首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The change in hydroperoxides of linoleic acid incubated with constant micro air flow at 37°C was used to evaluate the antioxidant activities of three major components of γ-oryzanol from rice bran (cycloartenyl ferulate, 24-methylene cycloartanyl ferulate, and campesteryl ferulate) compared with α-tocopherol and ferulic acid. The four hydroperoxide isomers of linoleic acid, 9-hydroperoxy-10-trans, 12-cis-octadecadienoic acid [9HPODE(t,c)], 9-hydroperoxy-10-trans, 12-trans-octadecadienoic acid, 13-hydroperoxy-9-cis, 11-trans-octadecadienoic acid [13HPODE(c,t)], and 13-hydroperoxy-9-trans, 11-trans-octadecadienoic acid, were measured using normal-phase high-performance liquid chromatography with an ultraviolet detector. The three components of γ-oryzanol evidenced significant antioxidant activity when they were mixed with linoleic acid in a molar ratio of 1∶100 and 1∶250 but not in a molar ratio of 1∶500 (P<0.05). α-Tocopherol and ferulic acid also demonstrated significant antioxidant activity at all three molar ratios (P<0.05). The highest molar ratio (1∶100) of α-tocopherol, however, caused greater levels of 9HPODE(t,c) and 13HPODE(c,t) than the other two less concentrated treatments.  相似文献   

2.
An isomeric mixture of linoleic acid hydroperoxides, 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid (79%) and 9-hydroperoxy-cis-12,trans-10-octadecadienoic acid (21%), was decomposed homolytically by Fe(II) in an ethanol-water solution. In one series of experiments, the hydroperoxides were decomposed by catalytic concentrations of Fe(II). The 10−5 M Fe(III) used to initiate the decomposition was kept reduced as Fe(II) by a high concentration of cysteine added to the reaction in molar excess of the hydroperoxides. Nine different monomeric (no detectable dimeric) fatty acids were identified from the reaction. Analyses of these fatty acids revealed that they were mixtures of positional isomers identified as follows: (I) 13-oxo-trans,trans-(andcis,trans-) 9,11-octadecadienoic and 9-oxo-trans,trans- (andcis,trans-) 10,12-octadecadienoic acids; (II) 13-oxo-trans-9,10-epoxy-trans-11-octadecenoic and 9-oxo-trans-12, 13-epoxy-trans-10-octadecenoic acids; (III) 13-oxo-cis-9,10-epoxy-trans-11-octadecenoic and 9-oxo-cis-12, 13-epoxy-trans-10-octadecenoic acids; (IV) 13-hydroxy-9,11-octadecadienoic and 9-hydroxy-10,12-octadecadienoic acids; (V) 11-hydroxy-trans-12, 13-epoxy-cis-9-octadecenoic and 11-hydroxy-trans-9, 10-epoxy-cis-12-octadecenoic acids; (VI) 11-hydroxy-trans-12, 13-epoxy-trans-9-octadecenoic and 11-hydroxy-trans-9,10-epoxy-trans-12-octadecenoic acids; (VII) 13-oxo-9-hydroxy-trans-10-octadecenoic acids; (VIII) isomeric mixtures of 9, 12, 13-dihydroxyethoxy-trans-10-octadecenoic and 9, 10, 13-dihydroxyethoxy-trans-11-octadecenoic acids; and (IX) 9, 12, 13-trihydroxy-trans-10-octadecenoic and 9, 10, 13-trihydroxy-trans-11-octadecenoic acids. In another experiment, equimolar amounts of Fe(II) and hydroperoxide were reacted in the absence of cysteine. A large proportion of dimeric fatty acids and a smaller amount of monomeric fatty acids resulted. The monomeric fatty acids were examined by gas liquid chromatography-mass spectroscopy. Spectra indicated that the monomers were largely similar to those produced by the Fe(III)-cysteine reaction. Presented in part at the American Chemical Society Meeting, Los Angeles, March 1974. ARS, USDA.  相似文献   

