首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
郑维豪  林志强  卓敏  杜红丽  王小宁 《遗传》2012,34(5):526-532
流行性感冒是一类由流感病毒引起的呼吸道传染病, 通过季节性流行或全球性爆发严重威胁着人类健康。目前防治流感的主要方法是疫苗和药物, 但存在神经毒性、肠胃副作用、易耐药等诸多限制因素。新的技术特别是小RNAs介导的RNA干扰(RNAi)技术, 因其具有高效、特异、快速等特点, 已成为抗病毒治疗的候选方法之一。随着近年来流感病毒的流行, 应用小RNAs抗流感病毒的报导越来越多, 其中靶向PA、NP和M2的PA-2087, NP-1496和M-950是目前报道的抑制流感病毒效果最好的siRNA。靶向不同流感病毒基因保守区域的siRNA具有更广泛的病毒毒株抑制效果, 靶向不同基因的siRNAs联合使用可取得更好的病毒抑制效果。文章就目前siRNAs和miRNAs在抗流感病毒方面的研究进展及RNAi治疗的前景和问题进行了综述。  相似文献   

2.
Zheng WH  Lin ZQ  Zhuo M  Du HL  Wang XN 《遗传》2012,34(5):526-532
流行性感冒是一类由流感病毒引起的呼吸道传染病,通过季节性流行或全球性爆发严重威胁着人类健康。目前防治流感的主要方法是疫苗和药物,但存在神经毒性、肠胃副作用、易耐药等诸多限制因素。新的技术特别是小RNAs介导的RNA干扰(RNAi)技术,因其具有高效、特异、快速等特点,已成为抗病毒治疗的候选方法之一。随着近年来流感病毒的流行,应用小RNAs抗流感病毒的报导越来越多,其中靶向PA、NP和M2的PA-2087,NP-1496和M-950是目前报道的抑制流感病毒效果最好的siRNA。靶向不同流感病毒基因保守区域的siRNA具有更广泛的病毒毒株抑制效果,靶向不同基因的siRNAs联合使用可取得更好的病毒抑制效果。文章就目前siRNAs和miRNAs在抗流感病毒方面的研究进展及RNAi治疗的前景和问题进行了综述。  相似文献   

3.
4.
siRNA-mediated RNA degradation has been demonstrated to act as an antiviral system in many species. Here we describe inhibition of retrovirus production by multiple siRNAs designed to target various regions of the viral genomes. Using murine leukemia virus (MuLV) as a model, we demonstrate that the virus production can be inhibited by 77% in siLTR2 (a siRNA targeting the U3 region of MuLV) expression vector transfected cells. Coexpression of siLTR2 with siPsi2 (a siRNA targeting the 3' Psi (packaging signal sequence) results in 93% suppression of the virus production, suggesting that an increased inhibition of the virus production can be achieved by coexpression of multiple siRNAs to target different regions of the viral RNA simultaneously. Our results also indicate that not all sequences of the viral RNA are equally accessible to siRNA. We show that U3 region of MuLV is more accessible to siRNA, whereas the packaging signal sequence, especially the region adjacent to 5'LTR, is less accessible to siRNA, partly as a result of the binding of Gag precursors. Furthermore, we demonstrate that coexpression of siLTR2 with siPsi2 in virus producer cells leads to 88% knockdown of viral titer, showing the benefit of coexpression of multiple siRNAs for potent suppression of virus production in the setting of an established infection. Moreover, we demonstrate that infection of MuLV in cells that stably coexpress siLTR2 with siPsi2 diminishes by 77%. Taken together, we establish that siRNA-mediated gene silencing can suppress multiple steps of the retrovirus life cycle, offering a potential for both treating virus-associated diseases and preventing viral infection.  相似文献   

