首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of ZnxMg1 − xGa2O4:Co2+ spinels (x = 0, 0.25, 0.5, 0.75, and 1.0) was successfully produced through low-temperature burning method by using Mg(NO3)2·4H2O, Zn(NO3)2·6H2O, Ga(NO3)3·6H2O, CO(NH2)2, NH4NO3, and Co(NO3)2·6H2O as raw materials. The product was characterized by X-ray diffraction, transmission electron microscopy, and photoluminescence spectroscopy. The product was not merely a simple mixture of MgGa2O4 and ZnGa2O4; rather, it formed a solid solution. The lattice constant of ZnxMg1 − xGa2O4:Co2+ (0 ≤ x ≤ 1.0) crystals has a good linear relationship with the doping density, x. The synthesized products have high crystallinities with neat arrays. Based on an analysis of the form and position of the emission spectrum, the strong emission peak around the visible region (670 nm) can be attributed to the energy level transition [4T1(4P) → 4A2(4F)] of Co2+ in the tetrahedron. The weak emission peak in the near-infrared region can be attributed to the energy level transition [4T1(4P) → 4T2(4F)] of Co2+ in the tetrahedron.  相似文献   

2.
A series of Ni substituted spinel LiNixMn2−xO4 (0 ≤ x ≤ 0.5) have been synthesized to study the evolution of the local structure and their electrochemical properties. X-ray diffraction showed a few Ni cations moved to the 8a sites in heavily substituted LiNixMn2−xO4 (x ≥ 0.3). X-ray photoelectron spectroscopy confirmed Ni2+ cations were partially oxidized to Ni3+. The local structures of LiNixMn2−xO4 were studied by analyzing the and A1g Raman bands. The most compact [Mn(Ni)O6] octahedron with the highest bond energy of Mn(Ni)O was found for LiNi0.2Mn1.8O4, which showed a Mn(Ni)O average bond length of 1.790 Å, and a force constant of 2.966 N cm−1. Electrolyte decomposition during the electrochemical charging processes increased with Ni substitution. The discharge capacities at the 4.1 and 4.7 V plateaus obeyed the linear relationships with respect to the Ni substitution with the slopes of −1.9 and +1.9, which were smaller than the theoretical values of −2 and +2, respectively. The smaller slopes could be attributed to the electrochemical hysteresis and the presence of Ni3+ in the materials.  相似文献   

3.
A novel nanostructured mesoporous CoxNi1−x layered double hydroxides (CoxNi1−x LDHs), which both Co(OH)2 and Ni(OH)2 exhibit, has been successfully synthesized by a chemical co-precipitation route using polyethylene glycol as the structure-directing reagent. Structural and morphological characterizations were performed using powder X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). The component and thermal stability of the sample were measured by energy dispersed X-ray spectrometry (EDS), FT-IR and thermal analyses, including thermogravimetry (TG) and differential thermal analysis (DTA). Cyclic voltammogram and galvanostatic charge-discharge testified that the CoxNi1−x LDH has a specific capacitance of 1809 F g−1 at a current density of 1 A g−1 and remains at about 90.2% of the initial value after 1000 cycles at a current density of 10 A g−1. The relationship between the chemical composition and the capacitance is discussed.  相似文献   

4.
Several compositions of NdYb1−xGdxZr2O7 (0 ≤ x ≤ 1.0) ceramics were prepared by pressureless-sintering method at 1973 K for 10 h in air. The relative density, microstructure and electrical conductivity of NdYb1−xGdxZr2O7 ceramics were analyzed by the Archimedes method, X-ray diffraction, scanning electron microscopy and impedance plots measurements. NdYb1−xGdxZr2O7 (0 ≤ x ≤ 0.3) ceramics have a single phase of defect fluorite-type structure, and NdYb1−xGdxZr2O7 (0.7 ≤ x ≤ 1.0) ceramics exhibit a single phase of pyrochlore-type structure; however, the NdYb0.5Gd0.5Zr2O7 composition shows mixed phases of both defect fluorite-type and pyrochlore-type structures. The measured values of the grain conductivity obey the Arrhenius relation. The grain conductivity of each composition in NdYb1−xGdxZr2O7 ceramics gradually increases with increasing temperature from 673 to 1173 K. NdYb1−xGdxZr2O7 ceramics are oxide-ion conductor in the oxygen partial pressure range of 1.0 × 10−4 to 1.0 atm at all test temperature levels. The highest grain conductivity value obtained in this work is 1.79 × 10−2 S cm−1 at 1173 K for NdYb0.3Gd0.7Zr2O7 composition.  相似文献   

