首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.

Background  

The soil-borne fungal pathogen Verticillium dahliae Kleb causes Verticillium wilt in a wide range of crops including cotton (Gossypium hirsutum). To date, most upland cotton varieties are susceptible to V. dahliae and the breeding for cotton varieties with the resistance to Verticillium wilt has not been successful.  相似文献   

3.
Verticillium wilt is a disastrous disease in cotton-growing regions in China. As a common management method, cotton rotation with cereal crops is used to minimize the loss caused by Verticillium dahliae. However, the correlation between soil microbiome and the control of Verticillium wilt under a crop rotation system is unclear. Therefore, three cropping systems (fallow, cotton continuous cropping, and cotton–maize rotation) were designed and applied for three generations under greenhouse conditions to investigate the different responses of the soil microbial community. The soil used in this study was taken from a long-term cotton continuous cropping field and inoculated with V. dahliae before use. Our results showed that the diversity of the soil bacterial community was increased under cotton–maize rotation, while the diversity of the fungal community was obviously decreased. Meanwhile, the structure and composition of the bacterial communities were similar even under the different cropping systems, but they differed in the soil fungal communities. Through microbial network interaction analysis, we found that Verticillium interacted with 17 bacterial genera, among which Terrabacter had the highest correlation with Verticillium. Furthermore, eight fungal and eight bacterial species were significantly correlated with V. dahliae. Collectively, this work aimed to study the interactions among V. dahliae, the soil microbiome, and plant hosts, and elucidate the relationship between crop rotation and soil microbiome, providing a new theoretical basis to screen the biological agents that may contribute to Verticillium wilt control.  相似文献   

4.
5.
Two isolates (CVd‐WHw and CVn‐WHg) recovered from Verticillium‐wilt‐symptomatic cotton grown in Hubei Province of China were identified based on their morphology, growth characteristics in culture, specific amplification and identification of internal transcribed spacer (ITS) rDNA sequence. According to the morphological characteristics, specific PCR amplification and ITS sequences, CVd‐WHw was identified as V. dahliae and CVn‐WHg as Gibellulopsis nigrescens. In bioassays, the two isolates had significantly lower pathogenicity to cotton plant than V. dahliae isolate CVd‐AYb. Cotton pre‐inoculated with isolate CVn‐WHg or CVd‐WHw exhibited reduced disease indices of Verticillium wilt compared with those inoculated with CVd‐AYb alone. Cotton co‐inoculated with CVn‐WHg or CVd‐WHw and CVd‐AYb provided increased protection from subsequent CVd‐AYb inoculation. These results suggest that the two isolates have the potential to be developed as biocontrol agents for the control of Verticillium wilt in cotton. To our knowledge, this is the first report of a cross‐protection phenomenon using Gibellulopsis nigrescens against Verticillium wilt caused by V. dahliae on cotton.  相似文献   

6.
  • Verticillium wilt, an infection caused by the soilborne fungus Verticillium dahliae, is one of the most serious diseases in cotton. No effective control method against V. dahliae has been established, and the infection mechanism of V. dahliae in upland cotton remains unknown.
  • GFP‐tagged V. dahliae isolates with different pathogenic abilities were used to analyse the colonisation and infection of V. dahliae in the roots and leaves of different upland cotton cultivars, the relationships among infection processes, the immune responses and the resistance ability of different cultivars against V. dahliae.
  • Here, we report a new infection model for V. dahliae in upland cotton plants. V. dahliae can colonise and infect any organ of upland cotton plants and then spread to the entire plant from the infected organ through the surface and interior of the organ.
  • Vascular tissue was found to not be the sole transmission route of V. dahliae in cotton plants. In addition, the rate of infection of a V. dahliae isolate with strong pathogenicity was notably faster than that of an isolate with weak pathogenicity. The resistance of upland cotton to Verticillium wilt was related to the degree of the immune response induced in plants infected with V. dahliae. These results provide a theoretical basis for studying the mechanism underlying the interaction between V. dahliae and upland cotton. These results provide a theoretical basis for studying the mechanism underlying the interaction between V. dahliae and upland cotton.
  相似文献   

