首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
QTL mapping of resistance to sheath blight in maize(Zea mays L.)   总被引:2,自引:0,他引:2  
Maize sheath blight (Rhizoctonia Solani) is a widely occurring fungus disease with great harm to corn-pro- ducing regions in the world. The first happening of sheath blight in China was reported in Jilin Province as early as in 1966[1]. Since the 1970s, the enlargement of corn- growing regions, the application of maize hybrids, the increasing use of fertilizers, especially the nitrogenous fertilizer, and a higher growth-density, all have caused a quick spread of sheath blight, the occurring …  相似文献   

2.
 株型直接决定生物产量、种植密度与籽粒产量,利用玉米高密度遗传连锁图谱解析株型相关性状的遗传机制,对选育理想株型玉米新品种具有重要意义。本研究利用SLAF-seq技术,依据玉米黄早四参考基因组信息,对昌7-2与PHB1M及其138个F2:3家系高通量测序,开发高密度SNP的遗传图谱,并进行株型相关性状QTL定位。研究结果构建了一张总图距为1354.81 cM,标记间的平均距离为0.32 cM,标记数为4220个SLAF标签(7876个SNP)的高密度遗传图谱。在E1与E2两种密度下,对株高、穗位、叶片数、节间数、平均节间长进行QTL定位,共检测到10个QTL位点,其中,有7个PVE超过了10%。叶片数、穗位、节间数为主效QTL,ADD为负值,叶片数与节间数的减效等位基因来源于PHB1M,穗位的减效等位基因来源于昌7-2。叶片数与节间数在2个密度下均定位在8号染色体上,说明二者之间有着共同的遗传机制。与QTL关联的SLAF标记共有61个,其中,SLFA7305498和SLFA6717271为qLC-2-LG8与qIC-2-LG8共有标记。该研究将为玉米株型相关性状的标记辅助选择提供支撑。  相似文献   

3.
Fenneropaeneus chinensis is an important species in marine fishery resources and aquaculture in China. A genetic linkage map is essential for improving the efficiency of its breeding by marker-assisted selection and identifying commercially important genes. Linkage maps of F. chinensis were constructed with an F2 mapping population (110 progenies) using amplified fragment length polymorphic (AFLP) marker in this study. Fifty-five AFLP primer combinations produced 532 AFLP markers fitting for map strategy in mapping family. The markers with 3:1 segregating ratios were analyzed using F2 intercross model for the common linkage map, while the markers with 1:1 ratio were analyzed using the pseudo-testcross strategy. The maps of male, female and common were constructed. The female map included 103 markers that formed 28 linkage groups, covering a total length of 1090 cM. All markers were linked with the linkage groups. Segregation distortion was observed for 6 of 103 markers in the female map. The average distance between markers was 14.53 cM and ranged from 4.4 to 24.8 cM. The male map included 144 markers that formed 35 linkage groups. Ten markers remained unlinked in male map. Segregation distortion was observed for 7 of 144 markers in the male map. The total distance of male map covered 1617 cM. The average distance between markers was 16.36 cM. The male map was 32.6% longer than the female map, which may reflect sex-specific recombination rates in Chinese shrimp. The common map was composed of 216 markers, including in 44 linkage groups covering a total distance of 1772.1 cM. Two markers remained unlinked. No distorted markers of 216 markers were shown in the common map. The distance between markers was 10.42 cM. An average estimated genome size for the Chinese shrimp was 2420 cM, which was consistent with the relative size of the Penaeid genome. The distribution of AFLP markers was relatively even in chromosomes of Chinese shrimp maps. The linkage analysis presented in this work provided some insight  相似文献   