5.
This study reports on the synthesis of ternary semiconductor (BixSb1−x)2Te3 thin films on Au(1 1 1) using a practical electrochemical method, based on the simultaneous underpotential deposition (UPD) of Bi, Sb and Te from the same solution containing Bi3+, SbO+, and HTeO2+ at a constant potential. The thin films are characterized by X-ray diffraction (XRD), atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and reflection absorption-FTIR (RA-FTIR) to determine structural, morphological, compositional and optic properties. The ternary thin films of (BixSb1−x)2Te3 with various compositions (0.0 ≤ x ≤ 1.0) are highly crystalline and have a kinetically preferred orientation at (0 1 5) for hexagonal crystal structure. AFM images show uniform morphology with hexagonal-shaped crystals deposited over the entire gold substrate. The structure and composition analyses reveal that the thin films are pure phase with corresponding atomic ratios. The optical studies show that the band gap of (BixSb1−x)2Te3 thin films could be tuned from 0.17 eV to 0.29 eV as a function of composition.  相似文献   

6.
The electrochemical energy storage and delivery on the electrodes composed of hydrous ruthenium oxide (RuOx·nH2O) or activated carbon-hydrous ruthenium oxide (AC-RuOx) composites are found to strongly depend on the substrate employed. The contact resistance at the active material-graphite interface is much lower than that at the active material-stainless steel (SS) mesh interface. Thin films of gold plus RuOx·nH2O deposited on SS meshes (RuOx/Au/SS) are found to greatly improve the poor contact between SS meshes and electrode materials. The maximum specific capacitance (CS,RuOx) of RuOx·nH2O, 1580 F g−1 (measured at 1 mV s−1), very close to the theoretic value, was obtained from an AC-RuOx/RuOx/Au/SS electrode with 10 wt.% sol-gel-derived RuOx·nH2O annealed in air at 200 °C for 2 h. The highly electrochemical reversibility, high-power characteristics, good stability, and improved frequency response of this AC-RuOx/RuOx/Au/SS electrode demonstrate its promising application potential in supercapacitors. The ultrahigh specific capacitance of RuOx·nH2O probably results from the uniform size distribution of RuOx·nH2O nanoparticles, ranged from 1.5 to 3 nm which is clearly observed from the high-resolution transmission electron microscopy (HRTEM).  相似文献   

7.
Bo Gao 《Electrochimica acta》2010,55(11):3681-11258
Amorphous RuO2·xH2O was well coated on the benzenesulfonic functionalized multi-wall carbon nanotubes (f-MWCNTs) successfully via hydrothermal method. The decorated benzenesulfonic groups served as a bifunctional role both for solubilizing and dispersing MWCNTs into aqueous solution and for tethering Ru3+ precursor to facilitate the following uniform chemical deposition of RuO2·xH2O. The electrochemical performance of RuO2/f-MWCNTs and utilization of RuO2·xH2O were evidenced by cyclic voltammetry and galvanostatic charge/discharge tests. The specific capacitance of 1143 Fg−1 for RuO2·xH2O was obtained from RuO2/f-MWCNTs with 32 wt.% RuO2·xH2O, which was much higher than that of just 798 Fg−1 for the RuO2/p-MWCNTs. Even though the RuO2·xH2O loading increases to 45 wt.%, the utilization of RuO2·xH2O still possesses as high as 844.4 Fg−1, indicating a good energy capacity in the case of high loading.  相似文献   

8.
C.M. NamB.M. Gibbs 《Fuel》2002,81(10):1359-1367
Diesel DeNOx experiments have been conducted using the selective noncatalytic ‘thermal DeNOx’ process in a diesel fuelled combustion-driven flow reactor which simulated a single cylinder (966 cm3) and head equipped with a water-cooling jacket and an exhaust pipe. NH3 was directly injected into the cylinder to reduce NOx emissions. A wide range of air/fuel ratios (A/F=20-40) was selected for NOx reduction where an initial NOx of 530 ppm was usually maintained with a molar ratio (β=NH3/NOx) of 1.5.The results indicate that a 34% NOx reduction can be achieved from the cylinder injection in the temperature range, 1100-1350 K. Most of the NOx reduction occurs within the cylinder and head section (residence time<40 ms), since temperatures in the exhaust are too low for additional NOx reduction. Under large gas quenching rates, increasing β values (e.g. 4.0) substantially increase the NOx reduction up to 60%, which is comparable with those achieved under isothermal conditions. Experimental findings are analysed by chemical kinetics using the Miller and Bowman mechanism including both N/H/O species and CO/hydrocarbon reactions to account for CO/UHC oxidation effects, based on practical nonisothermal conditions. Comparisons of the kinetic calculations with the experimental data are given as regards temperature characteristics, residence time and molar ratio. In addition, the effects of CO/UHC and branching ratio (α=k1/(k1+k2)) for the reaction NH2+NO=products are discussed in terms of NO reduction features, together with practical implications.  相似文献   

