首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The microanatomy of the testes and testicular ducts (rete testis, ductuli efferentes, ductus epididymis and ductus deferens) of Leiolepis ocellata (Agamidae) was investigated using light microscopy including histochemistry. Each testis contains seminiferous tubules and interstitial tissues. The former house spermatogenic cells (spermatogonia A & B, preleptotene, primary and secondary spermatocytes, spermatids (steps 1–8) and spermatozoa) and Sertoli cells, while the latter comprise peritubular and intersitial tissues. The rete testis is an anastomosing duct, having intratesticular and extratesticular portions. The proximal region of ductuli efferentes has wider outer ductal and luminal diameters than those of the distal region. The convoluted ductus epididymis is subdivided into four regions (initial segment, caput, corpus and cauda), based on the ductal diameter, epithelium characteristics and cell components. The ductus deferens has the greatest diameter and is divided into the ductal and ampulla ductus deferens. The ductal portion is subdivided into the proximal and distal regions, based on the epithelium types and ductal diameters. The ampulla ductus deferens is a fibromuscular tube, having numerous mucosal folds projecting into the lumen. Spermiophagy is detectable in the ductus epididymis and ductus deferens. The present results contribute to improved fundamental knowledge on the microanatomy of the reptilian reproductive system.  相似文献   

2.
The ampulla ureter and ampulla urogenital/uriniferous papilla represent differing morphologies of the caudal urogenital ducts in snakes. The ampulla ureter is an enlarged portion of the caudal extremity of the ureter that communicates the cranial regions of the ureter and the ductus deferens/Wolffian duct to the urodaeum. The ampulla urogenital/uriniferous papilla is an enlarged pouch, distinct from the ureter, which communicates the ureter and ductus deferens/Wolffian duct to the urodaeum. Although functional differences of these two structures are unknown, the ampulla urogenital/uriniferous papilla may have evolved for urine storage in males and females, and secondarily evolved a reproductive function in males. The most parsimonious optimization of the ampulla ureter and ampulla urogenital/uriniferous papilla indicates that the ampulla ureter is the ancestral state in snakes. Examining the presence or absence of the ampulla ureter and ampulla urogenital/uriniferous papilla in snakes on conflicting caenophidian phylogenies results in two hypotheses for the evolution of these variant morphologies: (1) The ampulla urogenital/uriniferous papilla evolved from the ampulla ureter independently in the Colubroidea and Elapoidea with subsequent losses of the ampulla urogenital/uriniferous papilla in the Elapoidea and (2) a single transition from the ampulla ureter to the ampulla urogenital/uriniferous papilla on the branch leading to the Colubroidea + Elapoidea with subsequent losses of the ampulla urogenital/uriniferous papilla in the Elapoidea and Colubroidea. The presence of the ampullae urogenital/uriniferous papilla in only the Colubroidea and Elapoidea highlights the affinity of these two taxonomic groups, a relationship that is strongly supported in published cladograms produced with molecular datasets.  相似文献   

3.
Among reptiles, an ampulla ductus deferentis has been reported only in Squamata. Fairly detailed studies are available only for two species, the lizard Calotes versicolor (Fam: Agamidae) and the snake Seminatrix pygaea (Fam: Colubridae). The light microscopic study on C. versicolor revealed the ampulla to be a prominent organ, whereas the light and transmission electron microscopic study in S. pygaea revealed it to be discernable only in histological preparations. Further, the epithelium of the ductal portion of vas deferens as well as the ampulla of C. versicolor appears to contribute to the seminal plasma and can also phagocytose dead sperm, whereas in S. pygaea neither of these roles has been established. Thus, we hypothesize that there may be variations in the anatomy, histology, and the role of the vas deferens in general, and the ampulla in particular, of the squamate reptiles. In this study, the ductus deferens of the small fan-throated lizard Sitana ponticeriana (Fam: Agamidae) was subjected to light and transmission electron microscopic analysis. In this lizard the ampulla is more prominent than in C. versicolor. The epithelium of the ductal portion of vas deferens consists of principal cells (with features reflecting roles in endocytosis and phagocytosis of dead sperm), dark cells (which are absent in the epithelium of the ductal portion of vas deferens of snakes), and basal cells. The ampulla of S. ponticeriana is differentiated into storage and glandular portions. The epithelium of the storage portion is like that in the ductal portion of the vas deferens, whereas that of the glandular portion, consisting of dark and light principal cells and foamy cells, is tall and forms into smooth villous folds. All three cell types show evidence for a role in secretion, in all likelihood different from each other, for release into the lumen to contribute to seminal plasma. These cells do not provide evidence of a role in phagocytosis of dead sperm. It appears that within the Squamata, the ductal ampulla differs in structure as well as function. We suggest that the ductal ampulla of agamid lizards is a composite gland of the ampulla ductus deferentis and seminal vesicles of mammals.  相似文献   