4.
Sub 16 is a substitution line with G. hirsutum cv. TM-1 genetic background except that the 16th chromosome (Chr. 16) is replaced by the corresponding homozygous chromosome of G. barbadense cv. 3-79, and T586 is a G. hirsutum multiple gene marker line with 8 dominant mutation genes. The R 1 gene for anthocyanin pigmentation was tagged in Chr. 16 in T586. The objective of this research was to screen SSR markers tightly linked with R 1 by using the F2 segregating population containing 1259 plants derived from the cross of Sub 16 and T586 and the backbone genetic linkage map from G. hirsutum×G. barbadense BC1 newly updated by our laboratory. Genetic analysis suggested that the segregation ratio of red plants in the F2 population fit Mendelian 1:2:1 inheritance, confirming that the red plant trait was controlled by an incomplete dominance gene. Preliminary mapping of R 1 was conducted using 237 randomLy selected F2 individuals and JoinMap v3.0 software. Then, a fine map of R1 was constructed using the F2 segregating population containing 1259 plants, and R 1 was located between NAU4956 and NAU6752, with only 0.49 cM to the nearest maker loci (NAU6752). These results provided a foundation for map-based cloning of R 1 and further development of cotton cultivars with red fibers by transgenic technology. Supported by National Natural Science Foundation of China (Grant No. 30730067) and Programme of Introducing Talents of Discipline to Universities (Grant No. B08025)  相似文献   

5.
A set of recombinant inbred lines (RIL) derived from Yuyu22, an elite hybrid widespread in China, was used to construct an immortalized F2 (IF2) population comprising 441 different crosses. Genetic linkage maps were constructed containing 10 linkages groups with 263 simple sequence repeat (SSR) molecular markers. Twelve and ten quantitative trait loci (QTL) were detected for plant height in the IF2 and RIL populations respectively, using the composite interval mapping method, and six same QTL were identified in the two populations. In addition, ten unique heterotic loci (HL) located on seven different chromosomes were revealed for plant height using the mid-parent heterosis as the input data. These HL explained 1.26%―8.41% of the genotypic variance in plant height heterosis and most expressed overdominant effects. Only three QTL and HL were located in the same chromosomal region, it implied that plant height and its heterosis might be controlled by two types of genetic mechanisms.  相似文献   

6.
This study was conducted with a clonal F2 population of rice from a cross between Jasmine 85, a resistant variety, and Lemont, a susceptible cultivar. The rice plants belonging to each F2 clone were divided into two plots, which were put in two replicates, respectively. Clonal parents were tested as controls. The plants were inoculated by short toothpicks incubated with RH-9, a virulent isolate of the pathogenic fungus,Rhizoctonia solani, which causes rice sheath blight. The extreme resistant and susceptible clonal lines were selected for construction of resistant and susceptible DNA pools, respectively. A total of 94 polymorphic markers evenly distributed on 12 rice chromosomes were used for bulked segregant analysis, three positive ones were found polymorphic between the two DNA pools, and three major QTLs for sheath blight resistance, Rh-2, Rh-3 and Rh-7, were identified. The three major QTLs were located on chromosomes 2, 3 and 7, and could explain 14.4%, 26.1% and 22.2% of the phenotypic variation.  相似文献   

7.
Fine mapping of Helminthosporium turcicum resistance gene Ht2 is extremely valuable for map-based cloning of the Ht2 gene,gaining a better knowledge of the distribution of resistance genes in maize genome and marker-assisted selection in maize breeding.An F2 mapping population was developed from a cross between a resistant inbred line 77Ht2 and a susceptible inbred line Huobai.With the aid of RFLP marker analyses,the Ht2 gene was mapped between the RFLP markers UMC89 and BNL2.369on chromosome 8,with a genetic distance of 0.9cM to BNL2.369.There was a linkage between SSR markers UMC1202,BNLG1152,UMC1149 and the Ht2 gene by SSR assay,Among the SSR markers,the genetic distance between UMC1149 and the Ht2 gene was 7.2cM,By bulked segregant analysis 7 RAPD-amplified products which were probably linked to the Ht2 gene were selected after screening 450 RAPD primers and converted the single-copy ones into SCAR markers.Linkage analysis showed that the genetic distance between the SCAR marker SD-06633 and the Ht2 gene was 0.4cM.From these results,a part of linkage map around the Ht2 gene was constructed.  相似文献   

8.
Identification and genetic analysis of yellow rust resistance have suggested that wheat line R55 carries single dominant gene conferring yellow rust resistance. The bulked segregant analysis (BSA) for an F2 population using microsatellite marker technique has indicated that the yellow rust resistance gene is located on the short arm of chromosome 1B, tightly linked to the microsatellite markers WMS11-193 bp and WMS18-184 bp, the linkage distance between the markers and the gene is 1.9 cM. This gene has been formally namedYr26. It is inferred from the pedigree, resistance and gene locus analysis that theYr26 has been transferred fromTriticum turgidum L. and is different from the other known yellow rust resistance genes.  相似文献   