7.
黄萎病不同发生程度棉田中土壤微生物多样性   总被引:6,自引:1,他引:5  
刘海洋  姚举  张仁福  王伟  余璇  王琦 《生态学报》2018,38(5):1619-1629
作物根际土壤微生物群落对土壤生态及作物健康至关重要。以棉花黄萎病不同发生程度棉田的土壤为研究对象,采用理化分析、微生物纯培养及高通量测序技术对土壤理化性质及微生物数量、细菌丰度多样性进行综合分析。结果表明:在纯培养条件下,大丽轮枝菌无菌发酵滤液对细菌生长有明显的抑制作用;棉田接种大丽轮枝菌对土壤中细菌、真菌、放线菌的数量及细菌菌群丰度多样性未产生明显影响,不同采样时间的土壤中细菌菌群结构差异更大。土壤中大丽轮枝菌微菌核数量与棉花黄萎病的发生程度呈显著正相关。土壤肥力对土壤中微生物数量起主导作用,而水稻-棉花轮作能够使棉田有效降盐、减病、改善土壤肥力。通过生物防治、作物轮作、深翻等调控措施增加土壤中有益菌群数量、改善土壤生态、降低棉田土壤中大丽轮枝菌菌源数量是减轻棉花黄萎病危害的基础。  相似文献   

8.
[目的] 研究黄萎病抗性棉(海 7124)根际土壤中酵母菌株对棉花黄萎病病原真菌大丽轮枝菌和全齿复活线虫的拮抗效果,为生物防治棉花黄萎病和全齿复活线虫提供理论依据。[方法] 通过镜检、糖发酵实验、碳源同化实验、26S rRNA测序对菌株的形态、生理生化特征及其系统发育关系进行鉴定,并利用七叶苷筛选、刚果红染色、平皿对峙实验、盆栽实验、平板生测实验测试其产酶活性以及抑制大丽轮枝菌和杀线虫活性。[结果] 从大批黄萎病抗性棉(海 7124)根际土壤中筛选出编号为YIN9的酵母菌菌株,分类鉴定结果表明:YIN9菌株属于假丝酵母属Candida。平皿对峙实验结果表明:菌株YIN9对大丽轮枝菌的抑菌率达59%;将菌株YIN9的无菌发酵滤液与大丽轮枝菌孢子共培养12 h后镜检发现,用菌株YIN9处理的实验组,大部分棉花黄萎病病菌孢子不能正常萌发。盆栽实验结果表明:菌株YIN9对棉花黄萎病的平均防治效果为60.02%,可以显著降低感病棉棉花黄萎病的发病率和病情指数。此外,与从黄萎病抗性棉根际土壤中筛选获得的其他酵母菌株相比,菌株YIN9具备较高的杀线虫活性:菌株作用全齿复活线虫48 和60 h后,线虫死亡率分别为90%和100%。将菌株YIN9发酵液煮沸后,其抑制大丽轮枝菌和杀线虫活性均急剧下降,进一步测试发现,该菌株拥有较高的蛋白酶和纤维素酶活性。[结论] YIN9中的生防因子可能是热不稳定性物质,具备较高的杀线虫活性,可以显著提高感病棉对黄萎病的抗性。  相似文献   

9.
10.
Verticillium wilt is a plant vascular disease caused by the soilborne fungus Verticillium dahliae that severely limits cotton production. In a previous study, we screened Bacillus cereus YUPP-10, an efficient antagonistic bacterium, to uncover mechanisms for controlling verticillium wilt. Here, we report a novel antimicrobial cyclodextrin glycosyltransferase (CGTase) from YUPP-10. Compared to other CGTases, six different conserved domains were identified, and six mutants were constructed by gene splicing with overlap extension PCR. Functional analysis showed that domain D was important for hydrolysis activity and domains A1 and C were important for inducing disease resistance. Direct effects of recombinant CGTase on V. dahliae included reduced mycelial growth, spore germination, spore production, and microsclerotia germination. In addition, CGTase also elicited cotton's innate defence reactions. Transgenic Arabidopsis thaliana lines that overexpress CGTase showed higher resistance to verticillium wilt. Transgenic CGTase A. thaliana plants grew faster and resisted disease better. CGTase overexpression enabled a burst of reactive oxygen species production and activated pathogenesis-related gene expression, indicating that the transgenic cotton was better prepared to protect itself from infection. Our work revealed that CGTase could inhibit the growth of V. dahliae, activate innate immunity, and play a major role in the biocontrol of fungal pathogens.  相似文献   

