首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 29 毫秒
1.
Part III of this three-part series of papers describes the synthesis of roller and sliding hydraulic steel gate structures performed by the Mixed-Integer Non-linear Programming (MINLP) approach. The MINLP approach enables the determination of the optimal number of gate structural elements (girders, plates), optimal gate geometry, optimal intermediate distances between structural elements and all continuous and standard crossectional sizes. For this purpose, special logical constraints for topology alterations and interconnection relations between the alternative and fixed structural elements are formulated. They have been embedded into a mathematical optimization model for roller and sliding steel gate structures GATOP. GATOP has been developed according to a special MINLP model formulation for mechanical superstructures (MINLP-MS), introduced in Parts I and II. The model contains an economic objective function of self-manufacturing and transportation costs of the gate. As the GATOP model is non-convex and highly non-linear, it is solved by means of the Modified OA/ER algorithm accompanied by the Linked Two-Phase MINLP Strategy, both implemented in the TOP computer code. An example of the synthesis is presented as a comparative design research work of the already erected roller gate, the so-called Intake Gate in Aswan II in Egypt. The optimal result yields 29·4 per cent of net savings when compared to the actual costs of the erected gate. © 1998 John Wiley & Sons, Ltd.  相似文献   

2.
We present a methodical procedure for topology optimization under uncertainty with multiresolution finite element (FE) models. We use our framework in a bifidelity setting where a coarse and a fine mesh corresponding to low- and high-resolution models are available. The inexpensive low-resolution model is used to explore the parameter space and approximate the parameterized high-resolution model and its sensitivity, where parameters are considered in both structural load and stiffness. We provide error bounds for bifidelity FE approximations and their sensitivities and conduct numerical studies to verify these theoretical estimates. We demonstrate our approach on benchmark compliance minimization problems, where we show significant reduction in computational cost for expensive problems such as topology optimization under manufacturing variability, reliability-based topology optimization, and three-dimensional topology optimization while generating almost identical designs to those obtained with a single-resolution mesh. We also compute the parametric von Mises stress for the generated designs via our bifidelity FE approximation and compare them with standard Monte Carlo simulations. The implementation of our algorithm, which extends the well-known 88-line topology optimization code in MATLAB, is provided.  相似文献   

3.
This article presents a methodology and process for a combined wing configuration partial topology and structure size optimization. It is aimed at achieving a minimum structural weight by optimizing the structure layout and structural component size simultaneously. This design optimization process contains two types of design variables and hence was divided into two sub-problems. One is structure layout topology to obtain an optimal number and location of spars with discrete integer design variables. Another is component size optimization with continuous design variables in the structure FE model. A multi city-layer ant colony optimization (MCLACO) method is proposed and applied to the topology sub-problem. A gradient based optimization method (GBOM) built in the MSC.NASTRAN SOL-200 module was employed in the component size optimization sub-problem. For each selected layout of the wing structure, a size optimization process is performed to obtain the optimum result and feedback to the layout topology process. The numerical example shows that the proposed MCLACO method and a combination with the GBOM are effective for solving such a wing structure optimization problem. The results also indicate that significant structural weight saving can be achieved.  相似文献   

4.
This paper reports on the experience gained in solving large combinatorial problems by using the Outer-Approximation /Equality-Relaxation (OA/ER) algorithm in two multilevel MINLP strategies. The first one is a Linked Multilevel Hierarchical Strategy (LMHS) and the second one is a Reduced Integer Space (RIS) strategy. Both strategies are used to decompose the original MINLP problem in a hierarchical manner into several MINLP levels that are much easier to solve than the original one. While the first LMHS strategy can be applied to problems that contain only simple mixed-integer constraints, e.g. standard dimensions, the RIS strategy can be used to solve problems with more complex mixed-integer constraints, e.g. different design equations for alternative units. The LMHS strategy is rigorous and can solve convex problems to global optimal solutions. On the other hand, when the RIS strategy is applied for the solution of large combinatorial problems, the global optimality cannot be guaranteed, but very good solutions can be obtained. The synthesis problem of a roller steel gate for a hydroelectric power station with 19623 binary variables is presented to illustrate the LMHS strategy, whilst the synthesis problem of a heat exchanger network comprising different types of exchangers with 1782 binary variables is presented to present the RIS strategy.  相似文献   