3.
H. W. Gardner  R. Kleiman 《Lipids》1977,12(11):941-944
In the presence of oxygen, a crude soy extract converted 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid into numerous products, from which 9-oxo-trans-12,13-epoxy-trans-10-octadecenoic acid was isolated. Additionally, the soy extract oxidized linoleic acid to the oxo-epoxyoctadecenoic acid, presumably via a sequential reaction involving lipoxygenase oxidation of linoleic acid followed by degradation of the resultant linoleic acid hydroperoxide. However, the linoleic acid substrate yielded two isomeric linoleic acid hydroperoxides and because of this, two isomeric oxoepoxyoctadecenoic acids. Presented in part at the 13th Congress, International Society for Fat Research, Marseilles, France, August 30–September 4, 1976.  相似文献   

4.
Conjugated linoleic acid production from linoleic acid by lactic acid bacteria   总被引:25,自引:0,他引:25  
After screening 14 genera of lactic acid bacteria, Lactobacillus plantarum AKU 1009a was selected as a potential strain for CLA production from linoleic acid. Washed cells of L. plantarum with high levels of CLA production were obtained by cultivation in a nutrient medium with 0.06% (wt/vol) linoleic acid (cis-9,cis-12-octadecadienoic acid). Under the optimal reaction conditions with the free form of linoleic acid as the substrate, washed cells of L. plantarum produced 40 mg CLA/mL reaction mixture (33% molar yield) from 12% (wt/vol) linoleic acid in 108 h. The resulting CLA was a mixture of two CLA isomers, cis-9,trans-11 (or trans-9,cis-11)-octadecadienoic acid (CLA1, 38% of total CLA) and trans-9,trans-11-octadecadienoic acid (CLA2, 62% of total CLA), and accounted for 50% of the total FA obtained. A higher yield (80% molar yield to linoleic acid) was attained with 2.6% (wt/vol) linoleic acid as the substrate in 96 h, resulting in CLA production of 20 mg/mL reaction mixture [consisting of CLA1 (2%) and CLA2 (98%)] and accounting for 80% of total FA obtained. Most of the CLA produced was associated with the cells (ca. 380 mg CLA/g dry cells), mainly as FFA.  相似文献   

5.
During our ongoing project on the biosynthesis of R-(+)-octane-1,3-diol the metabolism of linoleic acid was investigated in stored apples after injection of [1-14C]-, [9,10,12,13-3H]-, 13C18- and unlabeled substrates. After different incubation periods the products were analyzed by gas chromatography-mass spectroscopy (MS), high-performance liquid chromatography-MS/MS, and HPLC-radiodetection. Water-soluble compounds and CO2 were the major products whereas 13(R)-hydroxy- and 13-keto-9(Z),11(E)-octadecadienoic acid, 9(S)-hydroxy-and 9-keto-10(E),12(Z)-octadecadienoic acid, and the stereoisomers of the 9,10,13- and 9,12,13-trihydroxyoctadecenoic acids were identified as the major metabolites found in the diethyl ether extracts. Hydroperoxides were not detected. The ratio of 9/13-hydroxy- and 9/13-keto-octadecadienoic acid was 1∶4 and 1∶10, respectively. Chiral phase HPLC of the methyl ester derivatives showed enantiomeric excesses of 75% (R) and 65% (S) for 13-hydroxy-9(Z),11(E)-octadecadienoic acid and 9-hydroxy-10(E),12(Z)-octadecadienoic acid, respectively. Enzymatically active homogenates from apples were able to convert unlabeled linoleic acid into the metabolites. Radiotracer experiments showed that the transformation products of linoleic acid were converted into (R)-octane-1,3-diol. 13(R)-Hydroxy-9(Z), 11(E)-octadecadienoic acid is probably formed in stored apples from 13-hydroperoxy-9(Z),11(E)-octadecadienoic acid. It is possible that the S-enantiomer of the hydroperoxide is primarily degraded by enzymatic side reactions, resulting in an enrichment of the R-enantiomer and thus leading to the formation of 13(R)-hydroxy-9(Z),11(E)-octadecadienoic acid.  相似文献   

