首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Vasilije Manovic  Edward J. Anthony 《Fuel》2008,87(8-9):1564-1573
The steam hydration reactivation characteristics of three limestone samples after multiple CO2 looping cycles are presented here. The CO2 cycles were performed in a tube furnace (TF) and the resulting samples were hydrated by steam in a pressure reactor (PR). The reactivation was performed with spent samples after carbonation and calcination stages. The reactivation tests were done with a saturated steam pressure at 200 °C and also at atmospheric pressure and 100 °C. The characteristics of the reactivation samples were examined using BET and BJH pore characterization (for the original and spent samples, and samples reactivated under different conditions) and also by means of a thermogravimetric analyzer (TGA). The levels of hydration achieved by the reactivated samples were determined as well as the conversions during sulphation and multiple carbonation cycles. It was found that the presence of a CaCO3 layer strongly hinders sorbent hydration and adversely affects the properties of the reactivated sorbent with regard to its behavior in sulphation and multiple carbonation cycles. Here, hydration of calcined samples under pressure is the most effective method to produce superior sulphur sorbents. However, reactivation of calcined samples under atmospheric conditions also produces sorbents with significantly better properties in comparison to those of the original sorbents. These results show that separate CO2 capture and SO2 retention in fluidized bed systems enhanced by steam reactivation is promising even for atmospheric conditions if the material for hydration is taken from the calciner.  相似文献   

2.
This study examines the CO2 capture behavior of KMnO4-doped CaO-based sorbent during the multiple calcination/carbonation cycles. The cyclic carbonation behavior of CaCO3 doped with KMnO4 and the untreated CaCO3 was investigated. The addition of KMnO4 improves the cyclic carbonation rate of the sorbent above carbonation time of 257 s at each carbonation cycle. When the mass ratio of KMnO4/CaCO3 is about 0.5-0.8 wt.%, the sorbent can achieve an optimum carbonation conversion during the long-term cycles. The carbonation temperature of 660-710 °C is beneficial to cyclic carbonation of KMnO4-doped CaCO3. The addition of KMnO4 improves the long-term performance of CaCO3, resulting in directly measured conversion as high as 0.35 after 100 cycles, while the untreated CaCO3 retains conversion less than 0.16 at the same reaction conditions. The addition of KMnO4 decreases the surface area and pore volume of CaCO3 after 1 cycle, but it maintains the surface area and pores between 26 nm and 175 nm of the sorbent during the multiple cycles. Calculation reveals that the addition of KMnO4 improves the CO2 capture efficiency significantly using a CaCO3 calcination/carbonation cycle and decreases the amount of the fresh sorbent.  相似文献   

3.
In this study, the decomposition conditions of limestone particles (0.25-0.50 mm) for CO2 capture in a steam dilution atmosphere (20-100% steam in CO2) were investigated by using a continuously operating fluidized bed reactor. The results show that the decomposition conversion of limestone increased with the steam dilution percentage in the CO2 supply gas. At a bed temperature of 920 °C, the conversions were 72% without steam dilution and 98% with 60% steam dilution. The conversion was 99% with 100% steam dilution at 850 °C of the bed temperature. Steam dilution can decrease not only the decomposition temperature of limestone, but also the residence time required for nearly complete decomposition of CaCO3. The hydration and carbonation reactivities of the CaO produced were also tested and the results show that both the reactivities increased with the steam dilution percentage for decomposing limestone.  相似文献   

4.
The calcination/carbonation loop of calcium-based (Ca-based) sorbents is considered as a viable technique for CO2 capture from combustion gases. Recent attempts to improve the CO2 uptake of Ca-based sorbents by adding calcium lignosulfonate (CLS) with hydration have succeeded in enhancing its effectiveness. The optimum mass ratio of CLS/CaO is 0.5 wt.%. The reduction in particle size and grain size of CaO appeared to be parts of the reasons for increase in CO2 capture. The primary cause of increase in reactivity of the modified sorbents was the ability of the CLS to retard the sintering rate and thus to remain surface area and pore volume for reaction. The CO2 uptake of the modified sorbents was also enhanced by elevating the carbonation pressure. Experimental results indicate that the optimal reaction condition of the modified sorbents is at 0.5 MPa and 700 °C and a high conversion of 0.7 is achieved after 10 cycles, by 30% higher than that of original limestone, at the same condition.  相似文献   