4.
This study investigated the morphology and immunoexpression of aquaporins (AQPs) 1 and 9 in the rete testis, efferent ducts, epididymis, and vas deferens in the Azara’s agouti (Dasyprocta azarae). For this purpose, ten adult sexually mature animals were used in histologic and immunohistochemical analyses. The Azara’s agouti rete testis was labyrinthine and lined with simple cubic epithelium. Ciliated and non-ciliated cells were observed in the epithelium of the efferent ducts. The epididymal cellular population was composed of principal, basal, apical, clear, narrow, and halo cells. The epithelium lining of vas deferens was composed of the principal and basal cells. AQPs 1 and 9 were not expressed in the rete testis. Positive reaction to AQP1 was observed at the luminal border of non-ciliated cells of the efferent ducts, and in the peritubular stroma and blood vessels in the epididymis, and vas deferens. AQP9 was immunolocalized in the epithelial cells in the efferent ducts, epididymis and vas deferens. The morphology of Azara’s agouti testis excurrent ducts is similar to that reported for other rodents such as Cuniculus paca. The immunolocalization results of the AQPs suggest that the expression of AQPs is species-specific due to differences in localization and expression when compared to studies in other mammals species. The knowledge about the expression of AQPs in Azara’s agouti testis excurrent ducts is essential to support future reproductive studies on this animal, since previous studies show that AQPs may be biomarkers of male fertility and infertility.  相似文献   

5.
The distribution of human carbonic anhydrase (HCA) isoenzymes I, II and VI in the human male reproductive tract was studied using specific antisera against affinity purified isoenzymes in conjunction with the peroxidase-antiperoxidase complex method. HCA VI-specific staining could not be demonstrated in any of the tissues studied, and HCA I was observed only in red blood cells. Immunostaining denoted HCA II in the epithelia of the seminal vesicle, ampulla of the ductus deferens and distal ductus deferens. Some cells in the epithelium of the corpus and cauda epididymidis also stained for HCA II. The staining for HCA II in the epithelium of the reproductive tract declined from the strongly positive seminal vesicle to the proximal part of the ductus deferens, which stained negatively. There were also HCA II-positive particles derived from the apical protrusions of the epithelium in the lumina of the seminal vesicle, ampulla of the ductus deferens and ductus deferens. The physiological role of HCA II is linked to the secretion of bicarbonate into the seminal plasma and thereby to the regulation of sperm motility and pH in the seminal plasma.  相似文献   

6.
Summary The distribution of human carbonic anhydrase (HCA) isoenzymes I, II and VI in the human male reproductive tract was studied using specific antisera against affinity purified isoenzymes in conjunction with the peroxidase-antiperoxidase complex method. HCA VI-specific staining could not be demonstrated in any of the tissues studied, and HCA I was observed only in red blood cells. Immunostaining denoted HCA II in the epithelia of the seminal vescle, ampulla of the ductus deferens and distal ductus deferens. Some cells in the epithelium of the corpus and cauda epididymidis also stained for HCA II. The staining for HCA II in the epithelium of the reproductive tract declined from the strongly positive seminal vesicle to the proximal part of the ductus deferens, which stained negatively. There were also HCA II-positive particles derived from the apical protrusions of the epithelium in the lumina of the seminal vesicle, ampulla of the ductus deferens and ductus deferens. The physiological role of HCA II is linked to the secretion of bicarbonate into the seminal plasma and thereby to the regulation of sperm motility and pH in the seminal plasma.  相似文献   

