首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The biochemical basis for the functional heterogeneity of human blood platelets was investigated in terms of protein phosphorylation, cytoplasmic calcium ([Ca2+]i), the ratio of 46 and 50 kDa vasodilator-stimulated protein (VASP), and GTP-binding proteins (G-proteins). Platelets were fractionated by density. Comparing resting low-density platelets (LDP) to high-density platelets (HDP) revealed higher phosphorylation of proteins in the 47, 31, and 24 kDa ranges. A higher phosphorylation of the 20 kDa protein in LDP compared to HDP was related to an enhanced [Ca2+]i, an increased ADP-ribosylation of the inhibitory G-protein (G(i alpha1-3)) and rhoA, and a decreased ADP-ribosylation of the stimulatory G-protein (G(s alpha)). The differences in the ribosylation patterns of the subpopulations were not influenced by thrombin stimulation or exposure to prostaglandin E1 (PGE1). An 18 kDa phosphoprotein was more highly phosphorylated in resting HDP than in LDP. Thrombin exposure caused dephosphorylation of the 18 kDa phosphoprotein in the HDP, but generally increased phosphorylation of both HDP and LDP in the 47, 31, 24, and 20 kDa bands. Preincubation with prostaglandin E1 or sodium nitroprusside diminished the subsequent thrombin-induced increase in phosphorylation, particularly in HDP. In unstimulated HDP, the 50 kDa VASP phospho form was enhanced, whereas in unstimulated LDP the 46 kDa VASP dephospho form was increased. Our findings suggest that the functional heterogeneity of platelets is partly derived from differences in signal transduction mechanisms reflected in varying phosphoprotein patterns and G-protein properties of platelet stimulatory and inhibitory pathways.  相似文献   

2.
In enamel fluorosis model rats treated with sodium fluoride, secretory ameloblasts of incisor tooth germs exhibited disruption of intracellular trafficking. We examined whether heterotrimeric G proteins participated in the disruption of vesicular trafficking of the secretory ameloblast exposed to fluoride, using immunoblotting and pertussis toxin (IAP)-induced adenosyl diphosphate (ADP)-ribosylation for membrane fractions of the cell. Immunoblotting of crude membranes, post supernatants of the ameloblast, with anti-G(alpha i3/alpha o) and anti-G(alpha s) antibodies showed that Gi3 or Go proteins existed in the secretory ameloblast, but Gs protein did not. Immunoblotting of the subcellular membrane fractions indicated that the Gi3 or Go proteins were located in the Golgi membrane, but were not in the rough endoplasmic reticulum (rER) membrane. Autoradiograph of IAP-induced ADP-ribosylation, however, showed the existence of IAP-sensitive G proteins both in rER and Golgi membranes. Fluoride treatment decreased the G proteins bound to both membranes. These findings indicate that different G proteins, both of which are IAP-sensitive, are present in the rER and Golgi apparatus, and suggest that these G proteins participate in the disturbance of intracellular transport of the secretory ameloblast exposed to fluoride.  相似文献   

3.
Bombesin stimulation of inositol 1,4,5-trisphosphate (Ins P3) formation in rat sonicated pancreatic acinar cells was inhibited by an antibody directed against the pertussis toxin (PTX)-sensitive GTP-binding G alpha i3 protein but not by an anti-G alpha q-11 antibody. After solubilization and gel filtration, [125I-Tyr4]bombesin binding sites were recovered in a peak of protein of 67 approximately 90 kDa with a maximal enrichment corresponding to a molecular mass of 83-kDa. Results obtained from the non-hydrolysable GTP analog guanosine-5'-[gamma-thio]triphosphate (GTP gamma S) binding, PTX-stimulated ADP-ribosylation and immunoblotting showed that the 83-kDa fraction contained the G alpha i3 protein but not the G alpha q-11 protein. Furthermore, GTP gamma S increased the bombesin binding dissociation constant (KD) from 0.32 to 0.60 nM, while the anti-G alpha i3 antibody decreased the maximal binding capacity (Bmax) from 50 to 25 fmol/mg protein without affecting the KD. Mixing solubilized bombesin binding sites with a phospholipase C (PLC) preparation from rat pancreas reconstituted a bombesin-stimulated PLC activity which was markedly inhibited by the anti-G alpha i3 antibody but unaffected by the anti-G alpha q-11 antibody. In addition, this stimulation was inhibited by an anti-PLC beta 1 antibody. This result supports the involvement of the PLC beta 1 isoform in bombesin receptor activation.  相似文献   

