首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We reported here on the synthesis, the crystal structure and the study of the structural changes during the electrochemical cycling of layered LiNi0.1Mn0.1Co0.8O2 positive electrode material. Rietveld refinement analysis shows that this material exhibits almost an ideal α-NaFeO2 structure with practically no lithium-nickel disorder. The SQUID measurements confirm this structural result and evidenced that this material consists of Ni2+, Mn4+ and Co3+ ions.Unlike LiNiO2 and LiCoO2 conventional electrode materials, there was no structural modification upon lithium removal in the whole 0.42 ≤ x ≤1.0 studied composition range. The peaks revealed in the incremental capacity curve were attributed to the successive oxidation of Ni2+ and Co3+ while Mn4+ remains electrochemically inactive.  相似文献   

2.
In this research, we studied the first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Properties, such as valence state of the transition metals and crystallographic features, were analyzed by X-ray absorption spectroscopy and X-ray and neutron diffractions. Especially, two plateaus observed around 3.75 and 4.54 V were investigated by ex situ X-ray absorption spectroscopy. XANES studies showed that the oxidation states of transition metals in Li[Ni1/3Co1/3Mn1/3]O2 are mostly Ni2+, Co3+ and Mn4+. Based on neutron diffraction Rietveld analysis, there is about 6% of all nickel divalent (Ni2+) ions mixed with lithium ions (cation mixing). Meanwhile, it was found that the oxidation reaction of Ni2+/Ni4+ is related to the lower plateau around 3.75 V, but that of Co3+/Co4+ seems to occur entire range of x in Li1−x[Ni1/3Co1/3Mn1/3]O2. Small volume change during cycling was attributed to the opposite variation of lattice parameter “c” and “a” with charging-discharging.  相似文献   

3.
S. Zhang  C. Deng  B.L. Fu  L. Ma 《Powder Technology》2010,198(3):373-400
A carbonate co-precipitation method was employed to prepare spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode material. The precursor, [Ni1/3Co1/3Mn1/3]CO3, was prepared using ammonia as chelating agent under CO2 atmosphere. The spherical Li[Ni1/3Co1/3Mn1/3]O2 was prepared by mixing the precalcined [Ni1/3Co1/3Mn1/3]CO3 with LiOH followed by high temperature calcination. The preparation conditions such as ammonia concentration, co-precipitation temperature, calcination temperature and Li/[Ni1/3Co1/3Mn1/3] ratio were varied to optimize the physical and electrochemical properties of the prepared Li[Ni1/3Co1/3Mn1/3]O2. The structural, morphological, and electrochemical properties of the prepared LiNi1/3Co1/3Mn1/3O2 were characterized by XRD, SEM, and galvanostatic charge-discharge cycling. The optimized material has a spherical particle shape and a well ordered layered structure, and it also has an initial discharge capacity of 162.7 mAh g− 1 in a voltage range of 2.8-4.3 V and a capacity retention of 94.8% after a hundred cycles. The optimized ammonia concentration, co-precipitation temperature, calcination temperature, and Li/[Ni1/3Co1/3Mn1/3] ratio are 0.3 mol L− 1, 60 °C, 850 °C, and 1.10, respectively.  相似文献   

4.
A novel Li[Ni0.67Co0.15Mn0.18]O2 cathode material encapsulated completely within a concentration-gradient shell was successfully synthesized via co-precipitation. The Li[Ni0.67Co0.15Mn0.18]O2 has a core of Li[Ni0.8Co0.15Mn0.05]O2 that is rich in Ni, a concentration-gradient shell having decreasing Ni concentration and increasing Mn concentration toward the particle surface, and a stable outer-layer of Li[Ni0.57Co0.15Mn0.28]O2. The electrochemical and thermal properties of the material were investigated and compared to those of the core Li[Ni0.8Co0.15Mn0.05]O2 material alone. The discharge capacity of the concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 electrode increased with increasing upper cutoff voltage to 4.5 V, and cells with this cathode material delivered a very high capacity, 213 mAh/g, with excellent cycling stability even at 55 °C. The enhanced thermal and lithium intercalation stability of the Li[Ni0.67Co0.15Mn0.18]O2 was attributed to the gradual increase in tetravalent Mn concentration and decrease in Ni concentration in the concentration-gradient shell layer.  相似文献   