5.
Internal structural layouts and component sizes of aircraft wing structures have a significant impact on aircraft performance such as aeroelastic characteristics and mass. This work presents an approach to achieve simultaneous partial topology and sizing optimization of a three-dimensional wing-box structure. A multi-objective optimization problem is assigned to optimize lift effectiveness, buckling factor and mass of a structure. Design constraints include divergence and flutter speeds, buckling factor and stresses. The topology and sizing design variables for wing internal components are based on a ground element approach. The design problem is solved by multi-objective population-based incremental learning (MOPBIL). The Pareto optimum results lead to unconventional wing structures that are superior to their conventional counterparts.  相似文献   

6.
Natee Panagant 《工程优选》2018,50(10):1645-1661
A hybrid adaptive optimization algorithm based on integrating grey wolf optimization into adaptive differential evolution with fully stressed design (FSD) local search is presented in this article. Hybrid reproduction and control parameter adaptation strategies are employed to increase the performance of the algorithm. The proposed algorithm, called fully stressed design–grey wolf–adaptive differential evolution (FSD-GWADE), is demonstrated to tackle a variety of truss optimization problems. The problems have mixed continuous/discrete design variables that are assigned as simultaneous topology, shape and sizing design variables. FSD-GWADE provides competitive results and gives superior results at a higher success rate than the previous FSD-based algorithm.  相似文献   

7.
In model-based process optimization one uses a mathematical model to optimize a certain criterion, for example the product yield of a chemical process. Models often contain parameters that have to be estimated from data. Typically, a point estimate (e.g. the least squares estimate) is used to fix the model for the optimization stage. However, parameter estimates are uncertain due to incomplete and noisy data. In this article, it is shown how parameter uncertainty can be taken into account in process optimization. To quantify the uncertainty, Markov Chain Monte Carlo (MCMC) sampling, an emerging standard approach in Bayesian estimation, is used. In the Bayesian approach, the solution to the parameter estimation problem is given as a distribution, and the optimization criteria are functions of that distribution. The formulation and implementation of the optimization is studied, and numerical examples are used to show that parameter uncertainty can have a large effect in optimization results.  相似文献   

8.
A comprehensive solution for bus frame design is proposed to bridge multi-material topology optimization and cross-sectional size optimization. Three types of variables (material, topology and size) and two types of constraints (static stiffness and frequencies) are considered to promote this practical design. For multi-material topology optimization, an ordered solid isotropic material with penalization interpolation is used to transform the multi-material selection problem into a pure topology optimization problem, without introducing new design variables. Then, based on the previously optimal topology result, cross-sectional sizes of the bus frame are optimized to further seek the least mass. Sequential linear programming is preferred to solve the two structural optimization problems. Finally, an engineering example verifies the effectiveness of the presented method, which bridges the gap between topology optimization and size optimization, and achieves a more lightweight bus frame than traditional single-material topology optimization.  相似文献   

9.
The topology optimization problem of a continuum structure on the compliance minimization objective is investigated under consideration of the external load uncertainty in its application position with a nonprobabilistic approach. The load position is defined as the uncertain-but-bounded parameter and is represented by an interval variable with a nominal application point. The structural compliance due to the load position deviation is formulated with the quadratic Taylor series expansion. As a result, the objective gradient information to the topological variables can be evaluated efficiently in a quadratic expression. Based on the maximum design sensitivity value, which corresponds to the most sensitive compliance to the uncertain loading position, a single-level optimization approach is suggested by using a popular gradient-based optimality criteria method. The proposed optimization scheme is performed to gain the robust topology optimizations of three benchmark examples, and the final configuration designs are compared comprehensively with the conventional topology optimizations under the loading point fixation. It can be observed that the present method can provide remarkably different material layouts with auxiliary components to accommodate the load position disturbances. The numerical results of the representative examples also show that the structural performances of the robust topology optimizations appear less sensitive to the load position perturbations than the traditional designs.  相似文献   

10.
This article presents an efficient approach for reliability-based topology optimization (RBTO) in which the computational effort involved in solving the RBTO problem is equivalent to that of solving a deterministic topology optimization (DTO) problem. The methodology presented is built upon the bidirectional evolutionary structural optimization (BESO) method used for solving the deterministic optimization problem. The proposed method is suitable for linear elastic problems with independent and normally distributed loads, subjected to deflection and reliability constraints. The linear relationship between the deflection and stiffness matrices along with the principle of superposition are exploited to handle reliability constraints to develop an efficient algorithm for solving RBTO problems. Four example problems with various random variables and single or multiple applied loads are presented to demonstrate the applicability of the proposed approach in solving RBTO problems. The major contribution of this article comes from the improved efficiency of the proposed algorithm when measured in terms of the computational effort involved in the finite element analysis runs required to compute the optimum solution. For the examples presented with a single applied load, it is shown that the CPU time required in computing the optimum solution for the RBTO problem is 15–30% less than the time required to solve the DTO problems. The improved computational efficiency allows for incorporation of reliability considerations in topology optimization without an increase in the computational time needed to solve the DTO problem.  相似文献   