11.
12.
13.
The only characteristic symptom produced by Verticillium albo-atrum and V. dahliae in infected potato plants is unilateral chlorosis and necrosis: this was not shown until the approach of host maturity, and was distinguishable from symptoms of natural senescence only in its slightly earlier expression. Of six species of Verticillium tested against potato (King Edward), V. albo-atrum, V. dahliae, V. nigrescens and V. nubilum were pathogenic (all produced ‘wilt’ symptoms and relative virulence was in that decreasing order) but V. tricorpus and V. lateritium did not induce disease. Isolates of V. albo-atrum and V. dahliae, obtained from a number of other host plants, were also pathogenic to potato. Possible reasons are given for the fewness of records of ‘Early dying’ disease (Verticillium wilt) of potatoes in the field.  相似文献   

14.
15.
Zhang Y  Wang X  Yang S  Chi J  Zhang G  Ma Z 《Plant cell reports》2011,30(11):2085-2096
Verticillium wilt causes enormous loss to yield or quality in many crops. In an effort to help controlling this disease through genetic engineering, we first cloned and characterized a Verticillium wilt resistance gene (GbVe) from cotton (Gossypium barbadense) and analyzed its function in Arabidopsis thaliana. Its nucleotide sequence is 3,819 bp long, with an open reading frame of 3,387 bp, and encoding an 1,128-aa protein precursor. Sequence analysis shows that GbVe produces a leucine-rich repeat receptor-like protein. It shares identities of 55.9% and 57.4% with tomato Ve1 and Ve2, respectively. Quantitative real-time PCR indicated that the Ve gene expression pattern was different between the resistant and susceptible cultivars. In the resistant Pima90–53, GbVe was quickly induced and reached to a peak at 2 h after inoculation, two-fold higher than that of control. We localized the GbVe–GFP fusion protein to the cytomembrane in onion epidermal cells. By inserting GbVe into Arabidopsis via Agrobacterium-mediated transformation, T3 transgenic lines were obtained. Compared with the wild-type control, GbVe-overexpressing plants had greater levels of resistance to V. dahliae. This suggests that GbVe is a useful gene for improving the plant resistance against fungal diseases.  相似文献   

16.
Chitin‐binding lysin motif (LysM) effectors contribute to the virulence of various plant‐pathogenic fungi that are causal agents of foliar diseases. Here, we report the LysM effectors of the soil‐borne fungal vascular wilt pathogen Verticillium dahliae. Comparative genomics revealed three core LysM effectors that are conserved in a collection of V. dahliae strains. Remarkably, and in contrast with the previously studied LysM effectors of other plant pathogens, no expression of core LysM effectors was monitored in planta in a taxonomically diverse panel of host plants. Moreover, targeted deletion of the individual LysM effector genes in V. dahliae strain JR2 did not compromise virulence in infections on Arabidopsis, tomato or Nicotiana benthamiana. Interestingly, an additional lineage‐specific LysM effector is encoded in the genome of V. dahliae strain VdLs17, but not in any other V. dahliae strain sequenced to date. Remarkably, this lineage‐specific effector is expressed in planta and contributes to the virulence of V. dahliae strain VdLs17 on tomato, but not on Arabidopsis or N. benthamiana. Functional analysis revealed that this LysM effector binds chitin, is able to suppress chitin‐induced immune responses and protects fungal hyphae against hydrolysis by plant hydrolytic enzymes. Thus, in contrast with the core LysM effectors of V. dahliae, this lineage‐specific LysM effector of strain VdLs17 contributes to virulence in planta.  相似文献   