9.
In wheat, plant height is an important agronomic trait, and a number of quantitative trait loci (QTLs) controlling plant height have been located. In this study, using the conditional and unconditional QTL mapping methods, combined with data from five different growth stages over two years of field trials, the developmental behavior for plant height in wheat was dissected. Nine unconditional QTLs and 8 conditional QTLs were identified, of which 6 were detected by both methods. None of the 11 QTLs was detected at all of the 5 investigated developmental stages, but 7 QTLs were detected at certain stages in both years. Further analysis identified 9 unconditional QTLs at different stages, which could explain the phenotypic variation from 4.81% to 17.35%. It was noteworthy that one major QTL designated QHt-4B-2, which was located on chromosome 4B, was detected on May 18 and 25 in both years, and its genetic contributions to plant height ranged from 13.42% to 16.13%. Moreover, of the 8 conditional QTLs identified, six were detected in both years, in the order of QHt-3BQHt-4B-1QHt-4B-2QHt-4DQHt-5A and QHt-2B expressed at the same developmental stage. The results indicate that QTL expression during plant height development is selective and in a temporal order.  相似文献   

10.
【目的】传统的数量性状基因座(QTL)定位统计分析方法是针对自交系产生实验群体而建立的,不能直接应用到林木这种杂合度较高生长周期较长的异交物种中。针对林木多元性状数据,将传统的QTL区间作图方法应用到林木杂交F1代作图群体中。【方法】考虑分子标记各种可能的分离比以及连锁相信息,建立林木多元性状数据QTL定位统计分析模型,并用R语言编写了相应的计算软件包mvqtlmap。在美洲黑杨和小叶杨杂交F1代群体中,对2014年5月29日至9月24日期间调查的6个时间点树高数据进行了QTL定位分析。【结果】有4个QTL定位在母本美洲黑杨的遗传连锁图谱上,有6个QTL分布在父本小叶杨的遗传连锁图谱上,这些QTL分别位于第1、5、7、9、11和19号染色体上,平均解释0.8%~6.7%的表型方差。【结论】研究结果可为在林木上利用多个性状或多个时间点性状数据进行QTL定位提供统计分析方法及计算工具。所建立的程序包可在网站http://www.bioseqdata.com/mvqtlmap/mvqtlmap.htm上自由下载。  相似文献   

11.
A rice male-sterile mutant OsMS-L of japonica cultivar 9522 background, was obtained in M4 population treated with ^60Co γ-Ray. Genetic analysis indicated that the male.sterile phenotype was controlled by a single recessive gene. Results of tissue section showed that at microspore stage, OsMS-L tapetum was retarded. Then tapetal calls expanded and microspores degenerated. No matured pollens were observed in OsMS-L anther locus. To map OsMS-L locus, an F2 population was constructed from the cross between the OsMS-L (japonica) and LongTeFu B(indica). Firstly, the OsMS-L locus was roughly mapped between two SSR markers, RM109 and RM7562 on chromosome 2. And then eleven polymorphic markers were developed for further fine fine-mapping. At last the OsMS-L locus was mapped between the two lnDel markers, Lhsl0 and Lhs6 with genetic distance of 0.4 cM, respectively. The region was delimited to 133 kb. All these results were useful for further cloning and functional analysis of OsMS-L.  相似文献   

12.
With the development in spinning technology, the improvement of cotton fiber quality is becoming more and more important. The main objective of this research was to construct a high-density genetic linkage map to facilitate marker assisted selection for fiber quality traits in upland cotton (Gossypium hirsutum L.). A genetic linkage map comprising 421 loci and covering 3814.3 cM, accounting for approximately 73.35% of the cotton genome, was constructed using an F2 population derived from cross GX1135 (P 1 )×GX100-2 (P 2 ). Forty-four of 49 linkage groups were assigned to the 26 chromosomes. Fiber quality traits were investigated in F2 population sampled from individuals, and in F2:3 , and F2:4 generations sampled by lines from two sites and one respectively, and each followed a randomized complete block design with two replications. Thirty-nine quantitative trait loci were detected for five fiber quality traits with data from single environments (separate analysis each): 12 for fiber length, five for fiber uniformity, nine for fiber strength, seven for fiber elongation, and six for fiber micronaire, whereas 15 QTLs were found in combined analysis (data from means of different environments in F2:3 generation). Among these QTLs, qFL-chr5-2 and qFL-chr14-2 for fiber length were detected simultaneously in three generations (four environments) and verified further by combined analysis, and these QTLs should be useful for marker assisted selection to improve fiber quality in upland cotton.  相似文献   