9.
This paper reports the characterization of ternary II-VI semiconductor nanocrystals, deposited by the electrochemical atomic layer epitaxy (ECALE) technique.In particular, morphological and structural properties of the ternary compounds of formula CdxZn1−xSe deposited on Ag (1 1 1) have been characterized as a function of composition. The number of the attainable x values is limited by the necessity of using well-defined ZnSe/CdSe deposition sequences. However, the quantitative analysis carried out on the basis of both electrochemical and extended X-ray absorption fine structure (EXAFS) experiments indicates that the ECALE method is a successful way of controlling the composition of CdxZn1−xSe. In addition, the electrochemical measurements show that the amount of deposition is minimum in correspondence to the compound with x = 0.5, thus corroborating the hypothesis of a higher degree of disorder suggested both by morphological and structural investigation. The morphology was studied by atomic force microscopy (AFM). The structure of the films is estimated by EXAFS which is a powerful technique for the analysis of the local structure around chosen atoms.  相似文献   

10.
Layered double hydroxides CuxZn6 − xCr2(OH)16(CO3)·4H2O with different molar ratios of Cu/Zn/Cr were synthesized by accelerated carbonation. The products were characterized by XRD, SEM, FT-IR and TG-DTG-DSC-MS. The chemical stability was tested by the modified Toxicity Characteristic Leaching Procedure (TCLP). The results showed that the products were the mixture of CuxZn6 − xCr2(OH)16(CO3)·4H2O and (CuZn)2(CO3)(OH)2, with similar thermal behavior. All products were chemically stable with reduced leaching at pH > 6 (Cu2+, Zn2+) or > 5 (Cr3+).  相似文献   

11.
Ni/MgxTi1 − xO catalysts were prepared through a wet impregnation method by dispersing Ni on MgxTi1 − xO composite oxides obtained via a sol–gel technique. The Ni/MgxTi1 − xO catalysts were characterized by various means including ICP–OES, BET, XRD, H2–TPR, SEM, and TG. No free NiO peak was found in all XRD patterns of the Ni/MgxTi1 − xO catalysts. The H2–TPR and chemisorption results indicated that adding Ti to the NiO–MgO system obstructed the formation of solid solution, and thus increased the reducibility of the catalysts. The prepared MgxTi1 − xO composite oxides had the same ability to disperse Ni as TiO2 and MgO. The tri-reforming (simultaneous oxygen reforming, carbon dioxide reforming, and steam reforming) of methane over Ni/MgxTi1 − xO catalysts was carried out in a fixed bed flow reactor. The conversions of CH4 and CO2 can respectively be achieved as high as above 95% and 83% over Ni/Mg0.75Ti0.25O catalyst under the reaction conditions. The activity of Ni/Mg0.75Ti0.25O and Ni/Mg0.5Ti0.5O did not decrease for a reaction period of 50 h, indicating their rather high stability. The experimental results showed that the nature of support, the interaction between metal and support, and the ability to be reduced played an important role in improving the stability of catalysts.  相似文献   

12.
Hydrous ruthenium dioxide (RuO2·xH2O) prepared in a modified sol-gel process was subjected to annealing in air and water at various temperatures for supercapacitor applications. The textural and pseudocapacitive characteristics of RuO2·xH2O annealed in air and water were systematically compared to show the benefits of annealing in water (denoted as hydrothermal annealing). An important concept that hydrothermal annealing effectively restricts condensation of hydroxyl groups within nanoparticles, inhibits crystal growth, and maintains high water content of RuO2·xH2O is demonstrated in this work. The unique textural characteristics of hydrothermally annealed RuO2·xH2O are attributable to the high-pressured, water-enriched surroundings which restrain coalescence of RuO2·xH2O nanocrystallites. The crystalline, hydrous nature of hydrothermally annealed RuO2·xH2O favors the utilization of active species in addition to a merit of minor dependence of specific capacitance on the scan rate of CV for pseudocapacitors. As a result, RuO2·xH2O with hydrothermal annealing at 225 °C for 24 h exhibits 16 wt.% water, an average particle size of about 7 nm, and specific capacitance of ca. 390 F g−1.  相似文献   