5.
Several arenaviruses, including Lassa fever virus, cause severe, often lethal hemorrhagic fever in humans. No licensed vaccines are available in the United States, and currently there is no efficacious therapy to treat this viral infection. Therefore the importance of developing effective antiviral approaches to combat pathogenic arenaviruses is clear. Moreover, the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is an important model for the study of viral persistence and associated diseases, as well as for exploring therapies to treat viral chronic infections. The use of small interfering RNAs (siRNAs) to downregulate gene expression via RNA interference (RNAi) has emerged as a powerful genetic tool for the study of gene function. In addition, the successful use of siRNAs to target a variety of animal viruses has led us to consider RNAi as a potential novel antiviral strategy. We have investigated the use of RNAi therapy against LCMV. Here, we show that siRNAs targeting sequences within the viral L polymerase and Z mRNAs inhibit LCMV multiplication in cultured cells. Unexpectedly, the antiviral efficacy of RNAi-based therapy against LCMV was highly dependent on the method used to deliver effector siRNA molecules. Thus, transfection of chemically synthesized siRNA pools to L and Z was ineffective in preventing virus multiplication. In contrast, targeting of the same viral L and Z gene products with siRNAs produced inside cells using a replication-deficient recombinant adenovirus expression system inhibited LCMV multiplication very efficiently. Notably, transduction with the replication-deficient recombinant adenovirus expression system to Z and L effectively cured persistently LCMV-infected cells, suggesting the feasibility of using RNAi therapy to combat viral chronic infections by riboviruses.  相似文献   

6.
Coxsackievirus B3 (CVB3) is the most common causal agent of viral myocarditis, but existing drug therapies are of limited value. Application of small interfering RNA (siRNA) in knockdown of gene expression is an emerging technology in antiviral gene therapy. To investigate whether RNA interference (RNAi) can protect against CVB3 infection, we evaluated the effects of RNAi on viral replication in HeLa cells and murine cardiomyocytes by using five CVB3-specific siRNAs targeting distinct regions of the viral genome. The most effective one is siRNA-4, targeting the viral protease 2A, achieving a 92% inhibition of CVB3 replication. The specific RNAi effects could last at least 48 h, and cell viability assay revealed that 90% of siRNA-4-pretreated cells were still alive and lacked detectable viral protein expression 48 h postinfection. Moreover, administration of siRNAs after viral infection could also effectively inhibit viral replication, indicating its therapeutic potential. Further evaluation by combination found that no enhanced inhibitory effects were observed when siRNA-4 was cotransfected with each of the other four candidates. In mutational analysis of the mechanisms of siRNA action, we found that siRNA functions by targeting the positive strand of virus and requires a perfect sequence match in the central region of the target, but mismatches were more tolerated near the 3' end than the 5' end of the antisense strand. These findings reveal an effective target for CVB3 silencing and provide a new possibility for antiviral intervention.  相似文献   

7.
The frequent disease outbreaks caused by avian influenza virus (AIV) not only affect the poultry industry but also pose a threat to human safety. To address the problem, RNA interference (RNAi) has recently been widely used as a potential antiviral approach. Transgenesis, in combination with RNAi to specifically inhibit AIV gene expression, has been proposed to make chickens resistant to avian influenza. For the transgenic breeding, screening the efficient siRNAs in vitro as the candidate genes is one of the most important tasks. Here, we combined an online search tool and a series of bioinformatics programs with a set of rules for designing the siRNAs targeting different mRNA regions of AIV H5N1 subtype. By this method we chose five rational siRNAs, constructed five U6 promoter-driven shRNA expression plasmids contained the siRNA genes, and used these to produce stably transfected Madin-Darby canine kidney (MDCK) cells. Data from virus titration, IFA, PUI-stained flow cytometry, real-time quantitative RT-PCR and DAS-ELISA analyses showed that all five stably transfected cell lines were effectively resistant to viral replication when exposed to 100 CCID50 of AIV, and we finally chose the most effective plasmids (pSi-604i and pSi-1597i) as the candidates for making the transgenic chickens. These findings provide baseline information for breeding transgenic chickens resistant to AIV in combination with RNAi.  相似文献   