7.
The anterior testicular ducts of squamates transport sperm from the seminiferous tubules to the ductus deferens. These ducts consist of the rete testis, ductuli efferentes, and ductus epididymis. Many histological and a few ultrastructural studies of the squamate reproductive tract exist, but none concern the Hydrophiidae, the sea snakes and sea kraits. In this study, we describe the anterior testicular ducts of six species of hydrophiid snakes as well as representatives from the Elapidae, Homolapsidae, Leptotyphlopidae, and Uropeltidae. In addition, we examine the ultrastructure of these ducts in the yellow‐bellied Sea Snake, Pelamis platurus, only the third such study on snakes. The anterior testicular ducts are similar in histology in all species examined. The rete testis is simple squamous or cuboidal epithelium and transports sperm from the seminiferous tubules to the ductuli efferentes in the extratesticular epididymal sheath. The ductuli efferentes are branched, convoluted tubules composed of simple cuboidal, ciliated epithelium, and many species possess periodic acid‐Schiff+ granules in the cytoplasm. The ductus epididymis at the light microscopy level appears composed of pseudostratified columnar epithelium. At the ultrastructural level, the rete testis and ductuli efferentes of P. platurus possess numerous small coated vesicles and lack secretory vacuoles. Apocrine blebs in the ductuli efferentes, however, indicate secretory activity, possibly by a constitutive pathway. Ultrastructure reveals three types of cells in the ductus epididymis of P. platurus: columnar principal cells, squamous basal cells, and mitochondria‐rich apical cells. This is the first report of apical cells in a snake. In addition, occasional principal cells possess a single cilium, which has not been reported in reptiles previously but is known in some birds. Finally, the ductus epididymis of P. platurus differs from other snakes that have been studied in possession of apical, biphasic secretory vacuoles. All of the proximal ducts are characterized by widening of adjacent plasma membranes into wide intercellular spaces, especially between the principal cells of the ductus epididymis. Our results contribute to a larger, collaborative study of the evolution of the squamate reproductive tract and to the potential for utilizing cellular characters in future phylogenetic inferences. J. Morphol. 2012. © 2011 Wiley Periodicals, Inc.  相似文献   

8.
T A Aire 《Acta anatomica》1979,103(3):305-312
The epididymal region of the Japanese quail was studied histologically. The organ consists of the extratesticular portion of the rete testis, the ductuli efferentes proximales and distales, the ducti conjugentes and ductus epididymidis. Distinct tubuli recti link the seminiferous tubules with the rete testis. The non-ciliated cells of the ductuli efferentes proximales and distales show, between them, certain internal structural differences which were highlighted. In 40% of the birds, the ductus deferens showed dark-grey pigments, regarded as melanin. The epididymal region was generally similar in structure to that of the domestic fowl, turkey and duck.  相似文献   

9.
Cysteine sulfinate decarboxylase (CSD) is the rate-limiting biosynthetic enzyme of taurine, but it is still controversial whether the male reproductive organs have the function to synthesize taurine through CSD pathway. The present study was thus undertaken to detect CSD expression in male mouse reproductive organs by RT-PCR, Western blot and immunohistochemistry. The results show that CSD is expressed both at the mRNA and protein levels in the testis, epididymis and ductus deferens. The relative levels of both CSD mRNA and protein increase from the testis to the epididymis and to the ductus deferens. Immunohistochemical results demonstrate that the main cell types containing CSD are Leydig cells of testis, epithelial cells and some stromal cells throughout the efferent ducts, epididymis and ductus deferens. These results suggest that male genital organs have the function to produce taurine through the CSD pathway, although quantifying the relation of CSD expression to taurine synthesis and the exact functions of taurine in male genital organs still need to be elucidated in future studies.  相似文献   