13.
LiNi1−xCoxO2 (x = 0, 0.1, 0.2) cathode materials were successfully synthesized by a rheological phase reaction method with calcination time of 0.5 h at 800 °C. All obtained powders are pure phase with α-NaFeO2 structure (R-3m space group). The samples deliver an initial discharge capacity of 182, 199 and 189 mAh g−1 (25 mA g−1, 4.35-3.0 V), respectively. The reaction mechanism was also discussed, which consists of a series of defect reactions. As a result of these defect reactions, the reaction of forming LiNi1−xCoxO2 takes place in high speed.  相似文献   

14.
A new series of rare earth solid solutions Sc2−xYxW3O12 was successfully synthesized by the conventional solid-state method. Effects of doping ion yttrium on the crystal structure, morphology and thermal expansion property of as-prepared Sc2−xYxW3O12 ceramics were investigated by X-ray diffraction (XRD), thermogravimetric analysis (TG), field emission scanning electron microscope (FE-SEM) and thermal mechanical analyzer (TMA). Results indicate that the obtained Sc2−xYxW3O12 samples with Y doping of 0≤x≤0.5 are in the form of orthorhombic Sc2W3O12-structure and show negative thermal expansion (NTE) from room temperature to 600 °C; while as-synthesized materials with Y doping of 1.5≤x≤2 take hygroscopic Y2W3O12·nH2O-structure at room temperature and exhibit NTE only after losing water molecules. It is suggested that the obvious difference in crystal structure leads to different thermal expansion behaviors in Sc2−xYxW3O12. Thus it is proposed that thermal expansion properties of Sc2−xYxW3O12 can be adjusted by the employment of Y dopant; the obtained Sc1.5Y0.5W3O12 ceramic shows almost zero thermal expansion and its average linear thermal expansion coefficient is −0.00683×10−6 °C−1 in the 25–250 °C range.  相似文献   

15.
The oxygen reduction reaction (ORR) was studied at carbon supported MoOx-Pt/C and TiOx-Pt nanocatalysts in 0.5 mol dm−3 HClO4 solution, at 25 °C. The MoOx-Pt/C and TiOx-Pt/C catalysts were prepared by the polyole method combined by MoOx or TiOx post-deposition. Home made catalysts were characterized by TEM and EDX techniques. It was found that catalyst nanoparticles were homogenously distributed over the carbon support with a mean particle size about 2.5 nm. Quite similar distribution and particle size was previously obtained for Pt/C catalyst. Results confirmed that MoOx and TiOx post-deposition did not lead to a significant growth of the Pt nanoparticles.The ORR kinetics was investigated by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. These results showed the existence of two E − log j regions, usually observed with polycrystalline Pt in acid solution. It was proposed that the main path in the ORR mechanism on MoOx-Pt/C and TiOx-Pt/C catalysts was the direct four-electron process with the transfer of the first electron as the rate-determining step. The increase in catalytic activity for ORR on MoOx-Pt/C and TiOx-Pt/C catalysts, in comparison with Pt/C catalyst, was explained by synergetic effects due to the formation of the interface between the platinum and oxide materials and by spillover due to the surface diffusion of oxygen reaction intermediates.  相似文献   

16.
Composite ceramics based on (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12-0.16, y = 0-8) were prepared by a conventional mixed-oxide route. Zn2+ partially replaced Mg2+ in Mg2TiO4 and formed the spinel-structured (Mg1−δZnδ)2TiO4 phase. Nb2+, is known to be solid soluble in CaTiO3, was found to change its shape from cubic to pliable. A bi-phase system (Mg1−δZnδ)2TiO4 and CaTiO3 exhibited in all samples, where a small amount of second phase Mg1−δZnδTiO3 was also detected. The microwave dielectric properties of specimens were strongly related to ZnNb2O6 and CaTiO3 content. As y increased, ?r and τf decreased, however, Q × f decreased to a minimum value and started to increase thereafter. It was also found that ?r and τf increased and Q × f decreased with increasing x. The optimized microwave dielectric properties with ?r = 18.37, Q × f = 31,027 GHz (at 6 GHz), and τf = 0.51 ppm/°C were achieved for (1 − x)Mg2TiO4-xCaTiO3-y wt.% ZnNb2O6 (x = 0.12, y = 4) sintered at 1360 °C for 6 h.  相似文献   