6.
H. W. Gardner  R. Kleiman 《Lipids》1979,14(10):848-851
Either 9-hydroperoxy-trans-10,cis-12-octadecadienoic acid or 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid was treated with the catalyst, cysteine-FeCl3, in the presence of oxygen. Oxohydroxyoctadecenoic acids were among the many products formed as a result of hydroperoxide decomposition. A mixture of 9(13)-oxo-13(9)-hydroxy-trans-11(10)-octadecenoic acids (δ-ketols) was produced from either isomeric hydroperoxide. The formation of isomeric δ-ketols from 9-hydroxy-trans-12,13-epoxy-trans-10-octadecenoic acid (epoxyol), a known product of 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid decomposition, implies that the epoxyol is an intermediate. The mechanism was elucidated by the facile conversion of the epoxyol (methyl ester_ to methyl 9(13)-oxo-13(9)-hydroxy-trans-11(10)-octadecenoates with a Lewis acid, BF3-etherate. Presented at the 14th World Congress, International Society for Fat Research, Brighton, U.K., September 17–22, 1978. The mention of firm names or trade products does not imply that they are endorsed or recomended by the U.S. Department of Agriculture over other firms or similar products not mentioned.  相似文献   

7.
Catalyzed by 10−5 M ionic iron in 80% ethanol,N-acetylcysteine added to linoleic acid hydroperoxide, forming a thiobond. Reaction of a specific isomer of the hydroperoxide, 13-hydroperoxy-trans-11,cis-9-octadecadienoic acid, andN-acetylcysteine, forms a number of products, of which two were identified as addition compounds. One addition product was 9-S-(N-acetylcysteine)-13-hydroxy-10-ethoxy-trans-11-octadecenoic acid, and the other was 9-S-(N-acetylcysteine)-10,13-dihydroxy-trans-11-octadecenoic acid. Presented at the AOCS 49th Annual Fall Meeting, Cincinnati, September–October, 1975.  相似文献   

8.
The initial steps in the autoxidation of CLA methyl ester are poorly understood. The aim of this study was to determine the stereochemistry of the hydroperoxides formed during autoxidation of CLA methyl ester in the presence of a good hydrogen atom donor. For this purpose, 9-cis, 11-trans CLA methyl ester was autoxidized in the presence of α-tocopherol under atmospheric oxygen at 40°C in the dark. The CLA methyl ester hydroperoxides were isolated, reduced to the corresponding hydroxy derivatives, and separated by HPLC. The stereochemistry of seven hydroxy-CLA methyl esters was investigated. The position of the hydroxy group was determined by GC-MS. The geometry as well as the position of the double bonds in the alkyl chain was determined by NMR. In addition, the 13C NMR spectra of six hydroxy-CLA methyl esters were assigned using COSY, gradient heteronuclear multiple bond correlation, gradient heteronuclear single quantum correlation, and total correlation spectroscopy experiments. The autoxidation of 9-cis, 11-trans CLA methyl ester in the presence of a good hydrogen atom donor is stereoselective in favor of one geometric isomer, namely the 13-(R,S)-hydroperoxy-9-cis, 11-trans-octadecadienoic acid methyl ester. Three types of conjugated diene hydroperoxides are formed as primary hydroperoxides: trans,trans hydroperoxides (12-OOH-8t,10t and 9-OOH-10t,12t), a cis,trans hydroperoxide with the trans double bond adjacent to the hydroperoxide-bearing carbon atom (13-OOH-9c,11t), and a new type of cis,trans lipid hydroperoxide with the cis double bond adjacent to the hydroperoxide-bearing carbon atom (8-OOH-9c,11t). In addition, three nonkinetic hydroperoxides (13-OOH-9t,11t, 8-OOH-9t,11t, and 9-OOH-10t,12c) are formed. This study supports the theory that CLA methyl ester autoxidizes at least partly through an autocatalytic free radical reaction. The complexity of the hydroperoxide mixture is due to formation of two different pentadienyl radicals. Moreover, the stereoslectivity in favor of one geometric isomer can be explained by the selectivity of the two previous steps: the preferential formation of a W-conformer of the pentadienyl radical over the Z-conformer, and regioselectivity of the oxygen addition to the pentadienyl radical.  相似文献   