11.
As the aerospace and automotive industries continue to strive for efficient lightweight structures, topology optimization (TO) has become an important tool in this design process. However, one ever-present criticism of TO, and especially of multimaterial (MM) optimization, is that neither method can produce structures that are practical to manufacture. Optimal joint design is one of the main requirements for manufacturability. This article proposes a new density-based methodology for performing simultaneous MMTO and multijoint TO. This algorithm can simultaneously determine the optimum selection and placement of structural materials, as well as the optimum selection and placement of joints at material interfaces. In order to achieve this, a new solid isotropic material with penalization-based interpolation scheme is proposed. A process for identifying dissimilar material interfaces based on spatial gradients is also discussed. The capabilities of the algorithm are demonstrated using four case studies. Through these case studies, the coupling between the optimal structural material design and the optimal joint design is investigated. Total joint cost is considered as both an objective and a constraint in the optimization problem statement. Using the biobjective problem statement, the tradeoff between total joint cost and structural compliance is explored. Finally, a method for enforcing tooling accessibility constraints in joint design is presented.  相似文献   

12.
The level set method is a promising approach to provide flexibility in dealing with topological changes during structural optimization. Normally, the level set surface, which depicts a structure's topology by a level contour set of a continuous scalar function embedded in space, is interpolated on a fixed mesh. The accuracy of the boundary positions is therefore largely dependent on the mesh density, a characteristic of any Eulerian expression when using a fixed mesh. This article combines the adaptive moving mesh method with a level set structure topology optimization method. The finite element mesh automatically maintains a high nodal density around the structural boundaries of the material domain, whereas the mesh topology remains unchanged. Numerical experiments demonstrate the effect of the combination of a Lagrangian expression for a moving mesh and a Eulerian expression for capturing the moving boundaries.  相似文献   

13.
This work presents an engineering method for optimizing structures made of bars, beams, plates, or a combination of those components. Corresponding problems involve both continuous (size) and discrete (topology) variables. Using a branched multipoint approximate function, which involves such mixed variables, a series of sequential approximate problems are constructed to make the primal problem explicit. To solve the approximate problems, genetic algorithm (GA) is utilized to optimize discrete variables, and when calculating individual fitness values in GA, a second-level approximate problem only involving retained continuous variables is built to optimize continuous variables. The solution to the second-level approximate problem can be easily obtained with dual methods. Structural analyses are only needed before improving the branched approximate functions in the iteration cycles. The method aims at optimal design of discrete structures consisting of bars, beams, plates, or other components. Numerical examples are given to illustrate its effectiveness, including frame topology optimization, layout optimization of stiffeners modeled with beams or shells, concurrent layout optimization of beam and shell components, and an application in a microsatellite structure. Optimization results show that the number of structural analyses is dramatically decreased when compared with pure GA while even comparable to pure sizing optimization.  相似文献   

14.
It is nowadays widely acknowledged that optimal structural design should be robust with respect to the uncertainties in loads and material parameters. However, there are several alternatives to consider such uncertainties in structural optimization problems. This paper presents a comprehensive comparison between the results of three different approaches to topology optimization under uncertain loading, considering stress constraints: (1) the robust formulation, which requires only the mean and standard deviation of stresses at each element; (2) the reliability-based formulation, which imposes a reliability constraint on computed stresses; (3) the non-probabilistic formulation, which considers a worst-case scenario for the stresses caused by uncertain loads. The information required by each method, regarding the uncertain loads, and the uncertainty propagation approach used in each case is quite different. The robust formulation requires only mean and standard deviation of uncertain loads; stresses are computed via a first-order perturbation approach. The reliability-based formulation requires full probability distributions of random loads, reliability constraints are computed via a first-order performance measure approach. The non-probabilistic formulation is applicable for bounded uncertain loads; only lower and upper bounds are used, and worst-case stresses are computed via a nested optimization with anti-optimization. The three approaches are quite different in the handling of uncertainties; however, the basic topology optimization framework is the same: the traditional density approach is employed for material parameterization, while the augmented Lagrangian method is employed to solve the resulting problem, in order to handle the large number of stress constraints. Results are computed for two reference problems: similarities and differences between optimized topologies obtained with the three formulations are exploited and discussed.  相似文献   

