首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
During the 6th August 1995, the CUTLASS Finland HF radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14 s. Data from such scans, during the substorm expansion phase, revealed pulses of equatorward flow exceeding 600 m s–1 with a duration of 5 min and a repetition period of 8 min. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. These transient features, which propagate eastwards away from local midnight, have been interpreted as ionospheric current vortices associated with fieldaligned current pairs. The present study reveals that these ionospheric convection features appear to have an accompanying signature in the magnetosphere, comprising a dawnward perturbation and dipolarisation of the magnetic field and dawnward plasma flow, measured in the geomagnetic tail by the Geotail spacecraft, located at L = 10 and some four hours to the east, in the postmidnight sector. These signatures are suggested to be the consequence of the observation of the same field aligned currents in the magnetosphere. Their possible relationship with bursty Earthward plasma flow and magnetotail reconnection is discussed.  相似文献   

2.
High time resolution data from the CUTLASS Finland radar during the interval 01:30–03:30 UT on 11 May, 1998, are employed to characterise the ionospheric electric field due to a series of omega bands extending 5° in latitude at a resolution of 45 km in the meridional direction and 50 km in the azimuthal direction. E-region observations from the STARE Norway VHF radar operating at a resolution of 15 km over a comparable region are also incorporated. These data are combined with ground magnetometer observations from several stations. This allows the study of the ionospheric equivalent current signatures and height integrated ionospheric conductances associated with omega bands as they propagate through the field-of-view of the CUTLASS and STARE radars. The high-time resolution and multi-point nature of the observations leads to a refinement of the previous models of omega band structure. The omega bands observed during this interval have scale sizes 500 km and an eastward propagation velocity 0.75 km s–1. They occur in the morning sector (05 MLT), simultaneously with the onset/intensification of a substorm to the west during the recovery phase of a previous substorm in the Scandinavian sector. A possible mechanism for omega band formation and their relationship to the substorm phase is discussed.  相似文献   

3.
Elevation scans across geomagnetic mid latitudes by the incoherent scatter radar at Millstone Hill captured the ionospheric response to the firing of the Space Shuttle Challenger OMS thrusters near the peak of the F layer on July 30, 1985. Details of the excitation of airglow and the formation of an ionospheric hole during this event have been reported in an earlier paper by Mendillo et al.. The depletion (factor 2) near the 320 km Shuttle orbital altitude persisted for 35 min and then recovered to near normal levels, while at 265 km the density was reduced by a factor of 6; this significant reduction in the bottomside F-region density persisted for more than 3 hours. Total electron content in the vicinity of the hole was reduced by more than a factor of 2, and an oscillation of the F-region densities with 40-min period ensued and persisted for several hours. Plasma vertical Doppler velocity varied quasi-periodically with a 80-min period, while magnetic field variations observed on the field line through the Shuttle-burn position exhibited a similar 80-min periodicity. An interval of magnetic field variations at hydromagnetic frequencies (95 s period) accompanied the ionospheric perturbations on this field line. Radar observations revealed a downward phase progression of the 40-min period density enhancements of -1.12° km–1, corresponding to a 320-km vertical wavelength. An auroral-latitude geomagnetic disturbance began near the time of the Spacelab-2 experiment and was associated with the imposition of a strong southward IMF Bz across the magnetosphere. This created an additional complication in the interpretation of the active ionospheric experiment. It cannot be determined uniquely whether the ionospheric oscillations, which followed the Spacelab-2 experiment, were related to the active experiment or were the result of a propagating ionospheric disturbance (TID) launched by the enhanced auroral activity. The most reasonable conclusion is that the ionospheric oscillations were a result of the coincident geomagnetic disturbance. The pronounced depletion of the bottomside ionosphere, however, accentuated the oscillatory behavior during the interval following the Shuttle OMS burn.  相似文献   

4.
We present for the first time a statistical study of 50 keV ion events of a magnetospheric origin upstream from Earths bow shock. The statistical analysis of the 50–220 keV ion events observed by the IMP-8 spacecraft shows: (1) a dawn-dusk asymmetry in ion distributions, with most events and lower intensities upstream from the quasi-parallel pre-dawn side (4 LT-6 LT) of the bow shock, (2) highest ion fluxes upstream from the nose/dusk side of the bow shock under an almost radial interplanetary magnetic field (IMF) configuration, and (3) a positive correlation of the ion intensities with the solar wind speed and the index of geomagnetic index Kp, with an average solar wind speed as high as 620 km s–1 and values of the index Kp 2. The statistical results are consistent with (1) preferential leakage of 50 keV magnetospheric ions from the dusk magnetopause, (2) nearly scatter free motion of 50 keV ions within the magnetosheath, and (3) final escape of magnetospheric ions from the quasi-parallel dawn side of the bow shock. An additional statistical analysis of higher energy (290–500 keV) upstream ion events also shows a dawn-dusk asymmetry in the occurrence frequency of these events, with the occurrence frequency ranging between 16%-34% in the upstream region.  相似文献   

