首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
A quantitative and reproducible 96‐well microtiter method that is easily adaptable for the screening of Saprolegnia biofilm inhibitors is described. As opposed to other methods previously developed for the screening of Saprolegnia inhibitors on spore germination or mycelial growth, this technique is of particular significance as it investigates potential inhibitors against surface‐attached mycelial mats of Saprolegnia spp. (biofilm). In this study, we have investigated the effects of propionic acid (PPA) on reducing the viability of induced Saprolegnia biofilms using colorimetric MTS assay based on the reduction of tetrazolium salts. Viability of Saprolegnia hyphae in treated biofilms was reduced significantly following treatment with different PPA concentrations. The effect was enhanced after combining each of the tested PPA concentrations with 500 mg/L of boric acid (BA). However, the percentage of non‐viable hyphae was still higher in 200 mg L–1 bronopol‐treated biofilms (positive control) following 6‐ and 12‐hr exposure. Similar results were observed using other recently described fluorescence‐based assays for viability.  相似文献   

2.
Since formalin is widely used in prevention of Saprolegnia infections in salmonid fish hatcheries, there is a need for more environmentally safe treatment methods. Therefore, we screened 360 bacterial isolates against their ability to antagonize the growth of Saprolegnia parasitica hyphae in vitro, and best strains were selected according to their antagonistic properties and colonization capability on rainbow trout egg surface. Protective bacterial cultures of Pseudomonas sp. M162, Pseudomonas sp. M174 and Janthinobacterium M169 were tested for prevention of Saprolegnia sp. infections during incubation trials of rainbow trout (Oncorhynchus mykiss) eggs with UV irradiated (400 mWs cm?2) and non‐treated inlet water. UV irradiation of inlet water significantly decreased mortality during the incubation. Lowest mortalities were observed in protective culture treated groups incubated with UV‐irradiated inlet water. UV irradiation increased the dominance of the main bacterial colonizers and variation in the bacterial species diversity between the experimental units.  相似文献   

3.
Saprolegnia infections cause severe economic losses among freshwater fish farming. In this study, two known compounds, rhein and aloe‐emodin, were isolated from Rheum palmatum, and the in vitro inhibitory activity of both compounds against mycelial growth and spore germination of Saprolegnia was tested. Both rhein and aloe‐emodin were able to decrease Saprolegnia mycelial growth and spore activity in all tested concentrations after exposure for 48 h. Complete inhibition of mycelial growth was observed at 20 mg/L for rhein and at 50 mg/L for aloe‐emodin, while spore germination was 100% prevented at 16 and 40 mg/L for rhein and aloe‐emodin, respectively. Because rhein showed stronger in vitro anti‐Saprolegnia activity, it was further tested in vivo to measure the prevention and treatment efficacy on Saprolegnia infection of grass carp. Its acute activity to grass carp was also evaluated. The results revealed that exposure to rhein at 20 mg/L for 7 d could prevent 93.3% of infections by Saprolegnia in abraded grass carp, while 67.7% of infected fish could be recovered by treatment with rhein. The 48‐h median lethal concentration (48 h‐LC50) to grass carp was 148.5 mg/L, which is about 7.4 times the effective dose indicating the safety for the use of rhein. This study suggests that rhein has promising anti‐Saprolegnia activity and may be an option in preventing and controlling Saprolegnia infection.  相似文献   

4.
Saprolegnia is an important fish fungal pathogen that often results in significant economic losses to freshwater aquaculture. To find effective drugs to control saprolegniasis, 30 fungicidal chemicals used in agriculture were screened, in which kresoxim‐methyl and azoxystrobin, with minimum inhibitory concentration (MIC) values of 1.0 and 0.5 mg/L, respectively, showed good in vitro antifungal activities against Saprolegnia. Azoxystrobin has the most promising anti‐Saprolegnia activity with 50% effective concentration (EC50) value of 0.212 mg/L against mycelial growth and minimum fungicidal concentration (MFC) value of 0.13 mg/L against spores, while EC50 and MFC values to kresoxim‐methyl are 0.240 and 0.25 mg/L, respectively. Through the acute toxicity assay using goldfish, Carassius auratus, azoxystrobin exhibited wider margin of safety with a safe concentration (SC) value of 0.553 mg/L than kresoxim‐methyl with an SC value of 0.131 mg/L. These findings demonstrated that azoxystrobin has the potential for the development of therapy for the control of Saprolegnia in aquaculture. Both kresoxim‐methyl and azoxystrobin were tested with a post‐antifungal effects (PAFE) assay and the results revealed that the two chemicals had no significant effect on fungal growth inhibition after a 1‐hour exposure, indicating that the treatment needs to be carried out over an extended period.  相似文献   