8.
Avian influenza is an acute viral respiratory disease caused by RNA viruses of the family Orthomyxoviridae. The influenza A virus subtype H5 can cause severe illness and results in almost 100% mortality rate among livestock. Hemagglutinin (HA) present in the virus envelope plays an essential role in the initiation of viral infection. In this study, we investigated the efficacy of using HA as a target for antiviral therapy through nucleic acid aptamers. After purification of the receptor binding domain (HA1) of HA protein, activity of recombinant HA1 was confirmed by using hemagglutination assay. We selected RNA aptamer candidates after 15 rounds of iterative Systematic Evolution of Ligands by EXponential enrichment (SELEX) targeting the biologically active HA protein. The selected RNA aptamer HAS15-5, which specifically binds to HA1, exhibited significant antiviral efficacy according to the results of a hemagglutination inhibition assay using egg allantoic fluids harboring the virus. Thus, the RNA aptamer HAS15-5, which acts by blocking and inhibiting the receptor-binding domain of viral HA, can be developed as a novel antiviral agent against type H5 avian influenza virus.  相似文献   

9.
Inhibition of respiratory viruses by nasally administered siRNA   总被引:32,自引:0,他引:32  
Respiratory syncytial virus (RSV) and parainfluenza virus (PIV) are two respiratory pathogens of paramount medical significance that exert high mortality. At present, there is no reliable vaccine or antiviral drug against either virus. Using an RNA interference (RNAi) approach, we show that individual as well as joint infection by RSV and PIV can be specifically prevented and inhibited by short interfering RNAs (siRNAs), instilled intranasally in the mouse, with or without transfection reagents. The degree of protection matched the antiviral activity of the siRNA in cell culture, allowing an avenue for quick screening of an efficacious siRNA. When targeting both viruses in a joint infection, excess of one siRNA moderated the inhibitory effect of the other, suggesting competition for the RNAi machinery. Our results suggest that, if properly designed, low dosages of inhaled siRNA might offer a fast, potent and easily administrable antiviral regimen against respiratory viral diseases in humans.  相似文献   

10.
Han YH  Luo YJ  Wu Q  Jovel J  Wang XH  Aliyari R  Han C  Li WX  Ding SW 《Journal of virology》2011,85(24):13153-13163
Replication of viral RNA genomes in fruit flies and mosquitoes induces the production of virus-derived small interfering RNAs (siRNAs) to specifically reduce virus accumulation by RNA interference (RNAi). However, it is unknown whether the RNA-based antiviral immunity (RVI) is sufficiently potent to terminate infection in adult insects as occurs in cell culture. We show here that, in contrast to robust infection by Flock house virus (FHV), infection with an FHV mutant (FHVΔB2) unable to express its RNAi suppressor protein B2 was rapidly terminated in adult flies. FHVΔB2 replicated to high levels and induced high mortality rates in dicer-2 and argonaute-2 mutant flies that are RNAi defective, demonstrating that successful infection of adult Drosophila requires a virus-encoded activity to suppress RVI. Drosophila RVI may depend on the RNAi activity of viral siRNAs since efficient FHVΔB2 infection occurred in argonaute-2 and r2d2 mutant flies despite massive production of viral siRNAs. However, RVI appears to be insensitive to the relative abundance of viral siRNAs since FHVΔB2 infection was terminated in flies carrying a partial loss-of-function mutation in loquacious required for viral siRNA biogenesis. Deep sequencing revealed a low-abundance population of Dicer-2-dependent viral siRNAs accompanying FHVΔB2 infection arrest in RVI-competent flies that included an approximately equal ratio of positive and negative strands. Surprisingly, viral small RNAs became strongly biased for positive strands at later stages of infection in RVI-compromised flies due to genetic or viral suppression of RNAi. We propose that degradation of the asymmetrically produced viral positive-strand RNAs associated with abundant virus accumulation contributes to the positive-strand bias of viral small RNAs.  相似文献   

