首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Porous carbon materials were prepared using resorcinol and formaldehyde catalyzed by KOH in a sol-gel process followed by carbonization, during which the KOH serves as an activating agent and generates pores mainly located in the micropore range. With an increase of mass ratio of KOH to resorcinol from 1 to 4, both the specific surface area and the pore volume of the carbons increased, from 522 to 2760 m2/g and 0.304 to 1.347 cm3/g, respectively, but the average pore diameter decreased from 4.4 to 2.5 nm. Samples were investigated as electrode materials in supercapacitors and the relevant electrochemical behavior was characterized by cyclic voltammetry, electrochemical impedance spectroscopy and constant current charge-discharge experiments using 30% KOH aqueous solution as electrolyte. The highest specific capacitance of up to 294 F/g was obtained at a current density 1 mA/cm2 for the sample with mass ratio of KOH to resorcinol of 2. Only a slight decrease in capacitance for the same sample, from 294 to 242 F/g, was observed when the current density increased from 1 to 30 mA/cm2. The specific capacitance only decayed 3% at a current density 30 mA/cm2 after 1000 cycles, which indicates that the sample possesses excellent power property and cycle durability.  相似文献   

2.
《Ceramics International》2021,47(21):29908-29918
The cellulose derived carbon/graphene/ZnO aerogel composite was prepared as an electrode in order to investigate the electrochemical properties. Carbon aerogel was synthesized using paper as an available cellulose source, and the composite was obtained through a new and simple preparation method including the immersion of monolithic carbon aerogel in graphene oxide/Zn2+ suspension and subsequent chemical reduction and freeze drying. The morphology, functional groups and crystalline structure of the samples were studied with Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR) and X-ray Diffraction Spectroscopy (XRD), respectively. Electrochemical performance of the prepared binder free electrodes was examined using Cyclic Voltammetry (CV), Galvanostatic Charge-Discharge (GCD) and Electrochemical Impedance Spectroscopy (EIS). The data revealed that flexible carbon/graphene/ZnO composite resulted in a low density (0.035 g cm−3) electrode with the capacitance of 900 mF cm−2 at a high current density of 10 mA cm−2, lower IR drop and high cyclic stability (capacitance retention of 96%) after 1000 cycles, at 10 mA cm−2. These features were due to the presence of 3D porous conductive network, highly reduced graphene oxide, and the formation of ZnO nanoparticles on graphene sheets. Moreover, polyaniline (PANI) was introduced to carbon/graphene/ZnO composite electrode using electro-oxidation method at different reaction time and aniline concentration in order to achieve remarkably improved capacitance of 2500 mF cm−2 (at 10 mA cm−2) and low charge transfer resistance. Also, after the supercapacitor device assembly, the capacitance was retained. Based on the results, the synthesized composite is a promising material for new generation of lightweight freestanding electrodes with the high electrochemical performance.  相似文献   

3.
We reported an asymmetric supercapacitor technology where RuO2/TiO2 nanotube composite was used as positive electrode and the activated carbon as negative electrode in 1 mol/L KOH electrolyte solution. The electrochemical capacitance performance of the asymmetric supercapacitor was tested by cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge-discharge tests. The results show that the asymmetric supercapacitor has electrochemical capacitance performance within potential range 0–1.4 V. A power density 1207 W/kg was obtained with an energy density of 5.7 W h/kg at a charge–discharge current density of 120 mA/cm2. The supercapacitor also exhibits a good cycling performance and keep 90% of initial capacity over 1000 cycles.  相似文献   

4.
Three kinds of mesocarbon microbeads (MCMBs) with different textures were activated by potassium hydroxide at 900 °C and used as electrode materials for supercapacitor. The effects of textures of precursors on electrochemical performances of activated MCMBs were investigated. Nitrogen sorption measurements (at 77 K) showed that three kinds of activated MCMBs possess high specific surface areas (> 2000 m2/g) and different porosity characteristics. MCMB prepared by emulsion method from bulk mesophase pitch (MCMB-e) has an irregular and distorted lamellar structure of oriented aromatic hydrocarbons. The unique texture of MCMB-e leads to the largest specific surface area (2542.8 m2/g) and the highest micropore volume (0.8236 cm3/g) after activation. Galvanostatic charge-discharge results showed that the activated MCMB-e has the highest specific capacitance of 326 F/g at the current density of 20 mA/g and better rate capability in 6 M KOH electrolyte. The good capacitive behavior of the activated MCMB-e may be attributed to the high-surface area, abundant micropores, closed-packed mesopores and macropores, as well as moderate crystal structures.  相似文献   