9.
One of the main compounds formed from 13L-hydroperoxy-9cis,11trans-octadecadienoic acid anaerobically at 100 C in aqueous ethanol was found to bethreo-11-hydroxy-12,13-epoxy-9-octadecenoic acid. The major part (ca. 90%) of this compound was formed from the fatty acid hydroperoxide in a reaction involvingcis-addition to the Δ11 double bond of the proximally linked hydroperoxide oxygen and hydroxyl ion or hydroxyl radical from the solvent. A small part (ca. 10%) was formed bycis-addition of the two hydroperoxide oxygens to the Δ11 double bond. 11-Hydroxy-12,13-epoxy-9-octadecenoic acid and its isomer, tentatively identified as 11-hydroxy-9,10-epoxy-12-octadecenoic acid, also were isolated from a sample of autoxidized linoleic acid.  相似文献   

10.
Cysteine reacts with linoleic acid hydroperoxide to yield several products, some of which were identified as fatty acid-cysteine adducts. The addition was catalyzed by ferric chloride (10−5 M) by initiating free radical reactions. When isomerically pure 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid and cysteine were reacted in 80% ethanol under N2, the major adducts were 9-S-cysteine-13-hydroxy-10-ethoxy-trans-11-octadecenoic acid (I) and 9-S-cysteine-10,13-dihydroxy-trans-11-octadecenoic acid (II). When the reaction included both isomers of the hydroperoxide (13-and 9-hydroperoxide) and air, an adduct of 9-oxononanoic acid and cysteine also was isolated. Additional experiments gave information about possible mechanisms of I and II formation.  相似文献   

11.
Operating from one to six silver ion-high-performance liquid chromatography (Ag+-HPLC) columns in series progressively improved the resolution of the methyl esters of conjugated linoleic acid (CLA) isomeric mixtures from natural and commercial products. In natural products, the 8 trans, 10 cis-octadecadienoic (18∶2) acid was resolved from the more abundant 7 trans, 9 cis-18∶2, and the 10 trans, 12 cis-18∶2 was separated from the major 9 cis, 11 trans-18∶2 peak. In addition, both 11 trans, 13 cis-18∶2 and 11 cis, 13 trans-18∶2 isomers were found in natural products and were separated; the presence of the latter, 11 cis, 13 trans-18∶2, was established in commercial CLA preparations. Three Ag+-HPLC columns in series appeared to be the best compromise to obtain satisfactory resolution of most CLA isomers found in natural products. A single Ag+-HPLC column in series with one of several normal-phase columns did not improve the resolution of CLA isomers as compared to that of the former alone. The 20∶2 conjugated fatty acid isomers 11 cis, 13 trans-20∶2 and 12 trans, 14 cis-20∶2, which were synthesized by alkali isomerization from 11 cis, 14 cis-20∶2, eluted in the same region of the Ag+-HPLC chromatogram just before the corresponding geometric CLA isomers. Therefore, CLA isomers will require isolation based on chain length prior to Ag+-HPLC separation. The positions of conjugated double bonds in 20∶2 and 18∶2 isomers were established by gas chromatography-electron ionization mass spectrometry as their 4,4-dimethyloxazoline derivatives. The double-bond geometry was determined by gas chromatography-direct deposition-Fourier transform infrared spectroscopy and by the Ag+-HPLC relative elution order.  相似文献   

12.
Sodium, potassium and ammonium cis- and trans-(2-n-alkyl-1,3-dioxan-5-yl) sulfates 6–8 (alkyl: n-C9H19, 6a–8a, and n-C11H23, 6b–8b) were synthesized in a reaction of aliphatic aldehydes 1a,b with glycerol 2 followed by separation in high yields of individual geometric isomers of cis-and trans-2-n-alkyl-5-hydroxy-1,3-dioxanes, cis-3a,b and trans-3a,b, followed by sulfation with sulfur trioxide-pyridine complex, and finally neutralization with NaOH, KOH, and NH4OH, respectively. Physical data of the compounds and some surface properties of 2-n-nonyl derivatives, such as critical micelle concentration (CMC), effectiveness of aqueous surface tension reduction (ΠCMC), surface excess concentration ΓCMC, and the surface area demand per molecule (ACMC), were determined. It was shown that the surface activity of these compounds is influenced both by their geometric structure and by the monovalent counter-ion.  相似文献   

13.
A. Graveland 《Lipids》1973,8(11):606-611
Linolenic acid oxidation by the enzyme lipoxygenase in an aqueous wheat flour suspension does not lead to accumulation of linolenic acid hydroperoxides but immediately to secondary oxidation products. The 3 most important products among these were identified as 9-hydroxy-trans-10,cis-12,cis-15-octadecatrienoic acid, 9-hydroxy-10-oxo,cis-12,cis-15-octadecadienoic acid, and 9,12,13-trihydroxy-trans-10,cis-15-octadecadienoic acid.  相似文献   