4.
The effect of dexamethasone administration in vivo on the steady-state levels of G-protein subunits in liver of neonatal rabbits was investigated using specific antibodies to each subunit as well as bacterial toxin-mediated ADP-ribosylation assays. Parallel measurements were also made of the activity of adenylyl cyclase, as influenced by a variety of activators. Dexamethasone administration modulated the levels of G-protein subunits in liver in an age-dependent and subunit-specific manner but not in 24-h-old newborns. The inductive effect of dexamethasone was observed in animals older than 24 h, the greatest effect being on 2- to 3-day-old neonates. In 48-h-old animals the alpha-subunits Gs alpha-1, Gs alpha-2, Gi alpha and the beta-subunit G beta increased 2.0-, 2.1-, 4.3- and 2.8-fold, respectively, compared to the control. The increases were much less for older animals. Dexamethasone treatment also modulated effector-mediated stimulation of adenylyl cyclase activity in vitro and mimicked its effects on G-protein levels; the greatest increase (approximately 2-fold) in the activation of adenylyl cyclase occurred in membranes isolated from 2- to 3-day-old animals. In older animals there was either no effect of dexamethasone or a decrease in activity. The degree of change in enzyme activity paralleled the change in the amount of Gs alpha rather than of Gi alpha or G beta. These results suggest development-dependent regulation of hepatic G-proteins by glucocorticoids.  相似文献   

5.
In most studies, coupling of the beta2-adrenoceptor (beta2AR) to the stimulatory, heterotrimeric GTP-binding protein of adenylyl cyclase the (Gs) is studied indirectly by measuring adenylyl cyclase activation. The aim of this study was to establish a model system in which beta2AR-Gs interactions can be studied directly at the level of the G-protein. We expressed the beta2AR alone, in combination with the alpha-subunit of Gs (G(s alpha)), and as fusion protein with G(s alpha) (beta2AR-G(s alpha)) in Sf9 insect cells. The beta2AR expressed alone couples poorly to the endogenous G(s alpha)-like G-protein of Sf9 cells since no high-affinity agonist binding could be detected, and the effects of agonist and inverse agonist on adenylyl cyclase, high-affinity GTPase and guanosine 5'-O-(3-thiotriphosphate) (GTP[S]) binding were small. Beta2AR-G(s alpha) reconstituted high-affinity agonist binding and regulated adenylyl cyclase more effectively than the beta2AR co-expressed with a large excess of G(s alpha). In membranes expressing beta2AR-G(s alpha), highly effective agonist- and inverse agonist regulation of high-affinity GTP hydrolysis and GTP[S] binding was observed. In contrast, agonist and inverse agonist regulation of GTP hydrolysis and GTP[S] binding in membranes expressing beta2AR and G(s alpha) as separate proteins was difficult to detect. Our data show that the beta2AR interacts with G(s alpha) more efficiently when expressed as a fusion protein than when expressed with an excess of non-fused G(s alpha). The beta2AR-G(s alpha) fusion protein provides a very sensitive model system to study the regulation of Gs function by beta2AR agonists and inverse agonists directly at the level of the G-protein.  相似文献   