17.
Verticillium wilt caused by soilborne fungus Verticillium dahliae could significantly reduce cotton yield. Here, we cloned a tomato Ve homologous gene, Gbve1, from an island cotton cultivar that is resistant to Verticillium wilt. We found that the Gbve1 gene was induced by V. dahliae and by phytohormones salicylic acid, jasmonic acid, and ethylene, but not by abscisic acid. The induction of Gbve1 in resistant cotton was quicker and stronger than in Verticillium-susceptible upland cotton following V. dahliae inoculation. Gbve1 promoter-driving GUS activity was found exclusively in the vascular bundles of roots and stems of transgenic Arabidopsis. Virus-induced silencing of endogenous genes in resistant cotton via targeting a fragment of the Gbve1 gene compromised cotton resistance to V. dahliae. Furthermore, we transformed the Gbve1 gene into Arabidopsis and upland cotton through Agrobacterium-mediated transformation. Overexpression of the Gbve1 gene endowed transgenic Arabidopsis and upland cotton with resistance to high aggressive defoliating and non-defoliating isolates of V. dahliae. And HR-mimic cell death was observed in the transgenic Arabidopsis. Our results demonstrate that the Gbve1 gene is responsible for resistance to V. dahliae in island cotton and can be used for breeding cotton varieties that are resistant to Verticillium wilt.  相似文献   

18.
Glycoside hydrolase (GH) family members act as virulence factors and regulate plant immune responses during pathogen infection. Here, we characterized the GH28 family member endopolygalacturonase VdEPG1 in Verticillium dahliae. VdEPG1 acts as a virulence factor during V. dahliae infection. The expression level of VdEPG1 was greatly increased in V. dahliae inoculated on cotton roots. VdEPG1 suppressed VdNLP1-mediated cell death by modulating pathogenesis-related genes in Nicotiana benthamiana. Knocking out VdEPG1 led to a significant decrease in the pathogenicity of V. dahliae in cotton. The deletion strains were more susceptible to osmotic stress and the ability of V. dahliae to utilize carbon sources was deficient. In addition, the deletion strains lost the ability to penetrate cellophane membrane, with mycelia showing a disordered arrangement on the membrane, and spore development was affected. A jasmonic acid (JA) pathway-related gene, GhOPR9, was identified as interacting with VdEPG1 in the yeast two-hybrid system. The interaction was further confirmed by bimolecular fluorescence complementation and luciferase complementation imaging assays in N. benthamiana leaves. GhOPR9 plays a positive role in the resistance of cotton to V. dahliae by regulating JA biosynthesis. These results indicate that VdEPG1 may be able to regulate host immune responses as a virulence factor through modulating the GhOPR9-mediated JA biosynthesis.  相似文献   

19.
20.
Classification of isolates into vegetative compatibility groups (VCGs) using nitrate‐non‐utilizing (nit) mutants has been widely used for the characterization of Verticillium dahliae populations. However, certain methodological limitations prevent its application on a large scale. Furthermore, systematic investigations into the genetics underlying complementation tests between nit mutants of fungal isolates (i.e. heterokaryon formation) are lacking for Verticillium species. In this work, a diverse collection of 27 V. dahliae isolates – including representatives of all VCGs, both mating types, and heterokaryon self‐incompatible isolates – was employed for the development and optimization of (i) a protocol for the rapid generation of nit mutants of V. dahliae isolates using UV‐irradiation and (ii) a reproducible high‐throughput procedure for complementation tests between nit mutants in liquid cultures using 96‐well microplates. The genetic analysis of selected heterokaryons demonstrated that the frequently encountered ‘weak’ cross‐reactions between VCGs and their subgroups can be actually heterokaryotic, implying the absence of strict genetic barriers between VCGs. In conclusion, we provide in this work an optimized method for the high‐throughput VCG assignment of V. dahliae populations and a genetic analysis of heterokaryons that may have serious implications for the interpretation of VCG classification data. These advancements in the available methodology and the genetic background of vegetative compatibility grouping may contribute to a better understanding of the population biology of V. dahliae and possibly other mitosporic fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号