14.
Peroxygenase is an enzyme of higher plants that is capable of using hydroperoxide and hydrogen peroxide for oxidation of a double bond to an epoxide. A microsomal fraction was prepared from dry oat (Avena sativa) seeds. The peroxygenase activity of this fraction was tested using fatty acid hydroperoxide 2a [13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoic acid] and its methyl ester 2b as sources of peroxygen. These were prepared by the action of soybean lipoxygenase on linoleic acid. A high-performance liquid chromatographic assay was used to differentiate between peroxygen cleavage and peroxygen cleavage with accompanying double-bond oxidation Higher activity was obtained with 2b compared to 2a, and peroxygen cleavage activity was observed in both aqueous and organic solvent media. Double-bond oxidation activity was high only in aqueous media and nonpolar organic solvents. Structural elucidation of the epoxidized product showed it to be the oxylipid, methyl cis-9,10-epoxy-13(S)-hydroxy-11(E)-octade-cenoate 4b, demonstrating specificity for epoxidation of the cis double bond. Trihydroxy product was not detected, demonstrating that the epoxide was not hydrolyzed.  相似文献   

15.
Lipoxygenase from the germ of corn,Zea mays, oxidized linoleic acid to primarily 9-d-hydroperoxy-trans-10,cis-12-octadecadienoic acid. No. Utiliz. Res. Dev. Div., ARS, USDA.  相似文献   

16.
Mary P. Carpenter 《Lipids》1974,9(6):397-406
The purpose of the study was to determine whether prostaglandins were present in mammalian testis, a tissue that has a large concentration of polyenoic fatty acids that are potential precursors of prostaglandins. Acid-soluble lipids of rat testis were extracted, purified, and fractionated by thin layer and column chromatographies.3H-Prostaglandins were added as internal reference standards to monitor recoveries and facilitate identification. Initial identification of prostaglandin species was done by chromatography. Further identification was done by elution of the prostaglandin zones followed by rechromatographies (both thin layer and column), measurements of UV absorption spectra, and by gas liquid chromatography. The results of these analyses indicate that prostaglandin E1, 11α,15(S)-dihydroxy-9-oxo-β-trans-prostenoic acid; prostaglandin E2, 11α-15(S)-dihydroxy-9-oxo-5-cis-13-trans-prostadienoic acid; and prostaglandin F1, 9α,11α,15(S)-trihydroxy-13-trans-prostenoic acid occur in rat testicular tissue and that prostaglandin F, 9α, 11α, 15(S)-trihydroxy-5-cis-13-trans-prostadienoic acid and prostaglandin E2, 11α,15(S)-dihydroxy-9-oxo-5-cis-13-trans-prostadienoic acid may be the primary species of this tissue. Prostaglandin B1, 15(S)-hydroxy-9-oxo-8(12),13-trans-prostadienoic acid and prostaglandin B2, 15(S)-hydroxy-9-oxo-5-cis,8(12),13-trans-prostatrienoic acid also were detected, and some evidence was obtained for the presence of prostaglandin metabolites.  相似文献   

17.
Either linoleic acid hydroperoxide (LOOH) or methyl linoleate hydroperoxide react anaerobically with either α-tocopherol (TOH) or its model compound-2,2,5,7,8-pentamethyl-6-hydroxychroman (COH)-to form principally an addition compound of the two reactants. The reaction can be catalyzed either by 1.28 X 10−5 M Fe(III) or by proflavin (0.01%) sensitized by visible light. The presence of air in the reaction terminates the addition, and quinones become the major products from TOH or its model compound. The addition compound synthesized from COH and LOOH (a 4.9∶1 ratio of 13-hydroperoxy-cis-9,trans-12-octadecadienoic acid and 9-hydroperoxy-trans-10,cis-12-octadecadienoic acid) was used to solve structural details of the bridging function. Three isomers of the addition compound (methyl esterified) were isolated and identified as methyl 11-(2,2,5,7,8-pentamethyl-6-oxychroman)-cis-12,13-epoxy-trans-9-octadecenoate; methyl 11-(2,2,5,7,8-pentamethyl-6-oxychroman)-trans-12,13-epoxy-trans-9-octadecenoate; and methyl 11-(2,2,5,7,8-pentamethyl-6-oxychroman)-cis-9,10-epoxy-trans-12-octadecenoate in order of decreasing abundance. The mechanism appears to be free radical addition brought about by the catalytic formation of alkoxy radicals from the hydroperoxide and chromanoxy radicals from TOH or its model. Presented at the AOCS Meeting, Atlantic City, N.J. October 1971. N. Market. Nutr. Res. Div., ARS, USDA.  相似文献   