5.
Previous work has shown that ionospheric HF radar backscatter in the noon sector can be used to locate the footprint of the magnetospheric cusp particle precipitation. This has enabled the radar data to be used as a proxy for the location of the polar cap boundary, and hence measure the flow of plasma across it to derive the reconnection electric field in the ionosphere. This work used only single radar data sets with a field of view limited to 2 h of local time. In this case study using four of the SuperDARN radars, we examine the boundary determined over 6 h of magnetic local time around the noon sector and its relationship to the convection pattern. The variation with longitude of the latitude of the radar scatter with cusp characteristics shows a bay-like feature. It is shown that this feature is shaped by the variation with longitude of the poleward flow component of the ionospheric plasma and may be understood in terms of cusp ion time-of-flight effects. Using this interpretation, we derive the time-of-flight of the cusp ions and find that it is consistent with approximately 1 keV ions injected from a subsolar reconnection site. A method for deriving a more accurate estimate of the location of the open-closed field line boundary from HF radar data is described.  相似文献   

6.
The CUTLASS Finland HF radar has been operational since February 1995. The radar frequently observes backscatter during the midnight sector from a latitude range 70–75° geographic, latitudes often associated with the polar cap. These intervals of backscatter occur during intervals of substorm activity, predominantly in periods of relatively quiet magnetospheric activity, with Kp during the interval under study being 2-and KP for the day being only 8-. During August 1995 the radar ran in a high time resolution mode, allowing measurements of line-of-sight convection velocities along a single beam with a temporal resolution of 14s, and measurement of a full spatial scan of line-of-sight convection velocities every four minutes. Data from such scans reveal the radar to be measuring return flow convection during the interval of substorm activity. For three intervals during the period under study, a reduction in the spatial extent of radar backscatter occurred. This is a consequence of D region HF absorption and its limited extent in the present study is probably a consequence of the high latitude of the substorm activity, with the electrojet centre lying between 67° and 71° geomagnetic latitude. The high time resolution beam of the radar additionally demonstrates that the convection is highly time dependent. Pulses of equatorward flow exceeding 600 m s–1 are observed with a duration of 5 min and a repetition period of 8 min. Their spatial extent in the CUTLASS field of view was 400–500 km in longitude, and 300–400 km in latitude. Each pulse of enhanced equatorward flow was preceded by an interval of suppressed flow and enhanced ionospheric Hall conductance. The transient features are interpreted as being due to ionospheric current vortices associated with field aligned current pairs. The relationship between these observations and substorm phenomena in the magnetotail is discussed.  相似文献   

7.
Sergeev  V. A.  Bikkuzina  G. R.  Newell  P. T. 《Annales Geophysicae》1997,15(10):1233-1245
Recently it has been shown that isotropic precipitation of energetic protons on the nightside is caused by a non-adiabatic effect, namely pitch-angle scattering of protons in curved magnetic field lines of the tail current sheet. Here we address the origin of isotropic proton precipitation on the dayside. Computations of proton scattering regions in the magnetopheric models T87, T89 and T95 reveal two regions which contribute to the isotropic precipitation. The first is the region of weak magnetic field in the outer cusp which provides the 1–2° wide isotropic precipitation on closed field lines in a 2–3 hour wide MLT sector centered on noon. A second zone is formed by the scattering on the closed field lines which cross the nightside equatorial region near the magnetopause which provides isotropic precipitation starting 1.5–2 h MLT from noon and which joins smoothly the precipitation coming from the tail current sheet. We also analyzed the isotropic proton precipitation using observations of NOAA low altitude polar spacecraft. We find that isotropic precipitation of >30 to > 80 keV protons continues around noon forming the continuous oval-shaped region of isotropic precipitation. Part of this region lies on open field lines in the region of cusp-like or mantle precipitation, its equatorward part is observed on closed field lines. Near noon it extends 1–2° below the sharp boundary of solar electron fluxes (proxy of the open/closed field line boundary) and equatorward of the cusp-like auroral precipitation. The observed energy dispersion of its equatorward boundary (isotropic boundary) agrees with model predictions of expected particle scattering in the regions of weak and highly curved magnetic field. We also found some disagreement with model computations. We did not observe the predicted split of the isotropic precipitation region into separate nightside and dayside isotropic zones. Also, the oval-like shape of the isotropic boundary has a symmetry line in 10–12 MLT sector, which with increasing activity rotates toward dawn while the latitude of isotropic boundary is decreasing. Our conclusion is that for both dayside and nightside the isotropic boundary location is basically controlled by the magnetospheric magnetic field, and therefore the isotropic boundaries can be used as a tool to probe the magnetospheric configuration in different external conditions and at different activity levels.  相似文献   