17.
An attempt to understand the unusual electrochemical behaviors in (1−x)LiNiO2·xLi2TiO3 (0.05≤x≤0.5), an excess initial charge capacity exceeding the oxidation of transitional metal to +4 accompanying the appearance of an irreversible initial charge plateau when x reached 0.075, was performed. The decreased charge-discharge polarization after charging to 4.6 and 4.8 V and increased columbic reversibility after charging to 4.6 V typically for x=0.1 and 0.2, in contrast to charging to 4.4 V, suggested that the excess initial charge capacity possibly did not come mainly from electrolyte decomposition; while ex situ XRD results in the sample with x=0.2 confirmed that Li+ were really extracted at the stage of the charge plateau, ruling out the possibility that electrolyte decomposition mainly accounted for the unusual electrochemical behaviors. It was inferred that the species responsible for charge compensation for the excess charge capacity must be oxygen ions in these materials, considering that Ni4+ and Ti4+ are generally impossible to be oxidized to a higher valence. Various electrochemical cycling experiments demonstrated that the sample for x=0.05 with high resistant ability to high voltage and temperature is very promising cathode material in view of observed capacity and cycleability from a viewpoint of application.  相似文献   

18.
A device based on an electrochemical transfer junction (constituted by MxMo6S8 or MxMo6Se8) placed between two tanks allows the transfer of cations by application of current density controlled between electrodes placed in tanks. The transfer protocol was tested on different mixed electrolytes containing cations directly engaged in the batteries industry (M2+ = Co2+, Ni2+, Cd2+, Zn2+, Mn2+, Cu2+). Good performances of the process are provided until 1.6 mA cm−2. The electrolysis through an electrochemical transfer junction made of Chevrel phases represents a suitable method for the selective extraction of cations with appreciable selectivity rates with an appropriate choice of the host lattice (sulfide or selenide). Remarkable separations between Co/Ni, Zn/Mn with Mo6S8 and Cd/Zn, Cd/Ni, Cd/Co and Zn/Ni, with Mo6Se8 were observed.  相似文献   

19.
Li4AlxTi5−xFyO12−y compounds were prepared by a solid-state reaction method. Phase analyses demonstrated that both Al3+ and F ions entered the structure of spinel-type Li4Ti5O12. Charge-discharge cycling results at a constant current density of 0.15 mA cm−2 between the cut-off voltages of 2.5 and 0.5 V showed that the Al3+ and F substitutions improved the first total discharge capacity of Li4Ti5O12. However, Al3+ substitution greatly increased the reversible capacity and cycling stability of Li4Ti5O12 while F substitution decreased its reversible capacity and cycling stability slightly. The electrochemical performance of the Al3+-F-co-substituted specimen was better than the F-substituted one but worse than the Al3+-substituted one.  相似文献   

20.
Yang Liu 《Electrochimica acta》2008,53(8):3296-3304
Co3O4/RuO2·xH2O composites with various Ru content (molar content of Ru = 5%, 10%, 20%, 50%) were synthesized by one-step co-precipitation method. The precursors were prepared via adjusting pH of the mixed aqueous solutions of Co(NO3)2·6H2O and RuCl3·0.5H2O by using Pluronic123 as a soft template. For the composite with molar ratio of Co:Ru = 1:1 annealed at 200 °C, Brunauer-Emmet-Teller (BET) results indicated that the composite showed mesoporous structure, and the specific surface area of the composite was as high as 107 m2 g−1. The electrochemical performances of these composites were measured in 1 M KOH electrolyte. Compared with the composite prepared without template, the composite with P123 exhibited a higher specific capacitance. When the molar content of Ru was rising, the specific capacitance of the composites increased significantly. It was also observed that the crystalline structures as well as the electrochemical activities were strongly dependent on the annealing temperature. A capacitance of 642 F/g was obtained for the composite (Co:Ru = 1:1) annealed at 150 °C. Meanwhile, the composites also exhibited good cycle stability. Besides, the morphologies and textural characteristic of the samples were also investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号