated with the excretion of Cd-metallothioneins (Cd-MT) in urine from d 1 to 21 during recovery. Cadmium caused higher Ca accumulations in testes and liver, which were probably associated with the lesions observed in these organs. Significant increases of Cu (in kidney d 7) and Fe (in liver) were observed during recovery. Furthermore, significant reductions of Cu and Fe were found in plasma, spleen, and RBC (after 5 wk) and kidney, spleen, and testes (on d 7), and blood (after 5 wk).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号