15.
16.
This paper presents a novel framework for simultaneous optimization of topology and laminate properties in structural design of laminated composite beam cross sections. The structural response of the beam is evaluated using a beam finite element model comprising a cross section analysis tool which is suitable for the analysis of anisotropic and inhomogeneous sections of arbitrary geometry. The optimization framework is based on a multi-material topology optimization model in which the design variables represent the amount of the given materials in the cross section. Existing material interpolation, penalization, and filtering schemes have been extended to accommodate any number of anisotropic materials. The methodology is applied to the optimal design of several laminated composite beams with different cross sections. Solutions are presented for a minimum compliance (maximum stiffness) problem with constraints on the weight, and the shear and mass center positions. The practical applicability of the method is illustrated by performing optimal design of an idealized wind turbine blade subjected to static loading of aerodynamic nature. The numerical results suggest that the proposed framework is suitable for simultaneous optimization of cross section topology and identification of optimal laminate properties in structural design of laminated composite beams.  相似文献   

17.
Cellular structures manifest their outstanding mechanical properties in many biological systems. One key challenge for designing and optimizing these geometrically complicated structures lies in devising an effective geometric representation to characterize the system's spatially varying cellular evolution driven by objective sensitivities. A conventional discrete cellular structure, for example, a Voronoi diagram, whose representation relies on discrete Voronoi cells and faces, lacks its differentiability to facilitate large-scale, gradient-based topology optimizations. We propose a topology optimization algorithm based on a differentiable and generalized Voronoi representation that can evolve the cellular structure as a continuous field. The central piece of our method is a hybrid particle-grid representation to encode the previously discrete Voronoi diagram into a continuous density field defined in a Euclidean space. Based on this differentiable representation, we further extend it to tackle anisotropic cells, free boundaries, and functionally-graded cellular structures. Our differentiable Voronoi diagram enables the integration of an effective cellular representation into the state-of-the-art topology optimization pipelines, which defines a novel design space for cellular structures to explore design options effectively that were impractical for previous approaches. We showcase the efficacy of our approach by optimizing cellular structures with up to thousands of anisotropic cells, including femur bone and Odonata wing.  相似文献   

18.
In this paper, a piecewise constant level set (PCLS) method is implemented to solve a structural shape and topology optimization problem. In the classical level set method, the geometrical boundary of the structure under optimization is represented by the zero level set of a continuous level set function, e.g. the signed distance function. Instead, in the PCLS approach the boundary is described by discontinuities of PCLS functions. The PCLS method is related to the phase‐field methods, and the topology optimization problem is defined as a minimization problem with piecewise constant constraints, without the need of solving the Hamilton–Jacobi equation. The result is not moving the boundaries during the iterative procedure. Thus, it offers some advantages in treating geometries, eliminating the reinitialization and naturally nucleating holes when needed. In the paper, the PCLS method is implemented with the additive operator splitting numerical scheme, and several numerical and procedural issues of the implementation are discussed. Examples of 2D structural topology optimization problem of minimum compliance design are presented, illustrating the effectiveness of the proposed method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
为了实现使连续体结构的体积约束和柔顺度最小的拓扑优化及解决采用经典变密度法引起的结构优化结果存在如灰度单元、棋盘格等数值不稳定问题,提出了一种新的拓扑优化方法。首先,采用改进的固体各向同性材料惩罚法作为材料插值方案,建立结构拓扑优化模型;其次,通过引入基于高斯权重函数的敏度过滤法和设计新灰度单元抑制算子来解决数值不稳定问题;最后,借助优化准则法求解优化模型。通过算例分析可知:新策略可以改进拓扑优化方法;新的拓扑优化方法具有收敛速度较快、能更好地获取柔顺度小且拓扑构型好的优化结构和抑制灰度单元产生等优势。研究结果为其他连续体结构的拓扑优化研究提供了新思路。  相似文献   

20.
The desired results of variable topology material layout computations are stable and discrete material distributions that optimize the performance of structural systems. To achieve such material layout designs a continuous topology design framework based on hybrid combinations of classical Reuss (compliant) and Voigt (stiff) mixing rules is investigated. To avoid checkerboarding instabilities, the continuous topology optimization formulation is coupled with a novel spatial filtering procedure. The issue of obtaining globally optimal discrete layout designs with the proposed formulation is investigated using a continuation method which gradually transitions from the stiff Voigt formulation to the compliant Reuss formulation. The very good performance of the proposed methods is demonstrated on four structural topology design optimization problems from the literature. © 1997 John Wiley & sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号