6.
The binding of heterotrimeric GTP-binding proteins (G-proteins) to serpentine receptors involves several independent contacts. We have deduced the points of interaction between mutant bovine rhodopsins and alphat-(340-350), a peptide corresponding to the C terminus of the alpha subunit (alphat) of bovine retinal G-protein, transducin. Direct binding of alphat-(340-350) to rhodopsin stabilizes the activated metarhodopsin II state (M II), consequently uncoupling the rhodopsin-transducin interaction. This peptide action requires two segments on the cytoplasmic domain of rhodopsin: the Tyr136-Val137-Val138-Val139 sequence on the C-D loop and the Glu247-Lys248-Glu249-Val250-Thr251 sequence on the E-F loop. We propose that a tertiary interaction of these two loop regions forms a pocket for binding the alphat C terminus of the transducin during light transduction in vivo. In most G-proteins, the C termini of alpha subunits are important for interaction with receptors, and, in several serpentine receptors, regions similar to those in rhodopsin are essential for G-protein activation, indicating that the interaction described here may be a generally applicable mode of G-protein binding in signal transduction.  相似文献   

7.
Our previous studies on alpha1-adrenoceptor signaling suggested that G alpha(h) family is a signal mediator in different species. To elucidate the species-specificity of G alpha(h) family in molecular mass, we used the solubilized membranes from mouse heart and the ternary complex preparations containing alpha1-agonist/receptor/G-protein. Binding of [35S]GTPgammaS and the intensity of the [alpha-32P]GTP photoaffinity labeled protein resulting from activation of the alpha1-adrenoceptor were significantly attenuated by the antagonist, phentolamine. The molecular mass of the specific GTP-binding protein was approximately 72-kDa; homologous with G alpha(h) (transglutaminase II) family. Furthermore, immunological cross-reactivity of ternary complex from mouse heart and purified G alpha(h) from rat, guinea pig, and bovine using anti-G alpha(h7) antibody showed that their molecular masses were distinctly different and approximately 72-kDa G alpha(h) from mouse heart was the lowest molecular mass. Consistent with these observations, in co-immunoprecipitation and co-immunoadsorption of the alpha1-adrenoceptor in the ternary complex preparation by anti-G alpha(h7) antibody, the G alpha(h) family protein tightly coupled to alpha1-adrenoceptor. These results demonstrate the species-specificity of G alpha(h) family in molecular mass, especially the lowest molecular mass in mouse.  相似文献   

8.
Guanosine triphosphate (GTP)-binding protein subunits were studied by immunoblot analysis in particulate fractions from mature adipocytes, confluent preadipocytes, and in vitro-differentiated preadipocytes. Mature adipocytes express Gi alpha 1, Gi alpha 2, Gi alpha 3, Go alpha, Gq/11 alpha, G13 alpha and the long and short isoforms of Gs alpha, but no Gz alpha or G12 alpha. Confluent and differentiated preadipocytes differ in having a higher content of Gi alpha 3 and G13 alpha and expressing G12 alpha. In contrast, they lack Gi alpha 1, Go alpha, and the short from of Gs alpha. The G-protein alpha subunits Gi alpha 2, Gs alpha (long isoform), and Gq/11 alpha, and G-protein beta subunits were unchanged throughout the differentiation process. By immunoblot and indirect immunofluorescence studies on confluent preadipocytes, we showed that Gi alpha 2 is present in the endoplasmic reticulum and marginally in plasma membranes and nuclei. In contrast, antibodies to Gi alpha 3 stained the Golgi apparatus. The role of G proteins on preadipocyte proliferation was studied using Bordetella pertussis toxin. Exposure of growing cells to this toxin in the presence of fetal calf serum (FCS) decreased [3H]thymidine incorporation by 40% and induced a 40% increase in doubling time. This resulted in a 30% decrease in cell number per well after 48 h. These effects of B. pertussis toxin did not appear to be related to an increase in cyclic adenosine monophosphate (cAMP) concentration, because forskolin had the opposite effect on cell proliferation. Finally, B. pertussis toxin prevented serum-induced Raf1 association to the plasma membrane, possibly by disrupting FCS-induced G beta gamma effects on the Ras/Raf1 pathway. Since Go alpha and Gi alpha 1 subunits were absent in preadipocytes, we conclude that Gi2 and/or Gi3 proteins transduce some mitogenic signals of FCS through release of G beta gamma subunits. The subcellular distribution of Gi alpha 2 and Gi alpha 3 suggests that part of their functions result from interactions with components other than the plasma membrane.  相似文献   