10.
11.
The Notch signaling pathway is involved in a variety of developmental processes. Here, we characterize the phenotypes developing in the reproductive organs of male transgenic (Tg) mice constitutively expressing the activated mouse Notch1 intracellular domain (Notch1(intra)) under the regulatory control of the mouse mammary tumor virus (MMTV) long terminal repeat (LTR). Tg expression was detected in testis, vas deferens and epididymis by Northern blot analysis. In situ hybridization with a Notch1-specific probe lacked sensitivity to detect expression in normal-appearing cells, but demonstrated expression in hyperplastic epithelial cells of the vas deferens, epididymis and efferent ducts. Tg males from three independent founder lines were sterile. Histological analysis of reproductive organs of young Tg males (postnatal ages 8 and 21) showed no difference compared to those of non-Tg males. In contrast, in adult Tg mice from day 38 onwards, the efferent ducts, the vas deferens and most epididymal segments revealed bilateral epithelial cell hyperplasia with absence of fully differentiated epithelial cells. Electron microscopy confirmed the uniformly undifferentiated state of these cells. Immunohistochemistry with anti-PCNA antibody also revealed enhanced proliferation of Tg epididymis. In adult Tg testis, the different generations of germ cells of seminiferous tubules appeared normal, although some tubules were highly dilated and revealed an absence of early and/or late spermatids. The epithelial cells of the Tg tubuli recti and rete testis were not abnormal, but the rete testis was highly dilated and contained numerous spermatozoa, suggesting a downstream blockage. Consistent with a blockage of efferent ducts often seen at the rete testis/efferent duct interface, spermatozoa were absent in epididymis of all adult Tg mice and in all highly hyperplastic efferent duct tubules of these Tg mice. Such a blockage was visualized by injection of Evans blue dye into the rete testis lumen. Finally, the presence of ectopic hyperplastic efferent duct tubules was observed within the testicular parenchyma itself, outside their normal territory, suggesting that Notch1 signaling is involved in the establishment of these borders. This phenotype seems to represent a novel developmental defect in mammals. Together, these results show that constitutive Notch1 signaling significantly affects the development of male reproductive organs.  相似文献   

12.
The transepithelial movement of water into the male reproductive tract is an essential process for normal male fertility. Protein water channels, referred to as aquaporins (AQPs), are involved in increasing the osmotic permeability of membranes. This study has examined the expression of AQP1, AQP2, and AQP7 in epithelial cells in adult dog efferent ducts, epididymis, and vas deferens. Samples of dog male reproductive tract comprising fragments of the testis, initial segment, caput, corpus and cauda epididymidis, and vas deferens were investigated by immunohistochemistry and Western blotting procedures to show the localization and distribution of the AQPs. AQP1 was noted in rete testis, in efferent ducts, and in vessels in the intertubular space, suggesting that AQP1 participated in the absorption of the large amount of testicular fluid occurring characteristically in the efferent ducts. AQP2 expression was found in the rete testis, efferent ducts and epididymis, whereas AQP7 was expressed in the epithelium of the proximal regions of the epididymis and in the vas deferens. This is the first time that AQP2 and AQP7 have been observed in these regions of mammalian excurrent ducts, but their functional role in the dog male reproductive tract remains unknown. Investigations of AQP biology could be relevant for clinical studies of the male reproductive tract and to technologies for assisted procreation. R.F.D. gratefully acknowledges a Fellowship from the Department of Anatomy, Institute of Biosciences, UNESP, Botucatu, SP, Brazil. This work was also funded by FAPESP (Sao Paulo State Research Foundation; grant 04/05578–1 to A.M.O. and grant 04/05579–8 to R.F.D.). This paper is part of the PhD Thesis presented by R.F.D. to the State University of Campinas – UNICAMP, Brazil.  相似文献   

13.
An attempt was made here to study the structure of the male reproductive system of Portunus pelagicus, which would improve the knowledge base on the reproductive biology of the species and also help in the maintenance of broodstock under controlled conditions. Male P. pelagicus of different sizes were collected from the Palk Bay off Mandapam (9°17′ N, 79°9′ E) and maintained under controlled conditions for the study. Tissues from testis, anterior vas deferens (AVD), median vas deferens (MVD), posterior vas deferens (PVD), ejaculatory duct and penis were fixed in Bouin's fluid and 2.5% buffered glutaraldehyde separately and processed for light and electron microscopic studies, respectively. The reproductive system consisted of testis, commissure, vas deferens, ejaculatory duct and penis. The vas deferens was divided based on the morphology and/or histology into AVD, MVD and PVD. The AVD was further divided based on histology into proximal and distal regions, and the MVD, based on diameter into major and minor coils. The testicular lobe had several lobules with a central seminiferous tubule, which continued till the penis. The seminiferous tubule was lined by a layer of cuboidal or columnar epithelium. The lining of the central tubule of the vas deferens formed several ‘folds’, which at times formed ‘pouches’. High incidence of cell organelles in the columnar epithelial cells, aggregations of vesicles and occurrence of blebs at the luminal periphery and the projection of numerous microvilli containing electron‐dense materials into the lumen from the cell lining denoted high secretory activity of the epithelial cells.  相似文献   