5.
CaO-based sorbent looping cycle, i.e. cyclic calcination/carbonation, is one of the most interesting technologies for CO2 capture during coal combustion and gasification processes. In order to improve the durability of limestone during the multiple calcination/carbonation cycles, modified limestone with acetic acid solution was proposed as an CO2 sorbent. The cyclic carbonation conversions of modified limestone and original one were investigated in a twin fixed bed reactor system. The modified limestone shows the optimum carbonation conversion at the carbonation temperature of 650 °C and achieves a conversion of 0.5 after 20 cycles. The original limestone exhibits the maximum carbonation conversion of 0.15 after 20 cycles. Conversion of the modified limestone decreases slightly as the calcination temperature increases from 920 °C to 1100 °C with the number of cycles, while conversion of the original one displays a sharp decay at the same reaction conditions. The durability of the modified limestone is significantly better than the original one during the multiple cycles because mean grain size of CaO derived from the modified limestone is lower than that from the original one at the same reaction conditions. The calcined modified limestone shows higher surface area and pore volume than the calcined original one with the number of cycles, and pore size distribution of the modified limestone is superior to the original one after the same number of calcinations.  相似文献   

6.
The steam gasification of biomass, in the presence of a calcium oxide (CaO) sorbent for carbon dioxide (CO2) capture, is a promising pathway for the renewable and sustainable production of hydrogen (H2). In this work, we demonstrate the potential of using a CaO sorbent to enhance hydrogen output from biomass gasifiers. In addition, we show that CaO materials are the most suitable sorbents reported in the literature for in situ CO2 capture. A further advantage of the coupled gasification-CO2 capture process is the production of a concentrated stream of CO2 as a byproduct. The integration of CO2 sequestration technology with H2 production from biomass could potentially result in the net removal of CO2 from the atmosphere.Maximum experimental H2 concentrations reported for the steam gasification of biomass, without CO2 capture, range between 40%-vol and 50%-vol. When CaO is used to remove CO2 from the product gas, as soon as it is formed, we predict an increase in the H2 concentrations from 40%-vol to 80%-vol (dry basis), based on thermodynamic modelling and previously published data.We examine the effect of key variables, with a specific focus on obtaining fundamental data relevant to the design and scale-up of novel biomass reactors. These include: (i) reaction temperature, (ii) pressure, (iii) steam-to-biomass ratio, (iv) residence time, and (v) CO2 sorbent loading. We report on operational challenges related to in situ CO2 capture using CaO-based sorbents. These include: (i) sorbent durability, (ii) limits to the maximum achievable conversion and (iii) decay in reactivity through multiple capture and release cycles. Strategies for enhancing the multicycle reactivity of CaO are reviewed, including: (i) optimized calcination conditions, and (ii) sorbent hydration procedures for reactivation of spent CaO. However, no CaO-based CO2 sorbent, with demonstrated high reactivity, maintained through multiple CO2 capture and release cycles, has been identified in the literature. Thus, we argue that the development of a CO2 sorbent, which is resistant to physical deterioration and maintains high chemical reactivity through multiple CO2 capture and release cycles, is the limiting step in the scale-up and commercial operation of the coupled gasification-CO2 capture process.  相似文献   

7.
This work focuses on the techno-economic assessment of bituminous coal fired sub- and super-critical pulverised fuel boilers from an oxyfuel based CO2 capture point of view. At the initial stage, two conventional power plants with a nominal power output of above 600 MWe based on the above steam cycles are designed, simulated and optimised. Built upon these technologies, CO2 capture facilities are incorporated within the base plants resulting in a nominal power output of 500 MWe. In this manner, some sensible heat generated in the air separation unit and the CO2 capture train can be redirected to the steam cycle resulting in a higher plant efficiency. The simulation results of conventional sub- and super-critical plants are compared with their CO2 capture counterparts to disclose the effect of sequestration on the overall system performance attributes. This systematic approach allows the investigation of the effects of the CO2 capture on both cycles. In the literature, super-critical plants are often considered for a CO2 capture option. These, however, are not based on a systematic evaluation of these technologies and concentrate mainly on one or two key features. In this work several techno-economic plant attributes such as the fuel consumptions, the utility usages, the plant performance parameters as well as the specific CO2 generation and capture rates are calculated and weighed against each other. Finally, an economic evaluation of the system is conducted along with sensitivity analyses in connection with some key features such as discounted cash flow rates, capital investments and plant efficiencies as well as fuel and operating costs.  相似文献   