18.
We have shown unequivocally that the positional specificity of γ-ketol formation by a corn germ enzyme was different from that observed previously by others with an alfalfa seedling enzyme. When the pure positional isomers of linoleic acid hydroperoxide served as substrates, the corn germ enzyme formed one of two γ-ketols: 12-oxo-9-hydroxy-trans-10-octadecenoic acid from 13-hydroperoxy-cis-9,trans-11-octadecadienoic acid (99+% pure) and 10-oxo-13-hydroxy-trans-11-octadecenoic acid from 9-hydroperoxy-trans-10,cis-12-octadecadienoic acid (96% pure). Also isolated from these reactions was one of two α-ketols commonly found as a result of catalysis by linoleic acid hydroperoxide isomerase: 12-oxo-13-hydroxy-cis-9-octadecenoic acid from the 13-hydroperoxide and 10-oxo-9-hydroxy-cis-12-octadecenoic acid from the 9-hydroperoxide. Evidence is offered that γ-ketol formation is catalyzed by linoleic acid hydroperoxide isomerase, the same enzyme responsible for α-ketol production. Presented at the AOCS Spring Meeting, Dallas, Texas, April, 1975.  相似文献   

19.
The geometrical and positional isomers of linoleic acid of a partially hydrogenated canola oil-based spread were isolated and identified. Through partial hydrazine reduction and mass spectral studies,cis-9,trans-13 octadecadienoic acid was identified as the major isomer. Other quantitatively important isomers characterized werecis-9,trans-12;trans-9,cis-12 andcis-9,cis-15. These four were also the major isomers in margarine based on common vegetable oils. A number of minor isomers were detected and some structures identified weretrans-9,trans-12;trans-8,cis-12;trans-8,cis-13;cis-8,cis-13;trans-9,cis-15;trans-10,cis-15 andcis-9,cis-13. The proportions of the various isomers are given for some margarines in the Canadian retail market. The amounts oftrans-9,trans-12 isomer in Canadian margarines were generally below 0.5% of the total fatty acids.  相似文献   

20.
The fatty acid desaturation and elongation reactions catalyzed by Trichoderma sp. 1-OH-2-3 were investigated. This strain converted palmitic acid (16:0) mainly to stearic acid (18:0), and further to oleic acid (c9-18:1), linoleic acid (c9,c12-18:2), and α-linolenic acid (c9,c12,c15-18:3) through elongation, and Δ9, Δ12, and Δ15 desaturation reactions, respectively. Palmitoleic acid (c9-16:1) and cis-9,cis-12-hexadecadienoic acid were also produced from 16:0 by the strain. This strain converted n-tridecanoic acid (13:0) to cis-9-heptadecenoic acid and further to cis-9,cis-12-heptadecadienoic acid through elongation, and Δ9 and Δ12 desaturation reactions, respectively. trans-Vaccenic acid (t11-18:1) and trans-12-octadecenoic acid (t12-18:1) were desaturated by the strain through Δ9 desaturation. The products derived from t11-18:1 were identified as the conjugated linoleic acids (CLAs) of cis-9,trans-11-octadecadienoic acid and trans-9,trans-11-octadecadienoic acid. The product derived from t12-18:1 was identified as cis-9,trans-12-octadecadienoic acid. cis-6,cis-9-Octadecadienoic acid was desaturated to cis-6,cis-9,cis-12-octadecatrienoic acid by this strain through Δ12 desaturation. The broad substrate specificity of the elongation, and Δ9 and Δ12 desaturation reactions of the strain is useful for fatty acid biotransformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号