5.
Since the ban of malachite green in the fish farming industry, finding alternative ways of controlling Saprolegnia infections has become of utmost importance. Much effort has been made to elucidate the mechanisms by which Saprolegnia invades fish eggs. Little is known about the defence mechanisms of the hosts, making some eggs more prone to infection than others. One clue might lie in the composition of the eggs. As the immune system in the embryos is not developed yet, the difference in infection levels could be explained by factors influenced by the mother herself, by either transferring passive immunity, influencing the physical aspects of the eggs or both. One of the physical aspects that could be influenced by the female is the chorion, the extracellular coat surrounding the fish egg, which is in fact the first major barrier to be overcome by Saprolegnia spp. Our results suggest that a thicker chorion in eggs from Atlantic salmon gives a better protection against Saprolegnia spp. In addition to the identification of differences in sensitivity of eggs in a fish farm set‐up, we were able to confirm these results in a laboratory‐controlled challenge experiment.  相似文献   

6.
Here, we address the morphological changes of eyed eggs of Atlantic salmon, Salmo salar L. infected with Saprolegnia from a commercial hatchery and after experimental infection. Eyed eggs infected with Saprolegnia spp. from 10 Atlantic salmon females were obtained. Egg pathology was investigated by light and scanning electron microscopy. Eggs from six of ten females were infected with S. parasitica, and two females had infections with S. diclina clade IIIA; two Saprolegnia isolates remained unidentified. Light microscopy showed S. diclina infection resulted in the chorion in some areas being completely destroyed, whereas eggs infected with S. parasitica had an apparently intact chorion with hyphae growing within or beneath the chorion. The same contrasting pathology was found in experimentally infected eggs. Scanning electron microscopy revealed that Sparasitica grew on the egg surface and hyphae were found penetrating the chorion of the egg, and re‐emerging on the surface away from the infection site. The two Saprolegnia species employ different infection strategies when colonizing salmon eggs. Saprolegnia diclina infection results in chorion destruction, while S. parasitica penetrates intact chorion. We discuss the possibility these infection mechanisms representing a necrotrophic (S. diclina) vs. a facultative biotrophic strategy (S. parasitica).  相似文献   

7.
The effects of six 1,3;1,6‐β‐D‐glucooligo‐ and polysaccharides with different structures (ranging from 1 to 10 kDa in molecular mass and containing 10–25% of β‐1,6‐linked glucose residues) from brown algae, Saccharina cichorioides, on development of the chum salmon, Oncorhynchus keta (Walbaum), were evaluated. Exposure of chum salmon eggs to 1,3;1,6‐β‐D‐glucans with a molecular mass of more than 2 kDa increased the survival of embryos and juveniles and their resistance to Saprolegnia infection by up to 2.5‐fold, leading to a weight gain in juveniles of 40–55% compared with The control chum salmons. The 1,3;1,6‐β‐D‐glucans with molecular mass of 6–8 kDa and used at a at concentration of 0.5 mg mL?1 rendered the best stimulative effect.  相似文献   

8.
Oomycetes of the genus Saprolegnia are responsible for severe economic losses in freshwater aquaculture. Following the ban of malachite green in food fish production, the demand for new treatments pushes towards the selection of more safe and environment‐friendly products. In the present work, in vitro activity of ten chemicals and three commercial products was tested on different strains of Saprolegnia, using malachite green as reference compound. The compounds were screened in agar and in water to assess the minimum inhibitory concentration (MIC) and the minimum lethal concentration (MLC), respectively. Two strains of Saprolegnia parasitica and one isolate of Saprolegnia delica were tested in triplicate per each concentration. Among tested chemicals, benzoic acid showed the lowest MIC (100 ppm) followed by acetic acid, iodoacetic acid and copper sulphate (250 ppm). Sodium percarbonate was not effective at any tested concentration. Among commercial products, Virkon?S was effective in inhibiting the growth of the mycelium (MIC = MLC = 1,000 ppm). Actidrox® and Detarox® AP showed MIC = 5,000 and 1,000 ppm, respectively, while MLCs were 10‐fold lower than MICs, possibly due to a higher activity of these products in water. Similarly, a higher effectiveness in water was observed also for iodoacetic acid.  相似文献   