8.
The response of the dayside ionospheric flow to a sharp change in the direction of the interplanetary magnetic field (IMF) measured by the WIND spacecraft from negative Bz and positive By, to positive Bz and small By, has been studied using SuperDARN radar, DMSP satellite, and ground magnetometer data. In response to the IMF change, the flow underwent a transition from a distorted twin-cell flow involving antisunward flow over the polar cap, to a multi-cell flow involving a region of sunward flow at high latitudes near noon. The radar data have been studied at the highest time resolution available (2 min) to determine how this transition took place. It is found that the dayside flow responded promptly to the change in the IMF, with changes in radar and magnetic data starting within a few minutes of the estimated time at which the effects could first have reached the dayside ionosphere. The data also indicate that sunward flows appeared promptly at the start of the flow change (within 2 min), localised initially in a small region near noon at the equatorward edge of the radar backscatter band. Subsequently the region occupied by these flows expanded rapidly east-west and poleward, over intervals of 7 and 14 min respectively, to cover a region at least 2 h wide in local time and 5° in latitude, before rapid evolution ceased in the noon sector. In the lower latitude dusk sector the evolution extended for a further 6 min before quasi-steady conditions again prevailed within the field-of-view. Overall, these observations are shown to be in close conformity with expectations based on prior theoretical discussion, except for the very prompt appearance of sunward flows after the onset of the flow change.  相似文献   

9.
The dynamics of the ion distribution function near the Earths bow shock is studied on the basis of quasi-3D measurements of ion energy spectra in the range of 30–24200 eV/q with the Russian-Cuban CORALL instrument on the INTERBALL/Tail-probe satellite. The instrument was designed for observations of magnetospheric plasma and measures ions, in an angular range of 36°-144° from the Earth-Sun direction. Ion populations generated by the Earth bow shock are often observed upstream from the bow shock. In the solarwind stream compressed and heated by the passing of very dense magnetic cloud (CME), two types of these ion populations were measured upstream and before the bow shock crossing on 25 August 1995 at 07:37 UT. Both populations were observed in the energy range above 2 keV. At 06:20 UT, when the angle between the direction of the interplanetary magnetic field and normal to the bow shock Bn was w 43° the instrument observed a narrow, fast (800 km/s) field-aligned beam moving from the Earth. At 07:30, when Bn 28°, the wide ion pitch-angle distribution was observed. A similar suprathermal ion population is observed in the magnetosheath simultaneously with the solar-wind ion population being heated and deflected from the Sun-Earth direction. The similarity of observations during the mentioned time-interval and under usual solar-wind conditions allows us to conclude that types of suprathermal ion populations upstream and downstream from the bow shock do not depend on the solar-wind disturbance generated by magnetic cloud.  相似文献   

10.
Lunar and solar atmospheric tidal oscillations have been determined with satisfactory accuracy from 17 years 11 months of mean sea-level barometric pressure observations taken at Nandi, Fiji. In many respects, the results are consistent with previous tidal determinations in the south-west Pacific region, although these are few and widely scattered. However, the mean annual amplitude of the lunar tide at Nandi, as determined in this study, 88 b, is much greater than might have been expected from currently available global amplitude maps. Nevertheless, the probable correctness of this result has been confirmed by the analysis of nearly 6 years of similar data from Nausori (130 km E.S.E. of Nandi), which yielded a mean annual lunar amplitude of 88 b, compared with a Nandi amplitude of 83 b for a closely corresponding period.  相似文献   