5.
Non-spherical Li(Ni1/3Co1/3Mn1/3)O2 powders have been synthesized using a two-step drying method with 5% excess LiOH at 800 °C for 20 h. The tap-density of the powder obtained is 2.95 g cm−3. This value is remarkably higher than that of the Li(Ni1/3Co1/3Mn1/3)O2 powders obtained by other methods, which range from 1.50 g cm−3 to 2.40 g cm−3. The precursor and Li(Ni1/3Co1/3Mn1/3)O2 are characterized by X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD) and scanning electron microscope (SEM). XPS studies show that the predominant oxidation states of Ni, Co and Mn in the precursor are 2+, 3+ and 4+, respectively. XRD results show that the Li(Ni1/3Co1/3Mn1/3)O2 material obtained by the two-step drying method has a well-layered structure with a small amount of cation mixing. SEM confirms that the Li(Ni1/3Co1/3Mn1/3)O2 particles obtained by this method are uniform. The initial discharge capacity of 167 mAh g−1 is obtained between 3 V and 4.3 V at a current of 0.2 C rate. The capacity of 159 mAh g−1 is retained at the end of 30 charge-discharge cycle with a capacity retention of 95%.  相似文献   

6.
Sen Zhang 《Electrochimica acta》2007,52(25):7337-7342
Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium ion batteries was prepared by mixing metal hydroxide, (Ni1/3Co1/3Mn1/3)(OH)2, with 6% excess LiOH followed by calcinations. The (Ni1/3Co1/3Mn1/3)(OH)2 with secondary particle of about 12 μm was prepared by hydroxide co-precipitation. The tap density of the obtained Li[Ni1/3Co1/3Mn1/3]O2 powder was 2.56 ± 0.21 g cm−3. The powder was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), particle size distribution (PSD) and galvanostatic charge-discharge cycling. The XRD pattern of Li[Ni1/3Co1/3Mn1/3]O2 revealed a well ordered hexagonal layered structure with low cation mixing. Secondary particles with size of 13-14 μm and primary particles with size of about 1 μm can be identified from the SEM observations. In the voltage range of 2.8-4.3 V, the initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 electrode was 166.6 mAh g−1, and 96.5% of the initial capacity was retained after 50 charge-discharge cycling.  相似文献   

7.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

8.
In order to get homogeneous layered oxide Li[Ni1/3Mn1/3Co1/3]O2 as a lithium insertion positive electrode material, we applied the metal acetates decomposition method. The oxide compounds were calcined at various temperatures, which results in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni1/3Mn1/3Co1/3]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry and SEM. XRD experiment revealed that the layered Li[Ni1/3Mn1/3Co1/3]O2 material can be best synthesized at temperature of 800 °C. In that synthesized temperature, the sample showed high discharge capacity of 190 mAh g−1 as well as stable cycling performance at a current density of 0.2 mA cm−2 in the voltage range 2.3-4.6 V. The reversible capacity after 100 cycles is more than 190 mAh g−1 at room temperature.  相似文献   