9.
Controlled incorporation of selected microalgae and bacteria in aquaculture systems can be beneficial because they can act as microbiological control. That is why the characteristics of biofilm generated naturally in Seriola lalandi culture cages were analysed, their potential benefit to the growth of larvae was studied, and their controlled use for improving the larval viability and as a vector to improve incorporation of previously studied probiotic bacteria was tested. According to biodiversity results, these biofilms are composed of a diatom–bacteria mix showing a decrease in biodiversity in laboratory culture conditions being dominated by Navicula phyllepta and bacteria of the family Rhodobacteraceae. This can be produced on mesh substrates incorporated in bioreactors with rapid growth rate and adhesiveness. Preliminary results from the addition of substrates with this specific biofilm in larvae culture systems showed that it is consumed by the larvae without negative effects, while positive effects on the viability of larvae in combination with probiotics were observed. Considering preliminary results, the addition of these specific substrates with diatom–bacteria biofilms could be a good improvement for aquaculture systems and together with the use of probiotics can contribute to maintaining a stable and controlled system improving the viability of the larval fish culture in its early stages.  相似文献   

10.
Flavobacterium columnare, the causative agent of columnaris disease, causes substantial mortality worldwide in numerous freshwater finfish species. Due to its global significance and impact on the aquaculture industry continual efforts to better understand basic mechanisms that contribute to disease are urgently needed. The current work sought to evaluate the effect of L‐rhamnose on the growth characteristics of F. columnare. While we initially did not observe any key changes during the total growth of F. columnare isolates tested when treated with L‐rhamnose, it soon became apparent that the difference lies in the ability of this carbohydrate to facilitate the formation of biofilms. The addition of different concentrations of L‐rhamnose consistently promoted the development of biofilms among different F. columnare isolates; however, it does not appear to be sufficient as a sole carbon source for biofilm growth. Our data also suggest that iron acquisition machinery is required for biofilm development. Finally, the addition of different concentrations of L‐rhamnose to F. columnare prior to a laboratory challenge increased mortality rates in channel catfish (Ictalurus punctatus) as compared to controls. These results provide further evidence that biofilm formation is an integral virulence factor in the initiation of disease in fish.  相似文献   

11.
A quantitative survey of Saprolegnia spp. in the water systems of Norwegian salmon hatcheries was performed. Water samples from 14 salmon hatcheries distributed along the Norwegian coastline were collected during final incubation in the hatcheries. Samples of inlet and effluent water were analyzed to estimate Saprolegnia propagule numbers. Saprolegnia spores were found in all samples at variable abundance. Number of spores retrieved varied from 50 to 3200 L?1 in inlet water and from 30 to >5000 L?1 in effluent water. A significant elevation of spore levels in effluent water compared to inlet water was detected. The estimated spore levels were related to recorded managerial and environmental parameters, and the number of spores in inlet water and temperature was the factor having most influence on the spore concentration in the incubation units (effluent water). Further, the relative impact of spore concentration on hatching rates was investigated by correlation analysis. From this was found that even high spore counts did not impact significantly on hatching success.  相似文献   

12.
Interrupting quorum sensing represents a novel anti‐infective strategy to combat bacterial pathogen, and biodegradation of quorum sensing signal AHLs has been proved to be an efficient way to control pathogenic Gram‐negative bacteria in aquaculture. In this study, the effect of Bacillus firmus sw40 as efficient AHL‐degrading strain on virulence of fish pathogen Aeromonas hydrophila and disease resistance of gibel carp Carassius auratus gibelio was investigated. The results demonstrated that in vitro the B. firmus sw40 extracellular production (ECP) was able to significantly decrease protease production, haemolytic activity and biofilm formation in A. hydrophila. Dietary administration of B. firmus sw40 (109 CFU/g) for 4 weeks significantly reduced the inflammatory cytokines TNF‐1a, TNF‐2a and IFN‐γ genes expression, antioxidant parameter MDA and GSH levels in serum and increased antioxidant enzyme SOD activity. Besides, B. firmus sw40 could significantly increase the survival of gibel carp with pathogenic A. hydrophila infection.  相似文献   