8.
蒸汽活化钙基吸收剂联合脱碳脱硫特性   总被引:2,自引:2,他引:0  
利用管式炉(TF)、蒸汽发生器和热重分析仪(TGA)研究了钙基吸收剂联合脱碳脱硫以及水合特性,并通过N2吸附实验对不同烧结程度以及水合前后样品的孔隙结构进行了测量。结果表明,无水合时,40次碳化循环后的样品碳化活性降至18%,但仍具有44%的硫化活性,比新鲜剂仅低4%,说明脱碳失效剂仍是良好的脱硫剂。碳循环失效剂经蒸汽活化后其碳化活性可提高至68%左右,且具有与新鲜剂类似的活性下降规律。每两次碳化循环后进行一次蒸汽活化,可使样品保持65%的平均转化率。蒸汽活化后吸收剂硫化率可提高至80%,远高于新鲜剂,由电镜扫描实验发现这是由于水合时颗粒产生了大的裂缝和破碎,提供了大量产物可自由生长的外表面积。不考虑颗粒磨损,利用钙基吸收剂先循环脱碳再蒸汽活化最后脱硫是一项联合脱除烟气中CO2和SO2的新方法。  相似文献   

9.
To demonstrate process feasibility of in situ CO2 capture from combustion of fossil fuels using Ca-based sorbent looping technology, a flexible atmospheric dual fluidized bed combustion system has been constructed. Both reactors have an ID of 100 mm and can be operated at up to 1000 °C at atmospheric pressure. This paper presents preliminary results for a variety of operating conditions, including sorbent looping rate, flue gas stream volume, CaO/CO2 ratio and combustion mode for supplying heat to the sorbent regenerator, including oxy-fuel combustion of biomass and coal with flue gas recirculation to achieve high-concentration CO2 in the off-gas. It is the authors' belief that this study is the first demonstration of this technology using a pilot-scale dual fluidized bed system, with continuous sorbent looping for in situ CO2 capture, albeit at atmospheric pressure. A multi-cycle test was conducted and a high CO2 capture efficiency (> 90%) was achieved for the first several cycles, which decreased to a still acceptable level (> 75%) even after more than 25 cycles. The cyclic sorbent was sampled on-line and showed general agreement with the features observed using a lab-scale thermogravimetric analysis (TGA) apparatus. CO2 capture efficiency decreased with increasing number of sorbent looping cycles as expected, and sorbent attrition was found to be another significant factor to be limiting sorbent performance.  相似文献   

10.
Sulphation and carbonation have been performed on hydrated spent residues from a 75 kWth dual fluidized bed combustion (FBC) pilot plant operating as a CO2 looping cycle unit. The sulphation and carbonation tests were done in an atmospheric pressure thermogravimetric analyzer (TGA), with the sulphation performed using synthetic flue gas (0.45% SO2, 3% O2, 15% CO2 and N2 balance). Additional tests were carried out in a tube furnace (TF) with a higher SO2 concentration (1%) and conversions were determined by quantitative X-ray diffraction (QXRD) analyses. The morphology of the sulphated samples from the TF was examined by scanning electron microscopy (SEM). Sulphation tests were performed at 850 °C for 150 min and carbonation tests at 750 °C, 10 cycles for 15 min (7.5 min calcination + 7.5 min carbonation). Sulphation conversions obtained for the hydrated samples depended on sample type: in the TGA, they were ~75–85% (higher values were obtained for samples from the carbonator); and in the TF, values around 90% and 70% for sample from carbonator and calciner, respectively, were achieved, in comparison to the 40% conversion seen with the original sample. The SEM analyses showed significant residual porosity that can increase total conversion with longer sulphation time. The carbonation tests showed a smaller influence of the sample type and typical conversions after 10 cycles were 50% – about 10% higher than that for the original sample. The influence of hydration duration, in the range of 15–60 min, is not apparent, indicating that samples are ready for use for either SO2 retention, or further CO2 capture after at most 15 min using saturated steam. The present results show that, upon hydration, spent residues from FBC CO2 capture cycles are good sorbents for both SO2 retention and additional CO2 capture.  相似文献   

