首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
令H和K是实数域或复数域F上完备的无限维不定度规空间,B(H)和B(K)分别是H和K上所有有界线性算子构成的代数.假设Φ:B(H)→B(K)是保单位的可加满射.文章证明了若Φ保持因子的不定交换性,即Φ满足对任意的A,B∈B(H)以及任意给定的ξ∈F,A+B=ξBA+(→)Φ(A)+Φ(B)=ξΦ(B)Φ(A)+,那么Φ是同构或共轭同构或是共轭反同构.  相似文献   

2.
目的设A和B是含单位元的*-代数,Φ:A→B是线性双射。揭示了满足Φ(AA*A)=Φ(A)Φ(A*)Φ(A)(A∈A)的映射Φ与Jordan同构的关系;同时也揭示了满足Φ(AA*A)=Φ(A)Φ(A)*Φ(A)(A∈A)的映射Φ与Jordan*-同构的关系。方法从Jordan同构和Jordan*-同构的定义入手,运用Φ的线性性和满性进行了证明。结果如果对任意的A∈A有Φ(AA*A)=Φ(A)Φ(A*)Φ(A),则Φ是一个可逆元乘一个Jordan同构;如果对任意的A∈A有Φ(AA*A)=Φ(A)Φ(A)*Φ(A),则Φ是一个酉元乘一个Jordan*-同构。结论为进一步研究Jordan同构提供了新的思路。  相似文献   

3.
设H和K是复Hilbert空间,B(H)和B(K)分别是H和K上有界线性算子全体组成的Banach代数.讨论了Φ:B(H)→B(K)是保单位的线性满射,则Φ双边保约当正交当且仅当Φ是*-同构或*-反同构.  相似文献   

4.
设M是包含非平凡投影P的单位素*-环.证明了非线性双射ø:M→M,对所有A,B∈M,ø(AB+BA*)=ø(A)ø(B)+ø(B)ø(A)*当且仅当ø是*-环同构.  相似文献   

5.
设M和N是2个维数大于1的因子von Neumann代数,任意一个保持混合Jordan三重η-(η≠-1)积的双射Φ:M→N有A→εΦ(A)的形式,其中ε∈{-1,1}.当η∈R时,εΦ是一个线性?-同构或者共轭线性?-同构;当η∈C\R时,εΦ是一个线性?-同构.  相似文献   

6.
设M和N是两个von Neumann代数, 其中至少有一个无中心交换投影, η∈�,1}, 非线性双射:M→N 满足对所有A,B,C∈M, 有([A,B]*(η)·ηC)=[(A),(B)]*(η)·η(C).若η=-1,则(I)是线性*-同构和共轭线性*-同构之和, 其中(I)是N中自伴中心元且(I)2=I; 若η≠-1, 满足(I)=I, (iI)*=-(iI), 则下列结论成立: 1)若|η|=1, 则是线性*-同构; 2)若|η|≠1,则是线性*-同构和共轭线性*-同构之和.  相似文献   

7.
令R是含单位元的素环,则R到其自身的每个完全保交换性的满射Φ都具有形式Φ=LC°π,其中C∈Z(R)是可逆元,π是R的环同构。令R是含单位元的素对合环,其对合运算记为*,则R到其自身的每个完全保斜交换性的满射Φ都具有形式Φ=LC°π,其中C∈Z(R)是可逆对称元,π是R的*-环同构。如果映射是保单位元的,则上述结果中环为素的假设可以去掉,即一般环(对合环)上的满射是环同构(对合环同构)当且仅当它是保单位的且完全双边保交换性(斜交换性)的。上述结果应用到算子代数,获得C*-代数、von Neumann代数、Banach空间标准算子代数、Krein空间不定自伴标准算子代数以及对称标准算子代数上完全保交换性或斜交换性满射的具体刻画。对于标准算子代数的情形,映射为满射的条件可以减弱为值域包含所有的一秩幂等算子。  相似文献   

8.
令H,K是C上无限维Hilbert空间,A,B分别是H和K上的因子von Neumann代数,证明了如果Φ:A→B是双边完全保交换的满射,则Φ是线性同构或共轭线性同构的非零常数倍。  相似文献   

9.
讨论了(B)((H))到(B)((H))上保反正交性、保Jordan正交性的可加映射,其中(B)((H))和(B)((H))是由Hilbert空间(H)和(K)上的有界线性算子全体组成的Banach代数.若φ(B)((H))→(B)((H))是双边保反正交性的可加满射,使得φ(I)=I,并且对每个一秩幂等算子P∈(B)((H)),有φ(FP)(U)Fφ(P),则φ是(B)((H))上的*-反同构或共轭*-反同构.与保反正交性的假设条件相同,对于保Jordan正交性,得到φ是下列形式之一*-同构,共轭*-同构,*-反同构,共轭*-反同构.  相似文献   