11.
A numerical evaluation of the complete Navier-Stokes equations of motion for steady-state, incompressible flow past an infinite circular cylinder is given in terms of the stream function, vorticity, and pressure distribution past such bodies. A method is described which allows use of these flow characteristics: (1) to approximate the characteristics of air flow past hexagonal columnar ice crystals falling under gravity at terminal velocity in air, (2) to compute the trajectory of supercooled cloud drops relative to such ice crystals, and (3) to determine the efficiency with which short columnar ice crystals and needle shaped ice crystals collide with supercooled cloud drops. It is found that for all columnar type ice crystals riming is negligible if the cloud drop size is less than 5 m, and that for riming to commence short columnar crystals must have diameters larger than 50 m, while needle crystals must have diameters larger than 40 m. It is further shown that the collision efficiency cut-offs at the small drop radius and at the large drop radius end of the collision efficiency diagram can be explained on the basis of the cloud drop trajectories for these drop size ranges.  相似文献   

12.
EISCAT observations of interplanetary scintillation have been used to measure the velocity of the solar wind at distances between 15 and 130R (solar radii) from the Sun. The results show that the solar wind consists of two distinct components, a fast stream with a velocity of 800 km s–1 and a slow stream at 400 kms–1. The fast stream appears to reach its final velocity much closer to the Sun than expected. The results presented here suggest that this is also true for the slow solar wind. Away from interaction regions the flow vector of the solar wind is purely radial to the Sun. Observations have been made of fast wind/slow wind interactions which show enhanced levels of scintillation in compression regions.  相似文献   

13.
14.
Summary The numerical method of simulating ionospheric filtration of ULF signals in the range of Pc1 frequencies has been applied to French geomagnetically conjugate observations of ULF signals made by the GEOS-1 satellite and at the observatory of Husafell (Iceland) [2]. The experimentally obtained variable values of the transmissivity of the Pc1 signal through the ionosphere [5] in the course of the micropulsation distrubance of 13.7. 1977 have been compared with the results of the numerical simulation taking into consideration the fundamental physical parameters of the high-latitude external ionosphere. This approximate form of solving the inverse problem of ionospheric modelling yielded quantitative estimates of the rapid variations of the concentration of charged particles in connection with the expected changes of their temperature. It is assumed that nonstationary states of the ionospheric plasma are caused by the very ion-cyclotron waves penetrating the ionosphere at high latitudes ( 70°) along the plasmapause.  相似文献   

15.
A comparison of monthly mean values of total ozone at South Pole, Buenos Aires (Argentina), Cachoeira Paulista and Natal (Brazil), and Huancayo (Peru) revealed that whereas South Pole showed an ozone depletion of 45% in October 1987 (as compared to October, 1977), Buenos Aires showed a small decrease (10%) while the other locations showed very small decreases (1–2%). When daily values are considered, the Antarctic ozone hole of October 1987 seems to have caused 10% depletion at Buenos Aires and 5% at Natal and Huancayo in December 1987. However, a large part of this is normal seasonal variation, except at Huancayo, where a residual effect of 5% depletion in December 1987 remains. The QBO effects (5–8% changes in the ozone level in 2–3 years) could cause 10–15% fluctuations in solar UVB on the ground on clear-sky days and could be a possible health hazard unless factors like cloudiness reduce the UVB intensities.  相似文献   

16.
Summary Energetic electrons are continually removed from the radiation belts by resonant pitch-angle scattering with ELF turbulence. A realistic simulation of the concomitant precipitation loss of such electrons to the atmosphere shows it to be a significant source for the nocturnal ionospheric D-region. During geomagnetically quiet (non-storm) periods, precipitating electrons are expected to provide the dominant nocturnal ionization source at medium invariant latitudes corresponding to field lines just inside the plasmapause. When the level of scattering turbulence is high the quiet time precipitation can dominate for an extended range of latitudes ( 55° to 65°). Observed fluctuations in the level of scattering turbulence should produce modulations in the concentration of nocturnal middle latitude D-region electrons which may be detected using radio probing techniques.  相似文献   

17.
A thick (<175 m) North Mountain Basalt flow at McKay Head, Nova Scotia (Canada) shows 25-cm-thick differentiated layers separated by 130 cm of basalt in its upper 34m. Upper layers (5 m below the lava top) are highly vesicular whereas lower ones are pegmatitic and contain a thin (2 cm) rhyolite band. The layering of the flow closely resemble that of some Hawaiian lava lakes. The eesicular basalts and mafic pegmatites are inferred to be liquid-rich segregations which drained into horizontal cracks that formed within a crystalline mush. The cracks resulted from a thermal contraction associated with cooling and shrinkage of the mush. Rhyolites were formed by in situ differentiation. Gas overpressures fractured the pegmatites and gas effervescence filter pressing forced silicarich residual liquid from pegmatite interstices into the fractures creating bands. Chemical differences between the pegmatitic layers and early formed, highly differentiated upper vesicular layers may reflect a role for volatiles in the differentiation process along with crystal fractionation.  相似文献   