11.
A new regenerable alumina-modified sorbent was developed for CO2 capture at temperatures below 200 °C. The CO2 capture capacity of a potassium-based sorbent containing Al2O3 (KAlI) decreased during multiple CO2 sorption (60 °C) and regeneration (200 °C) tests due to the formation of the KAl(CO3)(OH)2 phase, which could be converted into the original K2CO3 phase above 300 °C. However, the new regenerable potassium-based sorbent (Re-KAl(I)) maintained its CO2 capture capacity during multiple tests even at a regeneration temperature of 130 °C. In particular, the CO2 capture capacity of the Re-KAl(I)60 sorbent which was prepared by the impregnation of Al2O3 with 60 wt.% K2CO3 was about 128 mg CO2/g sorbent. This excellent CO2 capture capacity and regeneration property were due to the characteristics of the Re-KAl(I) sorbent producing only a KHCO3 phase during CO2 sorption, unlike the KAlI30 sorbent which formed the KHCO3 and KAl(CO3)(OH)2 phases even at 60 °C. This result was explained through the structural effect of the support containing the KAl(CO3)(OH)2 phase which was prepared by impregnation of Al2O3 with K2CO3 in the presence of CO2.  相似文献   

12.
Calcium looping is a CO2 capture scheme using solid CaO-based sorbents to remove CO2 from flue gases, e.g., from a power plant, producing a concentrated stream of CO2 (∼95%) suitable for storage. The scheme exploits the reversible gas-solid reaction between CO2 and CaO(s) to form CaCO3(s). Calcium looping has a number of advantages compared to closer-to-market capture schemes, including: the use of circulating fluidised bed reactors—a mature technology at large scale; sorbent derived from cheap, abundant and environmentally benign limestone and dolomite precursors; and the relatively small efficiency penalty that it imposes on the power/industrial process (i.e., estimated at 6-8 percentage points, compared to 9.5-12.5 from amine-based post-combustion capture). A further advantage is the synergy with cement manufacture, which potentially allows for decarbonisation of both cement manufacture and power production. In addition, a number of advanced applications offer the potential for significant cost reductions in the production of hydrogen from fossil fuels coupled with CO2 capture. The range of applications of calcium looping are discussed here, including the progress made towards demonstrating this technology as a viable post-combustion capture technology using small-pilot scale rigs, and the early progress towards a 2 MW scale demonstrator.  相似文献   

13.
In order to increase the use of carpet wastes (pre- and/or post-consumer wastes), this work studies for the first time the preparation and characterisation of a microporous material from a commercial carpet (pile fiber content: 80% wool/20% nylon; primary and secondary backings: woven polypropylene; binder: polyethylene) and its application for CO2 capture. The porous material was prepared from an entire carpet material using a standard chemical activation with KOH and then, characterised in terms of their porous structure and surface functional groups. Adsorption of CO2 was studied using a thermogravimetric analyser at several temperatures (25-100 °C) and under different CO2 partial pressures (i.e. pure CO2 flow and a ternary mixture of 15% CO2, 5% O2 and 80% N2). In order to examine the adsorbent regenerability, multiple CO2 adsorption/desorption cycles were also carried out. The surface area and micropore volume of the porous adsorbent were found to be 1910.17 m2 g− 1 and 0.85 cm3 g− 1, respectively. The CO2 adsorption profiles illustrate that the maximum CO2 capture on the sample was reached in less than 10 min. CO2 adsorption capacities up to 8.41 wt.% and 3.37 wt.% were achieved at 25 and 70 °C, respectively. Thermal swing regeneration studies showed that the prepared adsorbent has good cyclic regeneration capacities.  相似文献   