9.
LiNi1/3Co1/3Mn1/3O2 and LiCoO2 cathode materials were synthesized by using a supercritical water (SCW) method with a metal salt solution in a batch reactor. Stoichiometric LiNi1/3Co1/3Mn1/3O2 was successfully synthesized in a 10-min reaction without calcination, while overlithiated LiCoO2 (Li1.15CoO2) was synthesized using the batch SCW method. The physical properties and electrochemical performances of LiNi1/3Co1/3Mn1/3O2 were compared to those of Li1.15CoO2 by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), and charge/discharge cycling tests. The XRD pattern of LiNi1/3Co1/3Mn1/3O2 was found to be similar to that of Li1.15CoO2, showing clear splitting of the (0 0 6)/(1 0 2) and (1 0 8)/(1 1 0) peak pairs as particular characteristics of the layered structure. In addition, both cathode powders showed good crystallinity and phase purity, even though a short reaction time without calcination was applied to the SCW method. The initial specific discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders at a current density of 0.24 mA/cm2 in 2.5-4.5 V were 149 and 180 mAh/g, and their irreversible capacity loss was 20 and 17 mAh/g, respectively. The discharge capacities of the Li1.15CoO2 and LiNi1/3Co1/3Mn1/3O2 powders decreased with cycling and remained at 108 and 154 mAh/g after 30 cycles, which are 79% and 89% of the initial capacities. Compared to the overlithiated LiCoO2 cathode powders, the LiNi1/3Co1/3Mn1/3O2 cathode powders synthesized by SCW method had better electrochemical performances.  相似文献   

10.
ZnO was coated on LiNi0.5Co0.25Mn0.25O2 cathode (positive electrode) material for lithium ion battery via sol–gel method to improve the performance of LiNi0.5Co0.25Mn0.25O2. The X-ray diffraction (XRD) results indicated that the lattice structure of LiNi0.5Co0.25Mn0.25O2 was not changed distinctly after surface coating and part of Zn2+ might dope into the lattice of the material. Energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) proved that ZnO existed on the surface of LiNi0.5Co0.25Mn0.25O2. Charge and discharge tests showed that the cycle performance and rate capability were improved by ZnO coating, however, the initial capacity decreased dramatically with increasing the amount of ZnO. Differential scanning calorimetry (DSC) results showed that thermal stability of the materials was improved. The XPS spectra after charge–discharge cycles showed that ZnO coated on LiNi0.5Co0.25Mn0.25O2 promoted the decomposition of the electrolyte at the early stage of charge–discharge cycle to form more stable SEI layer, and it also can scavenge the free acidic HF species from the electrolyte. The electrochemical impedance spectroscopy (EIS) results showed ZnO coating could suppress the augment of charge transfer resistance upon cycling.  相似文献   

11.
Electrochemical and thermal properties of Co3(PO4)2- and AlPO4-coated LiNi0.8Co0.2O2 cathode materials were compared. AlPO4-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 170.8 mAh g−1 and had a capacity retention (89.1% of its initial capacity) between 4.35 and 3.0 V after 60 cycles at 150 mA g−1. Co3(PO4)2-coated LiNi0.8Co0.2O2 cathodes exhibited an original specific capacity of 177.6 mAh g−1 and excellent capacity retention (91.8% of its initial capacity), which was attributed to a lithium-reactive Co3(PO4)2 coating. The Co3(PO4)2 coating material could react with LiOH and Li2CO3 impurities during annealing to form an olivine LixCoPO4 phase on the bulk surface, which minimized any side reactions with electrolytes and the dissolution of Ni4+ ions compared to the AlPO4-coated cathode. Differential scanning calorimetry results showed Co3(PO4)2-coated LiNi0.8Co0.2O2 cathode material had a much improved onset temperature of the oxygen evolution of about 218 °C, and a much lower amount of exothermic-heat release compared to the AlPO4-coated sample.  相似文献   

12.
Uniform and spherical Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ powders were synthesized via NH3 and F coordination hydroxide co-precipitation. The effect of F coordination agent on the morphology, structure and electrochemical properties of the Li(Ni1/3Co1/3Mn1/3)O(2−δ)Fδ were studied. The morphology, size, and distribution of (Ni1/3Co1/3Mn1/3)(OH)(2−δ)Fδ particle diameter were improved in a shorter reaction time through the addition of F. The study suggested that the added F improves the layered characteristics of the lattice and the cyclic performance of Li(Ni1/3Co1/3Mn1/3)O2 in the voltage range of 2.8-4.6 V. The initial capacity of the Li(Ni1/3Co1/3Mn1/3)O1.96F0.04 was 178 mAh g−1, the maximum capacity was 186 mAh g−1 and the capacity after 50 cycles was 179 mAh g−1 in the voltage range of 2.8-4.6 V.  相似文献   