5.
Poly 3,4-ethylenedioxythiophene (PEDOT)-based NiFe2O4 conducting nanocomposites were synthesized and their electrochemical properties were studied in order to find out their suitability as electrode materials for supercapacitor. Nanocrystalline nickel ferrites (5-20 nm) have been synthesized by sol-gel method. Reverse microemulsion polymerization in n-hexane medium for PEDOT nanotube and aqueous miceller dispersion polymerization for bulk PEDOT formation using different surfactants have been adopted. Structural morphology and characterization were studied using XRD, SEM, TEM and IR spectroscopy. Electrochemical performances of these electrode materials were carried out using cyclic voltammetry at different scan rates (2-20 mV/s) and galvanostatic charge-discharge at different constant current densities (0.5-10 mA/cm2) in acetonitrile solvent containing 1 M LiClO4 electrolyte. Nanocomposite electrode material shows high specific capacitance (251 F/g) in comparison to its constituents viz NiFe2O4 (127 F/g) and PEDOT (156 F/g) where morphology of the pore structure plays a significant role over the total surface area. Contribution of pseudocapacitance (CFS) arising from the redox reactions over the electrical double layer capacitance (CDL) in the composite materials have also been investigated through the measurement of AC impedance in the frequency range 10 kHz-10 mHz with a potential amplitude of 5 mV. The small attenuation (∼16%) in capacitance of PEDOT-NiFe2O4 composite over 500 continuous charging/discharging cycles suggests its excellent electrochemical stability.  相似文献   

6.
An electrochemical supercapacitor in all solid configuration using perfluorosulfonate ionomer as polymer electrolyte has been successfully realized. Electrodes of supercapacitor have been prepared using activated carbon material and Nafion ionomer. This latter had the double function of binder and electrolyte. Nafion 115 membrane has been used as electrolyte separator in the preparation of small scale supercapacitors. The capacitance performance of these devices is comparable or better than traditional systems, which use sulfuric acid as electrolyte. The electrochemical evaluation of studied supercapacitor has been carried out by cyclic voltammetry, dc charge/discharge measurements and electrochemical impedance spectroscopy. A capacitance of 90 F/g (referred to the weight of active carbon material in the electrode) has been obtained with carbon having surface area (SA) of about 1000 m2/g and, a capacitance of 130 F/g with activated carbon having SA of 1500 m2/g. These interesting results have been tentatively explained with an optimal configuration of electrodes and with the concomitant beneficial effects on the carbon pores of adsorbed water and Nafion distribution, which produce low distribute resistance in the carbon composite electrodes.  相似文献   

7.
Kaisheng Xia  Jinhua Jiang  Juan Hu 《Carbon》2008,46(13):1718-1726
Various porous carbons were prepared by CO2 activation of ordered mesoporous carbons and used as electrode materials for supercapacitor. The structures were characterized by using X-ray diffraction, transmission electron microscopy and nitrogen sorption at 77 K. The effects of CO2 treatment on their pore structures were discussed. Compared to the pristine mesoporous carbons, the samples subjected to CO2 treatment exhibited remarkable improvement in textural properties. The electrochemical measurement in 6 M KOH electrolyte showed that CO2 activation leads to better capacitive performances. The carbon CS15A6, which was obtained after CO2 treatment for 6 h at 950 °C using CMK-3 as the precursor, showed the best electrochemical behavior with a specific gravimetric capacitance of 223 F/g and volumetric capacitance of 54 F/cm3 at a scan rate of 2 mV/s and 73% retained ratio at 50 mV/s. The good capacitive behavior of CS15A6 may be attributed to the hierarchical pore structure (abundant micropores and interconnected mesopores with the size of 3-4 nm), high surface area (2749 m2/g), large pore volume (2.09 cm3/g), as well as well-balanced microporosity and mesoporosity.  相似文献   