9.
Heterotrimeric GTP-binding proteins (G-proteins) serve many different signal transduction pathways. Phosducin, a 28-kDa phosphoprotein, is expressed in a variety of mammalian cell types and blocks activation of several classes of G-proteins. Phosphorylation of phosducin by cyclic AMP-dependent protein kinase prevents phosducin-mediated inhibition of G-protein GTPase activity (Bauer, P. H., Müller, S., Puzicha, M., Pippig, S., Obermaier, B., Helmreich, E. J. M., and Lohse, M. J. (1992) Nature 358, 73-76). In retinal rods, phosducin inhibits transducin (Gt) activation by binding its beta gamma subunits. While rod phosducin is phosphorylated in the dark and dephosphorylated after illumination (Lee, R.-H., Brown, B. M., and Lolley, R. N. (1984) Biochemistry 23, 1972-1977), the significance of these reactions is still unclear. The data presented here permit a more precise characterization of phosducin function and the consequences of its phosphorylation. Dephosphophosducin blocked binding of the Gt alpha 1 subunit to activated rhodopsin in the presence of stoichiometric amounts of Gt beta gamma, whereas phosphophosducin did not. Surprisingly, the binding affinity of phosphophosducin for Gt beta gamma was not significantly reduced compared with the binding affinity of dephosphophosducin. However, the association of phosducin with Gt beta gamma in a size exclusion column matrix was dependent on the phosphorylation state of phosducin. Moreover, the ability of phosducin to compete with Gt alpha for binding to Gt beta gamma was also dependent on the phosphorylation state of phosducin. No interaction was found between phosducin and Gt alpha. These data indicate that phosducin decreases rod responsiveness by binding to the beta gamma subunits of Gt and preventing their interaction with Gt alpha, thereby inhibiting Gt alpha activation by the activated receptor. Moreover, phosphorylation of phosducin blocks its ability to compete with Gt alpha for binding to Gt beta gamma.  相似文献   

10.
The Hrp (type III protein secretion) system is essential for the plant parasitic ability of Pseudomonas syringae and most Gram-negative bacterial plant pathogens. AvrB and AvrPto are two P. syringae proteins that have biological activity when produced via heterologous gene expression inside plant cells or when produced by Hrp+ bacteria. Avr-like proteins, presumably injected by the Hrp system on bacterial contact with plant cells, appear to underlie pathogenic interactions, but none has been observed outside of the bacterial cytoplasm, and identifying novel genes encoding them is tedious and uncertain without a phenotype in culture. Here we describe a cloned Hrp secretion system that functions heterologously in Escherichia coli to secrete AvrB and AvrPto in culture and to promote AvrB and AvrPto biological activity in inoculated plants. The hrp gene cluster, carried on cosmid pCPP2156, was cloned from Erwinia chrysanthemi, a pathogen that differs from P. syringae in being host promiscuous. E. coli DH5alpha carrying pCPP2156, but not related Hrp-deficient cosmids, elicited a hypersensitive response in Nicotiana clevelandii only when also expressing avrB in trans. The use of pAVRB-FLAG2 and pAVRPTO-FLAG, which produce Avr proteins with a C-terminal FLAG-epitope fusion, enabled immunoblot detection of the secretion of these proteins to E. coli(pCPP2156) culture media. Secretion was Hrp dependent, occurred without leakage of a cytoplasmic marker, and did not occur with E. coli(pHIR11), which encodes a functional P. syringae Hrp system. E. coli(pCPP2156) will promote investigation of Avr protein secretion and systematic prospecting for the effector proteins underlying bacterial plant pathogenicity.  相似文献   