13.
Layered LiNi0.6Co0.2Mn0.2O2 materials were synthesized at different sintering temperatures using spray-drying precursor with molar ratio of Li/Me = 1.04 (Me = transition metals). The influences of sintering temperature on crystal structure, morphology and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and charge-discharge test. As a result, material synthesized at 850 °C has excellent electrochemical performance, delivering an initial discharge capacity of 173.1 mAh g− 1 between 2.8 and 4.3 V at a current density of 16 mA g− 1 and exhibiting good cycling performance.  相似文献   

14.
A high-performance LiNi0.8Co0.2O2 cathode was successfully fabricated by a sol-gel coating of CeO2 to the surface of the LiNi0.8Co0.2O2 powder and subsequent heat treatment at 700 °C for 5 h. The surface-modified and pristine LiNi0.8Co0.2O2 powders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), slow rate cyclic voltammogram (CV), and differential scanning calorimetry (DSC). Unlike pristine LiNi0.8Co0.2O2, the CeO2-coated LiNi0.8Co0.2O2 cathode exhibits no decrease in its original specific capacity of 182 mAh/g (versus lithium metal) and excellent capacity retention (95% of its initial capacity) between 4.5 and 2.8 V after 55 cycles. The results indicate that the surface treatment should be an effective way to improve the comprehensive properties of the cathode materials for lithium ion batteries.  相似文献   

15.
Cathode active materials with a composition of LiNi0.9Co0.1O2 were synthesized by a solid-state reaction method at 850 °C using Li2CO3, NiO or NiCO3, and CoCO3 or Co3O4, as the sources of Li, Ni, and Co, respectively. Electrochemical properties, structure, and microstructure of the synthesized LiNi0.9Co0.1O2 samples were analyzed. The curves of voltage vs. x in LixNi0.9Co0.1O2 for the first charge–discharge and the intercalated and deintercalated Li quantity Δx were studied. The destruction of unstable 3b sites and phase transitions were discussed from the first and second charge–discharge curves of voltage vs. x in LixNi0.9Co0.1O2. The LiNi0.9Co0.1O2 sample synthesized from Li2CO3, NiO, and Co3O4 had the largest first discharge capacity (151 mA h/g), with a discharge capacity deterioration rate of −0.8 mA h/g/cycle (that is, a discharge capacity increasing 0.8 mA h/g per cycle).  相似文献   

16.
A series of LiNi1/3Mn1/3Co1/3O2 samples with α-NaFeO2 structure belonging to the D3d5 space group were synthesized using tartaric acid as a chelating agent by wet-chemical method. Different acid to metal-ion ratios R have been used to investigate the effect of this parameter on the physical and electrochemical properties. We have characterized the reaction mechanism, the structure, and morphology of the powders by TGA, XRD, SEM and TEM imaging, completed by magnetic measurements, Raman scattering spectroscopy, and complex impedance experiments. We find that the LiNi1/3Mn1/3Co1/3O2 sintered at 900 °C for 15 h with an acid to metal-ion ratio R = 2 was the optimum condition for this synthesis. For this optimized sample, only 1.3% of nickel-ions occupied the 3b Wyckoff site of the lithium-ions sublattice. The electrochemical performance has been investigated using a coin-type cell containing Li metal as the anode. The electronic performance is correlated to the concentration of the Ni(3b) defects that increase the charge transfer resistance and reduce the lithium diffusion coefficient. The optimized cell delivered an initial discharge capacity of 172 mAh g−1 in the cut-off voltage of 2.8-4.4 V, with a coulombic efficiency of 93.4%.  相似文献   