14.
This study describes the male reproductive cycle of Sibynomorphus mikanii from southeastern Brazil considering macroscopic and microscopic variables. Spermatogenesis occurs during spring–summer (September–December) and spermiogenesis or maturation occurs in summer (December–February). The length and width of the kidney, the tubular diameter, and the epithelium height of the sexual segment of the kidney (SSK) are larger in summer–autumn (December–May). Histochemical reaction of the SSK [periodic acid‐Schiff (PAS) and bromophenol blue (BB)] shows stronger results during summer–autumn, indicating an increase in the secretory activity of the granules. Testicular regression is observed in autumn and early winter (March–June) when a peak in the width of the ductus deferens occurs. The distal ductus deferens as well as the ampulla ductus deferentis exhibit secretory activities with positive reaction for PAS and BB. These results suggest that this secretion may nourish the spermatozoa while they are being stored in the ductus deferens. The increase in the Leydig cell nuclear diameter in association with SSK hypertrophy and the presence of sperm in the female indicate that the mating season occurs in autumn when testes begin to decrease their activity. The peak activity of Leydig cells and SSK exhibits an associated pattern with the mating season. However, spermatogenesis is dissociated of the copulation characterizing a complex reproductive cycle. At the individual level, S. mikanii males present a continuous cyclical reproductive pattern in the testes and kidneys (SSK), whereas at the populational level the reproductive pattern may be classified as seasonal semisynchronous. © J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
Summary Villin, a 95-kD cytoskeletal protein selectively expressed in the microvilli of some absorptive cells was localized immunohistochemically in the oviduct and the seminiferous excretory ducts of the mouse. Villin was found in the proximal part of the oviduct, comprising the preampulla, ampulla, and part of the isthmus. Distal to the isthmus the oviductal cells lining the junctura and the intrauterine colliculus tubaris were devoid of villin. No villin could be detected in the uterine cells.Ductuli efferentes, connecting the rete testis with the epididymis were the only portion of the male seminiferous ductal system expressing villin. The cells lining the epididymis and the vas deferens were devoid of villin. These data show that villin is selectively expressed in male and female reproductive systems and that it is limited to anatomically defined proximal portions of the reproductive ducts.  相似文献   

16.
The presence, location and degree of immunoexpression of various microfilament (MF) and intermediate filament (IF) systems (actin, cytokeratins, desmin, vimentin) were studied in the excurrent ducts of the testis in sexually mature and active galliform (Japanese quail, domestic fowl, turkey) and anseriform (duck) birds. These proteins were variably expressed between the epithelia and periductal tissue (periductal smooth muscle cell layer and interductal connective tissue) types and between species. Variable heterogeneous co-expression of filament systems was also found in the various duct epithelia and periductal tissue types: co-expression of filament systems was the rule rather than the exception. In the duck, neither vimentin nor cytokeratin was present in any of the tissues, whereas actin and desmin (absent in the rete testis) were co-expressed in the efferent ducts and epididymal duct unit (comprising the ductus conjugens, ductus epididymidis and ductus deferens). Actin, desmin and vimentin were generally co-expressed in the rete testis, efferent ducts and epididymal duct unit of the quail, domestic fowl and turkey, with vimentin being more strongly immunoreactive than actin and desmin in the epididymal duct unit, but more weakly immunoexpressed in the efferent ducts. Cytokeratin was present and co-expressed with actin, desmin and vimentin in the rete testis, efferent ducts and epididymal duct unit of the domestic fowl and turkey, but not in the quail and duck. The periductal smooth muscle cell layer and interductal tissue co-expressed actin, desmin and vimentin variably in all birds. Luminal spermatozoa of both the turkey and duck were immunonegative for all protein systems, whereas those of the quail and domestic fowl co-expressed actin, desmin and vimentin moderately or strongly. The tissues of the reproductive tract of male birds thus contain cytoskeletal protein systems that are variably but mostly co-expressed and whose contractile ability appears necessary and sufficient for transportation through the various excurrent ducts of the voluminous testicular fluid and its high sperm content, characteristic features of male avian reproduction.  相似文献   