13.
Biofilm‐based aquaculture systems constitute a promising alternative for intensive shrimp rearing. Microorganisms forming biofilms can recycle the nitrogen compounds the production units improving the water quality while using zero or limited water exchange. This study aimed to compare the taxonomic profiles and the predicted functions related to the transformation of nitrogenous compounds between a heterotrophic‐ (HtB) and a probiotic biofilm (PrB), and the effect of these on the water quality and the productive response of cultured shrimp. Libraries of the 16S‐rRNA gene (V3‐V4 region) were prepared and sequenced to be used as a taxonomic biomarker. Analysis of metagenomic datasets revelated that genera Halomonas, Planctomycetes and Rhodopirellula were the most abundant genera in HtB; meanwhile, Bacillus, Halobacillus and Flavobacterium dominated in PrB. Regarding nitrogen metabolism, the proportion of genes encoding enzymes catalyzing the six pathways shaping the nitrogen metabolism showed differences between biofilms, which could also explain the difference in water quality between treatments. Concerning the productive response of shrimp, no significant differences were detected except for survival, which was higher in PrB. Finally, the results suggest that biofilms harbour functions for nitrogen metabolism, including dissimilatory nitrate reduction, assimilatory nitrate reduction, denitrification, nitrification, nitrogen fixation and anammox; however, the balance of these functional capabilities seems to be relevant to maintain water quality.  相似文献   

14.
Acute hepatopancreatic necrosis disease (AHPND), caused by a toxin‐producing Vibrio parahaemolyticus strain, has become a serious threat to shrimp aquaculture. The need to regulate antibiotic use prompted the development of alternative ways to treat infections in aquaculture including the use of chicken egg yolk immunoglobulin (IgY) for passive immunization. This study evaluated the protective effect of IgY against AHPND infection in Litopenaeus vannamei (Boone). IgY was isolated from eggs laid by hens immunized with recombinant PirA‐like (rPirA) and PirB‐like (rPirB) toxins. Whole‐egg powders having IgY specific to rPirA (anti‐PirA‐IgY) and rPirB (anti‐PirB‐IgY) and IgY from non‐immunized hen (control‐IgY) were mixed with basal diets at 20% concentrations and used to prefeed shrimp 3 days before the bacterial challenge test. Survival rates of the challenged shrimp fed the anti‐PirA‐IgY, anti‐PirB‐IgY and control‐IgY diets were 86%, 14% and 0%, respectively. Only the feed containing anti‐PirA‐IgY protected shrimp against AHPND. Increasing the concentration of rPirA antigen to immunize hens and lowering the amount of egg powder in feeds to 10% consistently showed higher survival rates in shrimp fed with anti‐PirA‐IgY (87%) compared with the control (12%). These results confirm that addition of anti‐PirA‐IgY in feeds could be an effective prophylactic method against AHPND infection in shrimp.  相似文献   

15.
16.
The invasive fish pathogen Edwardsiella tarda is common in aquatic environments and causes the environmentally and economically destructive emphysematous putrefactive disease called edwardsiellosis. In order to understand the organism's infection pathway, medaka larvae (Oryzias latipes) were immersion‐infected with E. tarda labelled with green fluorescence protein (GFP) and then visualized in three dimensions under confocal laser microscopy and light‐sheet fluorescence microscopy. Confocal microscopy revealed GFP‐labelled E. tarda in the mouth, head, gill bridges, gill cover, skin, membrane fin, gastrointestinal tract and air bladder, and in the caudal vein, somite veins, caudal artery and caudal capillaries. Light‐sheet microscopy additionally showed GFP‐labelled E. tarda in the pharyngeal cavity, muscle of the pectoral fin and cardiac atrium and ventricle. These findings suggest that during its infection of fish, E. tarda initially adheres to, and invades, the epithelial cells of the skin, gills and gastrointestinal tract (through the pharyngeal cavity); E. tarda then enters the blood vessels to access organs, including the air bladder and heart.  相似文献   