11.
Heterotrimeric GTP-binding protein (G-protein)-coupled receptors are able to induce a variety of responses including cell proliferation, differentiation, and activation of several intracellular kinase cascades. Prominent among these kinases are the activation of mitogen-activated protein (MAP) kinase, including the extracellular signal-regulated kinases (ERKs), ERK1 and ERK2 (p44mapk and p42mapk, respectively); stress-activated protein kinases (SAPKs/JNKs); and p38 kinase. These receptors signal through G-proteins. Recent data have shown that the activation of mitogen-activated protein/ERK kinase induced by G-protein-coupled receptors is mediated by both Galpha and Gbetagamma subunits involving a common signaling pathway with receptor-tyrosine-kinases. Gbetagamma-mediated mitogen-activated protein kinase activation is mediated by activation of phosphoinositide 3-kinase, followed by a tyrosine phosphorylation event, and proceeds in a sequence of events that involve functional association among the adaptor proteins Shc, Grb2, and Sos. SAPKs/JNKs and p38 are able to be activated by Gbetagamma proteins in a pathway involving Rho family proteins including RhoA, Rac1, and Cdc42.  相似文献   

12.
We have previously shown that S-fimbriated Escherichia coli binds brain microvascular endothelial cells (BMEC) via a lectin-like activity of SfaS adhesin specific for NeuAc alpha2,3-galactose; however, BMEC molecules bearing these epitopes have not been identified. In the present study, we showed that the expression of S fimbriae conferred a three-fold increase in adhesion of E. coli to cow, human, and rat BMEC but did not enhance E. coli adhesion to systemic vascular endothelial cells such as human umbilical vein endothelial cells and human aortic arterial endothelial cells. Two BMEC-binding molecules for S fimbriae were identified as 65 (major)- and 130 (minor)-kDa sialoglycoproteins by S fimbria immunoblotting and were purified from bovine BMEC by wheat germ agglutinin and Maackia amurensis lectin (specific to NeuAc alpha2,3-galactose) affinity chromatography. The 65-kDa BMEC glycoprotein showed effective inhibition of S fimbria-mediated binding of E. coli to BMEC. Polyclonal antibodies raised against the mixture of 65- and 130-kDa proteins reacted to 65-kDa protein present only on BMEC, not on systemic vascular endothelial cells. Immunoprecipitation of biotinylated BMEC membrane proteins and immunocytochemistry studies of BMEC with anti-S fimbria-binding protein antibodies revealed that the 65-kDa protein is a surface protein. The N-terminal amino acid sequence of 65- and 130-kDa proteins showed no significant sequence homology with any other known proteins. These findings suggest that 65- and 130-kDa proteins represent novel sialoglycoproteins involved in the binding of S-fimbriated E. coli to BMEC.  相似文献   

13.
The small GTP-binding protein Ras and heterotrimeric G-proteins are key regulators of growth and development in eukaryotic cells. In mammalian cells, Ras functions to regulate the mitogen-activated protein kinase pathway in response to growth factors, whereas many heterotrimeric GTP-binding protein alpha-subunits modulate cAMP levels through adenylyl cyclase as a consequence of hormonal action. In contrast, in the yeast Saccharomyces cerevisiae, it is the Ras1 and Ras2 proteins that regulate adenylyl cyclase. Of the two yeast G-protein alpha-subunits (GPA1 and GPA2), only GPA1 has been well studied and shown to negatively regulate the mitogen-activated protein kinase pathway upon pheromone stimulation. In this report, we show that deletion of the GPA2 gene encoding the other yeast G-protein alpha-subunit leads to a defect in pseudohyphal development. Also, the GPA2 gene is indispensable for normal growth in the absence of Ras2p. Both of these phenotypes can be rescued by deletion of the PDE2 gene product, which inactivates cAMP by cleavage, suggesting that these phenotypes can be attributed to low levels of intracellular cAMP. In support of this notion, addition of exogenous cAMP to the growth media was also sufficient to rescue the phenotype of a GPA2 deletion strain. Taken together, our results directly demonstrate that a G-protein alpha-subunit can regulate the growth and pseudohyphal development of S. cerevisiae via a cAMP-dependent mechanism. Heterologous expression of mammalian G-protein alpha-subunits in these yeast GPA2 deletion strains could provide a valuable tool for the mutational analysis of mammalian G-protein function in an in vivo null setting.  相似文献   