17.
The amino acid taurine has been implicated in several aspects of reproductive system physiology. However, its localization in these organs has not been previously analyzed. The aim of this study was to characterize its distribution in male rat reproductive organs by immunohistochemical methods. Taurine was localized in the smooth muscle cells of the tissues studied and in the skeletal fibers of the cremaster muscle. In the testis, taurine was found in Leydig cells, vascular endothelial cells, and other interstitial cells. No immunoreactivity was observed in the cells of the seminiferous tubules, either in germ cells at all spermatogenic stages or in Sertoli cells. However, peritubular myoid cells were immunostained. Most epithelial cells of the efferent ducts were immunolabeled, whereas the epithelial cells of the rete testis (extratesticular segments), epididymis (caput, corpus, and cauda regions), and ductus deferens were unstained. However, most epithelial cells from the intratesticular segments of the rete were immunopositive. Some cells identified as intraepithelial macrophages and lymphocytes, apical cells, and narrow cells were intensely immunolabeled. Regional differences in the distribution of these cell types along the ducts studied were also noted. The possible functional roles for taurine in these cells are discussed.  相似文献   

18.
本文收集了19—38岁国人正常男性新鲜睾丸、附睾和输精管13例,进行了氧化还原酶组织化学染色、光镜定位及定性观察。结果表明:睾丸曲细精管和输出小管上皮的GDH,NADHD,NADPHD,SDH,GPDH,ICDH,MDH,LDH和G-6-PDH9种酶;睾丸间质细胞和附睾管上皮的NADHD,NADPHD,SDH,ICDH,MDH,GDH,LDH和G-6-PDH8种酶;输精管的NADHD,NADPHD,ICDH和GDH4种酶的酶活性呈强阳性或极强阳性。提示输出小管和头部附睾管含有的多种氧化还原酶对精子功能成熟有极重要作用。  相似文献   

19.
Spermatozoa from the testis and various regions along the epididymis of the rat were collected by micropuncture and their motility after dilution was estimated over a 15-min period by using a Quantimet image analyser. The motility of sermatozoa from the rete testis and seminiferous tubules was too low to be measured. The estimate of motility of spermatozoa from the proximal caput epididymidis was much lower than that of spermatozoa from the other regions. Spermatozoa from the distal part of the caput showed sustained motility for 15 min, whereas those from the caudal region and ductus deferens, although active initially, became less active during this period.  相似文献   

20.
Summary

The present study was undertaken to describe the morphological and organizational modifications that occur in apyrene and eupyrene spermatozoa along the male adult reproductive tract of the butterfly, Euptoieta hegesia. Testis, vas deferens, vesicula seminalis and ductus ejaculatorius were studied by transmission electron microscopy. In the testis, both sperm types are organized into cysts; apyrene sperm are devoid of extracellular structures while eupyrene ones have lacinate and reticular appendages. In the testis basal region, both sperm pass through an epithelial barrier and lose their cystic envelope. The eupyrene morphological and organizational modifications are more drastic than the apyrene ones. From the vas deferens to the ductus ejaculatorius, apyrene sperm are dispersed in the lumen and acquire several concentric layers that are formed by the folding of their abundant cell membrane. The apyrene distribution observed here suggests that their functions include eupyrene transportation. Eupyrene sperm, however, remain aggregated along the tract. In the vas deferens, they are covered by a filamentous material that develops into a homogeneous matrix surrounding the spermatozoa coat in the vesicula seminalis and the ductus ejaculatorius. Eupyrene sperm undergo complex morphological changes that include the loss of lacinate appendages and the formation of a dense and heterogeneous extracellular coat. The formation of the matrix and the coat in eupyrene extratesticular sperm is related to the loss of lacinate appendages. These changes are in general extracellular and are probably important for sperm maturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号