17.
Microbial biofilms are important in aquaculture industries as they resist antibiotic treatments. In this study, we have investigated the antibiofilm potential of a tropical marine culture Bacillus licheniformis D1 (containing an antimicrobial protein BLDZ1) against two aquaculture associated pathogens namely, Vibrio harveyi and Pseudomonas aeruginosa. Both the test cultures formed biofilms on polystyrene and glass surfaces. The cell free supernatant (CFS) of B. licheniformis inhibited V. harveyi and P. aeruginosa biofilms on polystyrene surfaces up to around 80% and 78% respectively. In addition, the CFS disrupted pre‐formed biofilms of test cultures by about 73%. Fluorescence and scanning electron microscope analysis confirmed the antibiofilm potential of the CFS. The cell free supernatant displayed antiadhesive activity that inhibited the initial attachment of the bacteria during the process of biofilm formation. In addition, the CFS exhibited antimicrobial activity and mediated cell death via cytoplasmic membrane disruption.  相似文献   

18.
Piscidins are potent, broad‐spectrum, host‐produced antimicrobial peptides (AMPs) that appear to constitute the most common AMP family in teleost fish. Here, we show that piscidin 2 has potent activity against the water mould Saprolegnia, one of the most important pathogens of freshwater fish. The minimum oomyceticidal concentration (MOC100) of piscidin 2 against zoospores of three pathogenic isolates of Saprolegnia ranged from 12.5 to 25.0 μg mL?1. This piscidin concentration is well within levels that have been estimated to be present in at least some fish (1–32.5 μg mL?1). In the presence of either copper or malachite green, two drugs commonly used to treat water moulds, there was evidence for partial synergism (PSYN) with piscidin 2. There was also evidence for PSYN after exposure of the ciliate parasite Tetrahymena pyriformis to piscidin 2 plus copper. Our data provide further evidence that piscidins may be an important host defence against skin and gill pathogens and that the piscidin levels in host tissue might influence the success of drug treatments.  相似文献   

19.
Heterosporis saurida is a microsporidian that infects lizardfish, Saurida undosquamis (Richardson, 1848), in the Arabian Sea. Spores were isolated from infected lizardfish and used to infect derived fish cell lines: common carp brain (CCB), epithelioma papulosum cyprinid (EPC), fathead minnow epithelial (FHM), rainbow trout gonad (RTG), bluegill fry (BF‐2) and chinook salmon embryo (CHSE). Non‐fish cell lines were also tested that include: insect (SF‐9), rabbit (RK‐13) and African green monkey (Vero E6). No growth of H. saurida was observed in any fish cell line, SF‐9 or Vero E6 cell lines. H. saurida spores grew only in RK‐13 cell line and were detected by immunofluorescence. Developmental stages of H. saurida were seen in RK‐13 cells by light and transmission electron microscopy, and species identification was confirmed by sequencing. This study demonstrated that H. saurida was able to proliferate in the mammalian RK‐13 cell line, which thus represents an in vitro model for conducting molecular genetics and cell–pathogen interaction studies of Heterosporis.  相似文献   

20.
To select and characterize potential probiotic bacteria from the gut microbiota of Siberian sturgeon (Acipenser baerii), 129 strains isolated from the hindgut were screened for antagonistic activity against five fish pathogens. Ten isolates showed antagonism towards three or more pathogens. Nine of these isolates were Gram‐positive, belonging to Lactococcus (seven) and Bacillus (two), and a single strain belonging to the Gram‐negative Citrobacter. These inhibitory isolates were identified using genetic, phentotypic and biochemical traits, and further characterized by in vitro tests assessing the adhesion and growth in mucus and resistance to gastric and intestinal fluids. The candidate probiotics were determined to be non‐pathogenic through an in vivo study. Based on these assays, Lactococcus lactis ssp. lactis STG45 and STG81 showed the broadest inhibitory potential, a high viability in simulated gastrointestinal juice and the highest adhesion capacity to mucus. They were therefore selected as the most promising candidate probiotics. This is the first study screening probiotics among the gut microflora of Siberian sturgeon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号