13.
以国际小麦作图组织的重组自交系群体W7984×Opata85为材料,在两种不同试验环境(2009年天津东丽区、2009年天津西青区姚村)下,分析其亲本及114个株系群体的株高,并利用QTL作图软件WinQTLCart2.5和区间作图及复合区间作图方法,对控制小麦株高性状的QTL进行定位.共检测到4个与小麦株高相关的QT...  相似文献   

14.
Thousand-grain weight (TGWT) is an important factor affecting grain yield as well as grain quality in rice. A quantitative trait locus (QTL) qTGWTI-1 for TGWT was detected previously near DNA marker RG532 on the short arm of chromosome 1 in a recombinant inbred line (RIL) population derived from the indlca-indica rice cross Zhengshan97B (ZS97B)/Milyang46 (MY46). In this study, two residual heterozygous lines (RHLs), Chl and Ch2, derived from the ZS97B/MY46 RIL F7 population, were used to develop two Fe populations, RIL-1 and RIL-2. The genome of Chl and Ch2 contains a heterozygous region flanked by RM1--RM3746 and RM151--RM243 on the short arm of chromosome 1, respectively, but is homozygous in other regions. Two tightly linked QTLs, Gwl-1 and Gwl-2, with the same additive direction and similar effect on TGWT, were detected in the region of QTL qTGWTI-1 in population RIL-2. No QTL was detected in the population RIL-1. Four individual RHLs from the population RIL-2 carrying heterozygous segments flanked by RM151--RM10404, RM10381--RM243, RM10435--RM259 and RM10398--RM5359, respectively, were chosen to develop four F= populations. Ten maternal homozygotes and 10 paternal homozygotes were selected from each of the four F2 populations derived from the four RHLs. The four sets of near isogenic lines (NILs) were grown for phenotyping of TGWT and delimitation of Gwl-1 and Gw1-2. Results showed that Gwl-1 and Gw1-2 were located in the intervals RM10376--RM 10398 and RM10404--RM 1344 which cover 392.9 and 308.5 kb regions, respectively. The enhancing alleles were from ZS97B at both loci, and no significant interactions were detected. Genetic dissection of Gwl-1 and Gwl-2 has laid a foundation for their cloning and molecular breeding of grain yield and quality in rice.  相似文献   

15.
0 IntroductionMaizeisamongthemostintensivelystudiedspeciesingeneticsandoneofagronomicallythemostimportantplants.Therearemanydis easemicrobesandpeststoattackmaize,whichre sultsinlowproductionandbadquality .Withthedevelopmentofverydensegeneticmapconstruc tion ,avarietyoftheimportantdiseaseresistancegenesofmaizeincludingHelminthosporiumtur ciumPassresistancegenesHt1,Htn1andHt2 ,HelminthosporiummaydisNisikresistancegenesRhm1andRhm2 ,maizedwarfmosaicvirusresis tancegeneMdm1,wheatstreakmosaicvi…  相似文献   

16.
An F2 population developed from theXa-4 near isogenic lines, IR24 and IRBB4, was used for fine mapping of the rice bacterial blight resistance gene,Xa-4. Some restriction fragment length polymorphism (RFLP) markers on the high-density map constructed by Harushima et al. and the amplified DNA fragments homologous to the conserved domains of plant disease resistance (R) genes were used to construct the genetic linkage map around the geneXa-4 by scoring susceptible individuals in the population.Xa-4 was mapped between the RFLP marker G181 and the polymerase chain reaction (PCR) marker M55. The R gene homologous fragment marker RS13 was found co-segregating withXa-4 by analyzing all the plants in the population. This result opened an approach to map-based cloning of this gene, and marker RS13 can be applied to molecular marker-assisted selection ofXa-4 in rice breeding programs.  相似文献   