14.
The regulators of G-protein signaling (RGS) family members contain a conserved region, the RGS domain, and are GTPase-activating proteins for many members of G-protein alpha-subunits. We report here that the core domain of RGS16 is sufficient for in vitro biochemical functions as assayed by its G-protein binding affinity and its ability to stimulate GTP hydrolysis by G alpha(o) protein. RGS16 also requires, in addition to the RGS domain, the divergent N-terminus for its biological function in the attenuation of pheromone signaling in yeast, whereas its C-terminus region is dispensable. Together with other evidence, these data support the notion that RGS proteins interact with other cellular factors and may serve to link specific G-proteins to different downstream effectors in G-protein-mediated signaling pathways.  相似文献   

15.
AlF4- has long been known to associate with and activate the GDP-bound alpha subunits of heterotrimeric G-proteins. Recently the small guanine nucleotide binding protein Ras has also been shown to associate with AlF4- in the presence of stoichiometric amounts of its GTPase activating protein (GAP). Here we present the isolation of a stable Ras x GDP- x AlF4- x GAP ternary complex by gel filtration. In addition, we generalise the association of AlF4- with the small GTP-binding proteins by demonstrating ternary complex formation for the Cdc42, Rap and Ran proteins in the presence of their respective GAP proteins.  相似文献   

16.
NKR-P1 molecules constitute a family of type II membrane receptors in natural killer (NK) cells that preferentially activate NK cell killing and release of interferon-gamma from these cells. Here, we demonstrate that anti-NKR-P1 enhances GTP binding in rat interleukin-2-activated NK cell membranes; GTP binding to Gi3alpha, Gsalpha, Gq,11alpha, and Gzalpha increased noticeably in these cell membranes after treatment with anti-NKR-P1. Western blot analysis of membrane proteins prepared from interleukin-2-activated NK cells reveals the presence of Gi1,2alpha, Gi3alpha, Goalpha, Gsalpha, Gq, 11alpha, Gzalpha, and G12alpha, but not G13alpha. However, only alphai3, alphas, alphaq,11, and alphaz, but not alphai1,2, alphao, alpha12, or alpha13 subunits when immunoprecipitated with the appropriate anti-G protein antibodies, are associated with NKR-P1 when immunoblotted with anti-NKR-P1. Reciprocally, NKR-P1 immunoprecipitated with anti-NKR-P1 is associated with alphai3, alphas, alphaq,11, and alphaz immunoblotted with anti-G proteins. These results are the first to demonstrate the physical and functional coupling of NKR-P1 to the heterotrimeric G proteins in NK cells.  相似文献   

17.
We have demonstrated previously that D1 dopamine receptors are coupled to both Gs alpha and Go alpha. We examine here the coupling between human D5 dopamine receptors and G proteins in transfected rat pituitary GH4C1 cells. Similar to D1 receptors, cholera toxin treatment of cells reduced, but did not abolish, D5 agonist high-affinity binding sites, indicating D5 receptors couple to both Gs alpha and cholera toxin-insensitive G proteins. The interaction between D5 receptors and Gs alpha was confirmed by immunoprecipitation studies and by the ability of D5 receptors to stimulate adenylyl cyclase. Unlike D1 receptors, D5 receptors did not display any pertussis toxin-sensitive G-protein coupling to Go alpha or Gi alpha. D5 receptors were also not coupled to Gq alpha and were unable to mediate phosphatidylinositol metabolism. Instead, D5 sites appeared to be coupled to an AIF(-)4-sensitive, N-ethylmaleimide-resistant G protein. Anti-Gz alpha caused immunoprecipitation of 24.2 +/- 5.2% of G protein-associated D5 receptors, indicating coupling between D5 and Gz alpha. The coupling to Gz alpha was specific for D5 receptors, because similar associations were not detected between D1 receptors and Gz alpha.  相似文献   