11.
Highly pathogenic avian influenza (HPAI) H5N1 virus is endemic in many regions around the world and remains a significant pandemic threat. To date H5N1 has claimed almost 300 human lives worldwide, with a mortality rate of 60% and has caused the death or culling of hundreds of millions of poultry since its initial outbreak in 1997. We have designed multi-functional RNA interference (RNAi)-based therapeutics targeting H5N1 that degrade viral mRNA via the RNAi pathway while at the same time augmenting the host antiviral response by inducing host type I interferon (IFN) production. Moreover, we have identified two factors critical for maximising the immunostimulatory properties of short interfering (si)RNAs in chicken cells (i) mode of synthesis and (ii) nucleoside sequence to augment the response to virus. The 5-bp nucleoside sequence 5'-UGUGU-3' is a key determinant in inducing high levels of expression of IFN-α, -β, -λ and interleukin 1-β in chicken cells. Positioning of this 5'-UGUGU-3' motif at the 5'-end of the sense strand of siRNAs, but not the 3'-end, resulted in a rapid and enhanced induction of type I IFN. An anti-H5N1 avian influenza siRNA directed against the PB1 gene (PB1-2257) tagged with 5'-UGUGU-3' induced type I IFN earlier and to a greater extent compared to a non-tagged PB1-2257. Tested against H5N1 in vitro, the tagged PB1-2257 was more effective than non-tagged PB1-2257. These data demonstrate the ability of an immunostimulatory motif to improve the performance of an RNAi-based antiviral, a finding that may influence the design of future RNAi-based anti-influenza therapeutics.  相似文献   

12.
Invertebrate RNA viruses are targets of the host RNA interference (RNAi) pathway, which limits virus infection by degrading viral RNA substrates. Several insect RNA viruses encode suppressor proteins to counteract this antiviral response. We recently demonstrated that the dsDNA virus Invertebrate iridescent virus 6 (IIV-6) induces an RNAi response in Drosophila. Here, we show that RNAi is suppressed in IIV-6-infected cells and we mapped RNAi suppressor activity to the viral protein 340R. Using biochemical assays, we reveal that 340R binds long dsRNA and prevents Dicer-2-mediated processing of long dsRNA into small interfering RNAs (siRNAs). We demonstrate that 340R additionally binds siRNAs and inhibits siRNA loading into the RNA-induced silencing complex. Finally, we show that 340R is able to rescue a Flock House virus replicon that lacks its viral suppressor of RNAi. Together, our findings indicate that, in analogy to RNA viruses, DNA viruses antagonize the antiviral RNAi response.  相似文献   

13.
14.
Human immunodeficiency virus type 1 escape from RNA interference   总被引:20,自引:0,他引:20       下载免费PDF全文
Boden D  Pusch O  Lee F  Tucker L  Ramratnam B 《Journal of virology》2003,77(21):11531-11535
Sequence-specific degradation of mRNA by short interfering RNA (siRNA) allows the selective inhibition of viral proteins that are critical for human immunodeficiency virus type 1 (HIV-1) replication. The aim of this study was to characterize the potency and durability of virus-specific RNA interference (RNAi) in cell lines that stably express short hairpin RNA (shRNA) targeting the HIV-1 transactivator protein gene tat. We found that the antiviral activity of tat shRNA was abolished due to the emergence of viral quasispecies harboring a point mutation in the shRNA target region. Our results suggest that, in order for RNAi to durably suppress HIV-1 replication, it may be necessary to target highly conserved regions of the viral genome. Alternatively, similar to present antiviral drug therapy paradigms, DNA constructs expressing multiple siRNAs need to be developed that target different regions of the viral genome, thereby reducing the probability of generating escape mutants.  相似文献   