18.
Approximately one thousand microearthquakes with body-wave magnitude mb have been located in northern Venezuela and the southern Caribbean region (9–12° N; 64–70° W) since the installation in 1980 of the Venezuelan Seismological Array, together with forty events of mb 4, one of them with surface-wave magnitude Ms 6. Focal depths are in the range of 0 to <15 km. This geologically complex region is part of the boundary between the Caribbean and the South American Plates. Epicentral locations indicate that this E–W oriented portion of the boundary is formed by two 400 km long subparallel fault zones: San Sebastián fault zone (SSF), 20 km north of Caracas along the coast; and La Victoria fault zone (LVF), 25 km south of the city. They are clearly delineated by the microseismicity. New composite focal mechanism solutions (CFMS) along these faults show right-lateral strike-slip (RLSS) motion on nearly E–W oriented fault planes. NW-striking subsidiary active faults occur in the region and intercept the two main E–W fault zones. These interceptions show high levels of microearthquake activity and seismic moment release when compared to other portions of both, the main and subsidiary faults. New CFMS at those fault crossing sites show NW-striking RLSS motion and normal faulting, in an en-echelon-like structural behavior. Geological data and quantitative comparisons with other transcurrent plate boundaries in the world suggest that the rate of plate motion in this area is on the order of 20 mm/y. Several moderate and large shocks have occurred along the SSF and LVF since 1640, including an Ms 7.6 event in 1900 on SSF. Although the region may be relatively far from a repeat of this earthquake, seismicity data indicate that strong shocks could take place along segments of the seismically active faults identified in this study.  相似文献   

19.
Interhemispheric contrasts in the ionospheric convection response to variations of the interplanetary magnetic field (IMF) and substorm activity are examined, for an interval observed by the Polar Anglo-American Conjugate Experiment (PACE) radar system between 1600 and 2100 MLT on 4 March 1992. Representations of the ionospheric convection pattern associated with different orientations and magnitudes of the IMF and nightside driven enhancements of the auroral electrojet are employed to illustrate a possible explanation for the contrast in convection flow response observed in radar data at nominally conjugate points. Ion drift measurements from the Defence Meteorological Satellite Program (DMSP) confirm these ionospheric convection flows to be representative for the prevailing IMF orientation and magnitude. The location of the fields of view of the PACE radars with respect to these patterns suggest that the radar backscatter observed in each hemisphere is critically influenced by the position of the ionospheric convection reversal boundary (CRB) within the radar field of view and the influence it has on the generation of the irregularities required as scattering targets by high-frequency coherent radar systems. The position of the CRB in each hemisphere is strongly controlled by the relative magnitudes of the IMF Bz and By components, and hence so is the interhemispheric contrast in the radar observations.  相似文献   

20.
A Landsat Thematic Mapper (TM) image acquired on 23 July 1991 recorded widespread activity associated with the Episode 48 of the Pu'u 'O'o-Kupaianaha eruption of Kilauea Volcano, Hawaii. The scene contains a very large number (>3500) of thermally elevated near infrared (0.8–2.35 m) pixels (each 900 m2), which enable the spatial distribution of volcanic activity to be identified. This activity includes a lava lake within Pu'u 'O'o cone, an active lava tube system (7.9 km in length) with skylights between the Kupaianaha lava shield and several ocean entry points, and extensive active surface flows (total area of 1.3 km2) within a much larger area of cooling flows (total16 km2). The production of an average flux density map from the TM data of the flow field, wherein the average flux density is defined in units of Wm-2, allows for the chronology of emplacement of active and cooling flows to be determined. The flux density map reveals that there were at least three breakouts (>5000 Wm-2) feeding active flows, but on the day that the data were collected the TM recorded a waning phase of surface activity in this area, based on the relatively large amount of intermediate power-emitting (cooling) flows compared to high power-emitting (active) flows. The production of a comparable flux density map for future eruptions would aid in the assessment of volcanic hazards if the data were available in near-real time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号