8.
In order to enhance specific capacitance and energy density of carbon-based supercapacitor, some nanometer-scale amorphous particles of nickel oxide were loaded into activated-carbon by suspending the activated-carbon in a Ni(NO3)2 solution followed by neutralization. A hybrid type electrochemical capacitor was made and tested, in which the activated-carbon loaded with nickel oxide was used as cathode material and activated-carbon was used as anode material. Although the BET surface area of the activated-carbon decreased upon nickel oxide loading compared to that of the starting material, its specific capacitance increased 10.84%, from 175.40 to 194.01 F g−1 and the potential of oxygen evolution on the composite material electrode was 0.076 V higher than that of the pure activated-carbon electrode, in the electrolyte of 6 mol/L KOH solution, so the hybrid capacitor had larger energy density. Similar to the pure activated-carbon electrode, no obvious change appears on the specific capacitances of the composite material electrode at various discharge currents and the composite material electrode exhibiting good power characteristics.  相似文献   

9.
Carbon nanofibres have been prepared by a floating catalyst procedure at industrial scale in a metallic furnace. The nanofibres (50-500 nm diameter and 5-200 μm length) are grown from the Fe particles used as catalyst. Soot appears together with the carbon nanofibres. The sample has been chemically activated using KOH as activating agent. Scanning electron microscopy has shown a smooth surface for the as-prepared carbon nanofibres but a rough surface for the activated ones. The specific surface area increases from 13 to 212 m2/g due to the activation. The volume of the micropores (in the 1-2 nm range) and the mesopores (2-5 nm range), as deduced by density functional theory methods, also increases after the activation. Electrochemical behaviour of the as-prepared and activated carbon nanofibres has been tested in a supercapacitor at laboratory scale using 6 M KOH aqueous solution as electrolyte. The specific capacitance, which is less than 1 F/g for the as-prepared sample, increase up to ≈60 F/g for the activated sample. Only a slight decrease in capacitance has been observed as the current density increases. Specific power of ≈100 W/kg at specific energy of 1 Wh/kg has been found in some particular cases. We have compared the electrochemical parameters of our activated carbon nanofibres with those of activated carbon nanofibres coming from a commercial sample; the latter was activated by the same way as our sample.  相似文献   

10.
Four square centimeter carbon-carbon supercapacitor cells were assembled with Al current collectors in organic electrolyte. Different treatments of the Al current collectors were made in order to increase the supercapacitor performances. A sol-gel deposit of a conducting carbonaceous material led to the best results. On the basis of electrochemical impedance spectroscopy measurements, the differences observed with the previous treatments were assumed to be linked to the modification of the Al/active material interface. The cell using sol-gel treated current collector presented an activated carbon specific capacitance of 100 F/g and a series resistance of 0.8 Ω cm2 in acetonitrile 1 M NEt4BF4, that are characteristics compatible with high power applications.  相似文献   

11.
Fullerene-activated carbon composite electrodes were prepared and their charge/discharge characteristics were studied for use in a high power electric double-layer capacitor. The capacitance of the C60-loaded activated carbon fiber (ACF) electrodes became greater than that of the unloaded ACF at charge/discharge current densities above 50 mA/cm2. In order to obtain a highly dispersed C60-loaded electrode, an ultrasonic treatment was performed. The size of the C60 agglomerate decreased from 1-2 to 0.1 μm or less, and the capacitance of the C60-loaded ACF electrodes increased with an increase in the ultrasonic treatment time. A higher capacitance of 172 F/g was obtained at 50 mA/cm2 on a 1 wt% C60-loaded electrode with ultrasonic treatment, and the C60-loaded ACF electrode also showed a higher cycle performance.  相似文献   

12.
A hybrid supercapacitor based on manganese oxide, activated carbon and polymer electrolyte was developed and electrochemically investigated. The capacitive performance obtained from the polymer electrolyte based supercapacitor was similar to that of an aqueous electrolyte based supercapacitor, tested for comparison in the same operative conditions. A durability test carried out for 2500 cycles showed stable and slowly increasing performance. The specific capacitance of hybrid supercapacitor was 48 F g−1 (192 F g−1 as a mean one electrode capacitance), in which that of the positive electrode was 384 F g−1 of MnO2 and that of negative electrode 117 F g−1 of carbon. The impedance analysis evidenced that although the polymer electrolyte based hybrid supercapacitor showed higher resistance compared to that of the liquid electrolyte based supercapacitor, this drawback was counterbalanced by better ion transport features, which were evident at lower frequencies, where similar values of capacitances were obtained from the different supercapacitors.  相似文献   