15.
Avian influenza has emerged as a devastating disease and may cross species barrier and adapt to a new host, causing enormous economic loss and great public health threats, and non-structural protein 1 (NS1) is a multifunctional non-structural protein of avian influenza virus (AIV) that counters cellular antiviral activities and is a virulence factor. RNA interference (RNAi) provides a powerful promising approach to inhibit viral infection specifically. To explore the possibility of using RNAi as a strategy against AIV infection, after the fusion protein expression plasmids pNS1-enhanced green fluorescent protein (EGFP), which contain the EGFP reporter gene and AIV NS1 as silencing target, were constructed and NS1-EGFP fusion protein expressing HEK293 cell lines were established, four small interfering RNAs (siRNAs) targeting NS1 gene were designed, synthesized, and used to transfect the stable cell lines. Flow cytometry, real-time quantitative polymerase chain reaction, and Western blot were performed to assess the expression level of NS1. The results suggested that sequence-dependent specific siRNAs effectively inhibited mRNA accumulation and protein expression of AIV NS1 in vitro. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for AIV infection.  相似文献   

16.
17.

Background

Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals.

Methods

We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect) assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle.

Results

The 50% effective inhibitory concentration (IC50) of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1) was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption), its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus.

Conclusions

To the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM) antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.  相似文献   

18.
Design of extended short hairpin RNAs for HIV-1 inhibition   总被引:6,自引:1,他引:5  
RNA interference (RNAi) targeted towards viral mRNAs is widely used to block virus replication in mammalian cells. The specific antiviral RNAi response can be induced via transfection of synthetic small interfering RNAs (siRNAs) or via intracellular expression of short hairpin RNAs (shRNAs). For HIV-1, both approaches resulted in profound inhibition of virus replication. However, the therapeutic use of a single siRNA/shRNA appears limited due to the rapid emergence of RNAi-resistant escape viruses. These variants contain deletions or point mutations within the target sequence that abolish the antiviral effect. To avoid escape from RNAi, the virus should be simultaneously targeted with multiple shRNAs. Alternatively, long hairpin RNAs can be used from which multiple effective siRNAs may be produced. In this study, we constructed extended shRNAs (e-shRNAs) that encode two effective siRNAs against conserved HIV-1 sequences. Activity assays and RNA processing analyses indicate that the positioning of the two siRNAs within the hairpin stem is critical for the generation of two functional siRNAs. E-shRNAs that are efficiently processed into two effective siRNAs showed better inhibition of virus production than the poorly processed e-shRNAs, without inducing the interferon response. These results provide building principles for the design of multi-siRNA hairpin constructs.  相似文献   

19.
A number of studies have shown that both innate and adaptive immune defense mechanisms greatly influence the course of human dengue virus (DENV) infections, but little is known about the innate immune response of the mosquito vector Aedes aegypti to arbovirus infection. We present evidence here that a major component of the mosquito innate immune response, RNA interference (RNAi), is an important modulator of mosquito infections. The RNAi response is triggered by double-stranded RNA (dsRNA), which occurs in the cytoplasm as a result of positive-sense RNA virus infection, leading to production of small interfering RNAs (siRNAs). These siRNAs are instrumental in degradation of viral mRNA with sequence homology to the dsRNA trigger and thereby inhibition of virus replication. We show that although dengue virus type 2 (DENV2) infection of Ae. aegypti cultured cells and oral infection of adult mosquitoes generated dsRNA and production of DENV2-specific siRNAs, virus replication and release of infectious virus persisted, suggesting viral circumvention of RNAi. We also show that DENV2 does not completely evade RNAi, since impairing the pathway by silencing expression of dcr2, r2d2, or ago2, genes encoding important sensor and effector proteins in the RNAi pathway, increased virus replication in the vector and decreased the extrinsic incubation period required for virus transmission. Our findings indicate a major role for RNAi as a determinant of DENV transmission by Ae. aegypti.  相似文献   

20.

Background

Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals.

Methods

We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect) assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle.

Results

The 50% effective inhibitory concentration (IC50) of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1) was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption), its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus.

Conclusions

To the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM) antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号