18.
RGS proteins (regulators of G protein signaling) are GTPase activating proteins (GAPs) for Gi and Gq families of heterotrimeric G proteins but have not been found to interact with Gs alpha. The Gs alpha residue Asp229 has been suggested to be responsible for the inability of RGS proteins to interact with Gs alpha [Natochin, M., and Artemyev, N. O. (1998) J. Biol. Chem. 273, 4300-4303]. To test this hypothesis, we have investigated the possibility of generating an interaction between Gs alpha and RGS proteins by substituting Gs alpha Asp229 with Ser and replacing the potential Gs alpha Asp229 contact residues in RGS16, Glu129 and Asn131, by Ala and Ser, respectively. RGS16 and its mutants failed to interact with Gs alpha. A single mutation of Gs alpha, Asp229Ser, rendered the Gs alpha subunit with the ability to interact with RGS16 and RGS4. Like RGS protein binding to Gi and Gq alpha-subunits, RGS16 preferentially recognized the AlF4--bound conformation of Gs alpha Asp229Ser. In a single-turnover assay, RGS16 maximally stimulated GTPase activity of Gs alpha Asp229Ser by approximately 5-fold with an EC50 value of 7.5 microM. Our findings demonstrate that Asp229 of Gs alpha represents a major barrier for Gs alpha interaction with known RGS proteins.  相似文献   

19.
Clinical receptology encompasses broad areas, including receptor or postreceptor defects due to mutations of receptor or other genes, abnormalities due to receptor antibodies and secondary changes of receptors under various pathological conditions. Recent progress in molecular biology has succeeded in cloning genes of receptors, G-proteins and other cellular proteins that are involved in the signal transduction and clarified their germ-line and somatic mutations. It is of importance that mutations of receptors and G-proteins do not necessarily cause loss of function but sometimes cause gain of function of receptors or G-proteins, thus leading to hyperfunction. Molecular basis that causes either loss or gain of function has been studied but is not completely understood. Some examples of gain of function mutatious of G-protein coupled receptors, tyrosin kinase-type receptors and G alpha protein are shown. Another important aspect in receptor research is that mutation of a single receptor gene sometimes result in different phenotypes and even different modes of inheritance. For example, mutations of rhodopsin (a G-protein coupled receptor) gene cause retinitis pigmentosa of autosomal dominant type and autosomal recessive type and also cause congenital stationary night blindness. Exact mechanisms responsible for such differences are not completely understood. There are polymorphisms in some genes that may be involved in some diseases. An example is a polymorphism in beta 3-adrenergic receptor that is claimed but not clearly demonstrated to be a cause of obesity or type II diabetes. Such polymorphism is possibly a gene in polygenic diseases. Receptology is important for elucidating pathogenesis of complex diseases.  相似文献   

20.
The Escherichia coli translation initiation factor IF2 is a 97 kDa protein which interacts with the initiator fMet-tRNAfMet, GTP and the ribosomal subunits during initiation of protein biosynthesis. For structural and functional investigations of the factor, we have raised and characterised monoclonal antibodies against E. coli IF2. Twelve epitopes have been localised at the surface of the protein molecule by three different methods: Interactions of the monoclonal antibodies with nested deletion mutants of IF2, comparison of the relative location of the epitopes in a competition immunoassay and cross-reactivity analyses of the monoclonal antibodies towards IF2 from Salmonella typhimurium, Klebsiella oxytoca, Enterobacter cloacae, Proteus vulgaris, and Bacillus stearothermophilus. These data are combined with predicted secondary structure and discussed in relation to a six-domain structural model for IF2. The model describes IF2 as a slightly elongated molecule with a structurally compact C-terminal domain, a well-conserved central GTP-binding domain, and a highly charged, solvent exposed N-terminal with protruding alpha-helical structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号