17.
Mapping of two new brown planthopper resistance genes from wild rice   总被引:9,自引:0,他引:9  
A brown planthopper (BPH) resistance line, B5, derived its resistance genes from the wild riceOryza officinalis Wall exwatt, was hybridized with Taichung Native 1, a cultivar highly susceptible to BPH. A mapping population composed of randomly selected 167 F2 individuals was used for determining the BPH resistance genes by the restriction fragment length polymorphism analysis (RFLP). Bulked segregant analysis was conducted to identify RFLP makers linked to the BPH resistance genes in B5. The results indicated that the markers linked to BPH resistance are located at two genomic regions on the long arm of chromosome 3 and the short arm of chromosome 4, respectively. The existence of the two loci was further assessed by the quantitative trait locus (QTL) analysis. We located the two loci at a 3.2 cM interval between G1318 and R1925 on chromosome 3 and a 1.2 cM interval between C820 and S11182 on chromosome 4. Comparison with the BPH genes that have been reported indicated that the BPH resistance genes in B5 are novel. These two genes may be useful BPH resistance resource for rice breeding. Furthermore, the mapping of the two genes is useful for cloning the BPH resistance genes.  相似文献   

18.
Phosphorus (P)-deficiency in rice (Oryza. Sativa. L) may cause yield reductions. This research has been conducted to map quantitative trait loci (QTLs) for tolerance to low phosphorus stress in a doubled haploid (DH) population. By using the linkage map of this population, the QTLs for relative dry weight, relative P content and relative P utilization efficiency have been located. The results indicate that one RFLP marker located on chromosome 6 is closely associated with relative root dry weight, relative shoot dry weight and relative total dry weight, which explain 24.9%, 20.5% and 25.2% of the total phenotypic variations, respectively. Two QTLs affect relative P uptake content, which account for 20.7% of the total phenotypic variations. One micro-effect QTL has been found to be associated with relative P utilization efficiency. It is suggested that the P uptake efficiency is more associated with P efficiency. Among the secondary physiological indices of P uptake efficiency, the root dry weight is more important than others.  相似文献   

19.
AFLP analysis of near-isogenic lines of the stripe rust resistance gene Yr10 was carried out with 6 PstⅠ- primers and 10 TaqⅠ-primers with the donor parent of Yr10 gene as the check. A total of about 4200 distinguishable bands were amplified, of which 5 were stable. The genetic linkage of the 5 polymorphic DNA fragments with the target gene were tested preliminarily on a segregating F2 population derived from a cross between the gene donor parent “Moro” and susceptible cultivar “Mingxian 169”. The DNA fragment PT0502 was found closely linked to the Yr10 gene and cloned and sequenced. Based on the sequence specific primers for PCR were designed and synthesized. Genetic linkage analysis with 195 segregating F2 plants indicated that the genetic distance was 0.5 cM between the main product SC200 fragment produced by PCR with the primers and the Yr10 gene. The primers can be used to detect the Yr10 gene quickly, effectively and exactly.  相似文献   

20.
To enhance understanding of the genetic basis of trait correlation in rice, a recombinant inbred line (RIL) population (F6 and F7) from a cross between Zhenshan97 and HR5 was employed to identify main quantitative trait loci (QTLs) and epistatic QTL (E-QTL). Highly significant positive correlations were detected among five traits of heading date (HD), plant height (PH), panicle length (PL), flag leaf length (FLL) and flag leaf width (FLW) in 2 environments. Four to 8 main QTLs were detected for an individual trait. No E-QTL was detected for PH. One, 4, 4 and 5 E-QTLs were detected for FLL, HD, FLW and PL, respectively. Each E-QTL individually explained less than 3% of trait variation except E-QFll1. Comparison of QTL results was made in order to dissect the genetic basis of trait correlation. We found that main QTLs with pleiotropic effects and QTL clusters were the main genetic basis of trait correlation. No E-QTL had pleiotropic effects. E-QTL played an important role in the genetic basis of individual trait, but it made a little contribution to trait correlation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号