14.
In this article, it was investigated whether potentially low-cost CO2 capture from SOFC systems could enhance the penetration of SOFC in the energy market in a highly carbon-constrained society in the mid-term future (up to year 2025). The application of 5 MWe SOFC systems for industrial combined heat and power (CHP) generation was considered. For CO2 capture, oxyfuel combustion of anode off-gas using commercially available technologies was selected. Gas turbine (GT-) CHP plant was considered to be the reference case.Technical results showed that despite the energy penalties due to CO2 capture and compression, net electrical and heat efficiencies were nearly identical with or without CO2 capture. This was due to higher heat recovery efficiency by separating SOFC off-gas streams for CO2 capture. However, CO2 capture significantly increased the required SOFC and heat exchanger areas.Economic results showed that for above 40-50 $ t−1 CO2 price, SOFC-CHP systems were more economical when equipped with CO2 capture. CO2 capture also enabled SOFC-CHP to compete with GT-CHP at higher cell stack production costs. At zero CO2 price, cell stack production cost had to be as low as 140 kW−1 for SOFC-CHP to outperform GT-CHP. At 100 $ t−1 CO2 price, the cell stack production cost requirement raised to 350 $ kW−1. With CO2 capture, SOFC-CHP still outperformed GT-CHP at a significantly higher cell stack production cost above 900 $ kW−1.  相似文献   

15.
The water gas shift reaction was evaluated in the presence of novel carbon dioxide (CO2) capture sorbents, both alone and with catalyst, at moderate reaction conditions (i.e., 300-600 °C and 1-11.2 atm). Experimental results showed significant improvements to carbon monoxide (CO) conversions and production of hydrogen (H2) when CO2 sorbents are incorporated into the water gas shift reaction. Results suggested that the performance of the sorbent is linked to the presence of a Ca(OH)2 phase within the sorbent. Promoting calcium oxide (CaO) sorbents with sodium hydroxide (NaOH) as well as pre-treating the CaO sorbent with steam appeared to lead to formation of Ca(OH)2, which improved CO2 sorption capacity and WGS performance. Results suggest that an optimum amount of NaOH exists as too much leads to a lower capture capacity of the resultant sorbent. During capture, the NaOH-promoted sorbents displayed a high capture efficiency (nearly 100%) at temperatures of 300-600 °C. Results also suggest that the CaO sorbents possess catalytic properties which may augment the WGS reactivity even post-breakthrough. Furthermore, promotion of CaO by NaOH significantly reduces the regeneration temperature of the former.  相似文献   

16.
This study focuses on enhancing CO2 uptake by modifying limestone with acetate solutions under pressurized carbonation condition. The multicycle tests were carried out in an atmospheric calcination/pressurized carbonation reactor system at different temperatures and pressures. The pore structure characteristics (BET and BJH) were measured as a supplement to the reaction studies. Compared with the raw limestone, the modified sorbent showed a great improvement in CO2 uptake at the same reaction condition. The highest CO2 uptake was obtained at 700 °C and 0.5 MPa, by 88.5% increase over the limestone at 0.1 MPa after 10 cycles. The structure characteristics of the sorbents on N2 absorption and SEM confirm that compared with the modified sorbent, the effective pores of limestone are greatly driven off by sintering, which hinders the easy access of CO2 molecules to the unreacted-active sites of CaO. The morphological and structural properties of the modified sorbent did not reveal significant differences after multiple cycles. This would explain its superior performance of CO2 uptake under pressurized carbonation. Even after 10 cycles, the modified sorbent still achieved a CO2 uptake of 0.88.  相似文献   

17.
One promising method for the capture of CO2 from point sources is through the usage of a lime-based sorbent. Lime (CaO) acts as a CO2 carrier, absorbing CO2 from the flue gas (carbonation) and releasing it in a separate reactor (calcination) to create a pure stream of CO2 suitable for sequestration. One of the challenges with this process is the decay in calcium utilization (CO2 capture capacity) during carbonation/calcination cycling. The reduction in calcium utilization of natural limestone over large numbers of cycles (>250) was studied. Cycling was accomplished using pressure swing CO2 adsorption in a pressurized thermogravimetric reactor (PTGA). The effect of carbonation pressure on calcium utilization was studied in CO2 with the reactor operated at 1000 °C. The pressure was cycled between atmospheric pressure for calcination, and 6, 11 or 21 bar for carbonation. Over the first 250 cycles, the calcium utilization reached a near-asymptotic value of 12.5-27.7%, depending on the cycling conditions. Pressure cycling resulted in improved long-term calcium utilization compared to temperature swing or CO2 partial pressure swing adsorption under similar conditions. An increased rate of de-pressurization caused an increase in calcium utilization, attributed to fracturing of the sorbent particle during the rapid calcination, as observed via SEM analysis.  相似文献   