13.
E.J. Ra  E. Raymundo-Piñero  F. Béguin 《Carbon》2009,47(13):2984-2992
Porous carbon nanofiber paper has been obtained by one-step carbonization/activation of PAN-based nanofiber paper at temperatures from 700 to 1000 °C in CO2 atmosphere. The paper was used as supercapacitor electrode without any binder or percolator. At low temperature, e.g., ?900 °C, nitrogen enriched carbons with a poorly developed specific surface area (SBET ? 400 m2/g) are obtained. In aqueous electrolytes, these carbons withstand high current loads without a noticeable decrease of capacitance, and the normalized capacitance reaches 67 μF/cm2. At 10 s time constant, the values of energy and power densities are 3-4 times higher than for activated carbons (AC) presenting higher specific surface area. By carbonization/activation at 1000 °C, subnanometer pores are developed and SBET = 705 m2/g. Despite moderate BET specific surface area, the capacitance reaches values higher than 100 F/g in organic electrolyte. At high power densities, the nanofiber paper obtained at 1000 °C outperforms the energy density retention of ACs in organic electrolyte. The high power capability of the carbon nanofiber papers in the two kinds of electrolytes is attributed both to the high intrinsic conductivity of the fibers and to the high diffusion rate of ions in the opened mesopores.  相似文献   

14.
This paper studies nickel oxide/silicon nanowires (NiO/SiNWs) as composite thin films in electrodes for electrochemical capacitors. The SiNWs as backbones were first prepared by chemical etching, and then the Ni/SiNW composite structure was obtained by electroless plating of nickel onto the surface of the SiNWs. Next, the NiO/SiNW nanocomposites were fabricated by annealing Ni/SiNW composites at different temperatures in an oxygen atmosphere. Once the electrodes were constructed, the electrochemical behavior of these electrodes was investigated with cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In 2 M KOH solution, the electrode material was found to have novel capacitive characteristics. Finally, when the NiO/SiNW composites were annealed at 400 °C, the maximum specific capacitance value was found to be as high as 681 F g−1 (or 183 F cm−3), and the probing of the cycling life indicated that only about 3% of the capacity was lost after 1000 charge/discharge cycles. This study demonstrated that NiO/SiNW composites were the optimal electrode choice for electrochemical capacitors.  相似文献   

15.
Cobalt oxide (Co3O4) nanotubes have been successfully synthesized by chemically depositing cobalt hydroxide in anodic aluminum oxide (AAO) templates and thermally annealing at 500 °C. The synthesized nanotubes have been characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The electrochemical capacitance behavior of the Co3O4 nanotubes electrode was investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 6 mol L−1 KOH solution. The electrochemical data demonstrate that the Co3O4 nanotubes display good capacitive behavior with a specific capacitance of 574 F g−1 at a current density of 0.1 A g−1 and a good specific capacitance retention of ca. 95% after 1000 continuous charge-discharge cycles, indicating that the Co3O4 nanotubes can be promising electroactive materials for supercapacitor.  相似文献   

16.
Chen-Ching Wang 《Carbon》2005,43(9):1926-1935
A novel method, electrochemical catalytic oxidation via a ruthenium redox couple in an aqueous RuCl3 · xH2O solution rather than the anodic deposition of Ru oxides, was developed to modify the microstructure and electrochemical properties of activated carbon fabrics (ACFs). The variation in microstructures (i.e., specific surface area and mean pore size) for the modified ACFs was examined by means of nitrogen gas adsorption isotherms. The distribution of oxygen-containing functional groups within the modified ACFs was identified by temperature programmed desorption (TPD) and X-ray photoelectron (XPS) spectra. Effects of the electrochemical catalytic modification on the electrochemical characteristics and reversibility of ACFs were investigated systematically by means of cyclic voltammetry (CV) and chronopotentiometry (CP) in 0.5 M H2SO4. The total specific capacitance of ACFs reached a maximum (ca. 180 F/g measured at 10 mA/cm2) when they were catalytically modified at 1.15 V with a passed charge density of 5 C/cm2. These modified ACFs were demonstrated to be an excellent candidate for the supercapacitor application.  相似文献   