17.
LiNi0.5Mn1.5O4 spinel has been prepared by an emulsion drying method which can intermix cations very homogeneously at the atomic scale. When the emulsion-dried precursor was fired at 750 °C for 24 h, the observed particle of the LiNi0.5Mn1.5O4 was nano-crystallite, being about 50 nm in diameter. The Rietveld refinement result clearly exhibited that the cubic spinel phase was successfully formed without any secondary phases, indicating that Li and transition metal cations occupied the 8a and 16d sites of the Fd3m structure, respectively. Li deintercalation from the spinel framework brings about a shift in the XRD peak toward higher angles and a peak splitting in the composition range δ=0-0.2 in LiδNi0.5Mn1.5O4, implying that the host structure is progressively oxidized from Ni2+ to Ni4+ and accompanied by a two phase reaction. The sample calcined at 750 °C for 24 h showed the best cyclability upon cycling due probably to better crystallinity and a smaller particle size. We suggest that this material can be used as a 4.5 V cathode material for Li-ion battery.  相似文献   

18.
Nanocrystalline materials of Ni0.8Co0.1Mn0.1(OH)2 are successfully synthesized by fast co-precipitation method. The crystalline structure and morphology of the precursors and LiNi0.8Co0.1Mn0.1O2 materials are characterized by XRD, SEM and Rietveld refinement analyses. It is found that the nanocrystalline phase and low crystallinity of Ni0.8Co0.1Mn0.1(OH)2 could help achieve its uniform mixing with lithium source, and further attribute to highly ordered layered LiNi0.8Co0.1Mn0.1O2 with low cation mixing degree. Electrochemical studies confirm that the LiNi0.8Co0.1Mn0.1O2 exhibits a good electrochemical property with initial discharge specific capacity of 192.4 mAh g− 1 at a current density of 18 mA g− 1, and the capacity retention after 40 cycles is 91.56%. This method is a simple and effective method to synthesize cathode material.  相似文献   

19.
Layered Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) have been prepared by the mixed hydroxide and molten-salt synthesis method. The individual particles of synthesized materials have a sub-microsize range of 200-500 nm, and LiNi0.475Mn0.475Zr0.05O2 has a rougher surface than that of LiNi0.5Mn0.5O2. The Li/Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) electrodes were cycled between 4.5 and 2.0 V at a current density of 15 mA/g, the discharge capacity of both cells increased during the first ten cycles. The discharge capacity of the Li/LiNi0.475Mn0.475Zr0.05O2 cell increased from 150 to 220 mAh/g, which is 50 mAh/g larger than that of the Li/LiNi0.5Mn0.5O2 cell. We found that the oxidation of oxygen and the Mn3+ ion concerned this phenomenon from the cyclic voltammetry (CV). Thermal stability of the charged Li[Ni0.5−xMn0.5−xZr2x]O2 (x = 0, 0.025) cathode was improved by Zr doping.  相似文献   

20.
A combination technique of in situ synchrotron X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) was employed to study the Li1−xNi0.5Co0.25Mn0.25O2 cathode material for Li-ion battery. The Li/Li1−xNi0.5Co0.25Mn0.25O2 cell with x = 0.82 charged to 4.5 V showed the first charge capacity of 225 mAh/g. The X-ray absorption near edge structure (XANES) indicated that the initial valences were +2/+3, +3 and +4 for Ni, Co and Mn, respectively. The main redox reaction during delithiation was achieved by Ni via the reaction Ni2+ → Ni3+ followed by Ni3+ → Ni4+. The oxidation states of Co and Mn remained Co3+ and Mn4+. The bond length of Ni-O decreased drastically, while the Co-O and Mn-O distances exhibited a slight change with the decrease of Li content in the electrode. It was further revealed that all the second shell metal-metal (Ni-M, Co-M and Mn-O) distances decreased due to the oxidation of metal ions. In situ XRD data showed that both a- and c-axes varied with different Li contents in this material system. At the beginning of charge, there was a contraction along the c-axis and a slight expansion along the a-axis. As x reached 0.57, the trend of the variation in c-axis was opposite. The changes of lattice parameters could be explained by the balance between ionic radius and the repulsive force of the layer-structured material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号