18.
David Grainger 《Fuel》2008,87(1):14-24
Published data for an operating power plant, the ELCOGAS 315 MWe Puertollano plant, has been used as a basis for the simulation of an integrated gasification combined cycle process with CO2 capture. This incorporated a fixed site carrier polyvinylamine membrane to separate the CO2 from a CO-shifted syngas stream. It appears that the modified process, using a sour shift catalyst prior to sulphur removal, could achieve greater than 85% CO2 recovery at 95 vol% purity. The efficiency penalty for such a process would be approximately 10% points, including CO2 compression. A modified plant with CO2 capture and compression was calculated to cost €2320/kW, producing electricity at a cost of 7.6 € cents/kWh and a CO2 avoidance cost of about €40/tonne CO2.  相似文献   

19.
Adsorption is considered a promising method for carbon capture. CO2 adsorbents take a variety of forms - but one approach is to fill mesoporous substrates with a polymeric CO2 selective sorbent. SBA-15 and mesocellular siliceous foam (MCF) are high pore volume, high surface area ordered mesoporous materials for which modification with amine should result in high capacity, highly selective adsorbents. SBA-15 and MCF were separately loaded with approximately one pore volume equivalent of linear polyethyleneimine (PEI) (Mw = 2500) or branched PEI (Mn = 1200). CO2 adsorption/desorption isotherms under dry CO2 were obtained at 75, 105 and 115 °C. The CO2 adsorption/desorption kinetics were improved with temperature, though the CO2 capacities generally decreased. The adsorption capacity for MCF loaded with branched PEI at 105 and 115 °C were 151 and 133 mg/g adsorbent, respectively (in 50% CO2/Ar, 20 min adsorption time). These are significantly higher than the adsorption capacity observed for SBA-15 loaded with branched PEI under same conditions, which were 107 and 83 mg/g adsorbent, respectively. Thus the results indicate that, on a unit mass basis, amine modified MCF's are potentially better adsorbents than amine modified SBA-15 for CO2 capture at modestly elevated temperature in a vacuum swing adsorption process.  相似文献   

20.
This study examines the loss of sorbent activity caused by sintering under realistic CO2 capture cycle conditions. The samples tested here included two limestones: Havelock limestone from Canada (New Brunswick) and a Polish (Upper Silesia) limestone (Katowice). Samples were prepared both in a thermogravimetric analyzer (TGA) and a tube furnace (TF). Two calcination conditions were employed: in N2 at lower temperature; and in CO2 at high temperature. The samples obtained were observed with a scanning electron microscope (SEM) and surface compositions of the resulting materials were analyzed by the energy dispersive X-ray (EDX) method. The quantitative influence of calcination conditions was examined by nitrogen adsorption/desorption tests, gas displacement pycnometry and powder displacement pycnometry; BET surface areas, BJH pore volume distributions, skeletal densities and envelope densities were determined. The SEM images showed noticeably larger CaO sub-grains were produced by calcination in CO2 during numerous cycles than those seen with calcination in nitrogen. The EDX elemental analyses showed a strong influence of impurities on local melting at the sorbent particle surface, which became more pronounced at higher temperature. Results of BET/BJH testing clearly support these findings on the effect of calcination/cycling conditions on sorbent morphology. Envelope density measurements showed that particles displayed densification upon cycling and that particles calcined under CO2 showed greater densification than those calcined under N2. Interestingly, the Katowice limestone calcined/cycled at higher temperature in CO2 showed an increase of activity for cycles involving calcination under N2 in the TGA. These results clearly demonstrate that, in future development of CaO-based CO2 looping cycle technology, more attention should be paid to loss of sorbent activity caused by realistic calcination conditions and the presence of impurities originating from fuel ash and/or limestone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号