17.
以间苯二酚和甲醛为原料,六次甲基四胺为催化交联剂,通过溶胶-凝胶、常压干燥和炭化处理制备炭气凝胶,考察了炭化升温速率对炭气凝胶孔结构和电容特性的影响。采用BET法分析不同升温速率下制得的炭气凝胶的孔结构,并利用直流充放电、交流阻抗技术和循环伏安法测定由炭气凝胶电极与KOH电解质构成的双电层电容器的性能。结果表明:在升温速率为2℃/min时制备的炭气凝胶电极具有良好的电化学性能。在30%的KOH电解质溶液中低电流密度(1mA/cm^2)充放电时的比电容为176F/g,电流密度增大20倍,容量保持率为84.3%,经过1000次循环,容量保持率达93%以上,具有良好的大电流充放电性能和循环性能。  相似文献   

18.
Nitrogen-containing carbon composite materials composed of mesoporous carbon CMK-5 and carbon nanotubes (CNTs) were prepared by the chemical vapor deposition method with Fe(NO3)3-impregnated SBA-15 as template and pyridine as the carbon precursor. The Fe nanoparticles confined in the channels of SBA-15 induced the formation of mesoporous carbon characteristic of CMK-5, whereas Fe particles homogeneously dispersed on the external surface of SBA-15 served as catalysts for CNTs growth. The contents of CNTs, the N doping level and the microstruture of the carbon composite were closely related to the initial Fe/Si atomic ratio in SBA-15 template. Incorporation of CNTs in the composite was found to substantially reduce the electric resistance, leading to the composite materials exhibiting excellent rate-performance. A maximum specific capacitance of 208 F/g and a power density of 10 kW/kg were achieved in 6.0 mol/L KOH aqueous electrolyte when these carbon composites were applied as supercapacitor electrodes. Moreover, the composite electrode also exhibited good electrochemical stability with no capacitance loss after 1000 cycles of galvanostatic charge-discharge process.  相似文献   

19.
《Ceramics International》2023,49(2):1800-1810
Self-assembled composite porous structures comprising CuCo2O4 microflowers and NiO hexagonal nanosheets were synthesized on a conducting 3D Ni foam surface [CCO/NO] using a simple hydrothermal method. This unique composite assembly was further characterized and electrochemically evaluated as a binder-free positive electrode for hybrid supercapacitor application. The study showed that the CCO/NO exhibited a maximum areal capacitance of 1444 mF cm?2, significantly higher than the parent CuCo2O4 and NiO electrodes, with remarkable stability of 88.5% for 10,000 galvanostatic charge-discharge cycles. Key features for the enhanced electrochemical performance of CCO/NO can be related to a lowered diffusion resistance because the hybrid nanocomposite porous assembly generates short diffusion paths for electrolyte ions and more active sites for reversible faradaic transition for charge storage. The hybrid supercapacitor was assembled using activated carbon as a negative electrode and CCO/NO as a positive electrode in alkaline electrolyte, performed at an improved potential of 1.6 V. Device showed a maximum areal capacitance of 122 mF cm?2, a maximum areal energy density of 43 μWh cm?2, and a maximum areal power density of 5.1 mW cm?2. This hybrid supercapacitor showed remarkable cyclic stability up to 98% for 10,000 cycles. This study encourages the development of low-cost, high-performance, durable electrode designs using hybrid composite for next-generation energy storage systems.  相似文献   

20.
A graphite electrode was activated using recurrent electrochemical galvanic pulses. After activation, the original smooth surface was changed into an obviously porous, rough surface with microcrystalline flake structures with a larger number of O-containing functional groups. The material had a high capacitance and a satisfactory high-rate performance. The superior volumetric capacitance in active layer was ca. 428 F cm−3. Eighty-eight percentage of the capacitance remained after the discharge current increased from 2 mA (1.71 F cm−2) to 100 mA (1.50 F cm−2) in 2.3 M H2SO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号