10.
设R是维数大于1的因子von Neumann代数。对于给定的复数ξ且ξ≠0,如果映射δ:R→R满足对所有A,B∈R,有δ((A·B)_ξ)=(δ(A)·B)_ξ+(A·δ(B))_ξ,那么δ是可加的*-导子且满足δ(ξA)=ξδ(A)。特别地,若von Neumann代数R是无限的Ⅰ型因子,给出了δ的具体刻画。  相似文献   

11.
本文讨论了S(H)上保*-同构的线性映射.主要结论为:令H是复的有限维希尔伯特空间.我们记B(H)为H上的所有有界线性算子构成的Banach代数、S(H)为H上的所有自伴算子构成的实线性子空间,则有:为S(H)到S(H)的双边保*-同构的有界线性满射当且仅当存在B(H)上的可逆元A使得对所有T∈S(H)有(T)=ATA*.  相似文献   

12.
设H是一个希氏空间,R(H)表示H上全体有界线性算子以算子的范数构成的巴拿哈代数。这个代数的单位元是单位算子。在对应A←A~*(A~*是A的共轭算子)下,R(H)是对合代数。我们说I是R(H)的双侧理想,如果满足:1°:若A,B∈I,则对于任何复数α,β,αA+βB∈I;2°:对于任何B∈R(H)  相似文献   

13.
设R是有单位元的*-代数,若R包含非平凡对称幂等元P满足:(1)若ARP={0},则A=0;(2)若AR(I-P)={0},则A=0。设φ:R→R是满射,则φ强保持新积当且仅当存在Z∈ZS(R)且Z2=I,使得对所有X∈R, 有φ(X)=ZX。作为应用,在没有I1型的中心直和项的von Neumann代数上和素*-环上得到相似的结果。  相似文献   

14.
设H是复数C上的Hilbert空间,AB(H)是标准算子代数.利用算子论方法,证明了对所有的A∈A,若δ满足δ(AA*A)=δ(A)A*A+Aδ(A)*A+AA*δ(A),则存在S,T∈B(H)和λ∈R,且S+S*=T+T*=λI,使得对所有的A∈A,有δ(A)=SA-AT.  相似文献   

15.
设R是特征为2包含非平凡对称幂等元的单位素~*-代数.对A,B∈R,定义A·B=AB+BA~*为新积,(A·B)_2=(A·(A·B))为2-新积.设φ:R→R是满射.对所有A,B∈R,如果φ满足(φ(A)·φ(B))_2=(A·B)_2当且仅当对所有A∈R,存在α∈C_S且α~3=I使得φ(A)=αA,其中I是R的单位,C_S是R的对称可延拓中心.作为应用,得到了素C~*代数和因子von Neumann代数上保持上述性质映射的结构.  相似文献   

16.
讨论了B(H)到B(H)上保反正交性、保Jordan正交性的可加映射,其中B(H)和B(H)是由Hilbert空间B和H上的有界线性算子全体组成的Banach代数.若Φ:B(H)→B(H)是双边保反正交性的可加满射,使得Φ(I)=I,并且对每个一秩幂等算子P∈B(H),有Φ(FP)包启FΦ(P),则Φ是B(H)上的*-反同构或共轭*-反同构.与保反正交性的假设条件相同,对于保Jordan正交性,得到Φ是下列形式之一:*-同构,共轭*-同构,*-反同构,共轭*-反同构.  相似文献   

17.
证明了含单位元C*代数上可加的广义*-Lie导子是一个保*的可加导子。研究了因子von Neumann代数上拟正规可导映射。设H是维数大于2的复可分Hilbert空间,M是作用在H上维数大于1的因子von Neu-mann代数。若Ф:M→M是线性拟正规可导映射,则存在数λ∈R和算子T∈M且T+T*=λI,以及线性映射h:M→CI,使得对任意A∈M,有Ф(A)=AT-TA+h(A),且h([A,A*])=0。  相似文献   

18.
设A∈B(H),B∈B(K),定义MC=(A C0B),其中C∈B(K,H)。基于算子分块的技巧,讨论了当R(A),R(B)都是闭的时候,对每一C∈B(K,H),R(MC)是闭的充要条件。进而研究了:(ⅰ)当R(A)不闭,R(B)闭时,以及当R(A)闭,R(B)不闭时,对任意C∈B(K,H),R(MC)不闭的充要条件;(ⅱ)当R(A),R(B)同时不闭时,对任意C∈B(K,H),R(MC)不闭的充要条件。  相似文献   

19.
因子von Neumann代数上Lie-*导子   总被引:1,自引:0,他引:1  
设M是作用在维数大于2的复可分Hilbert空间H上的因子von Neumann代数。若Ф:M→M是线性Lie-*导子,则存在数λ∈R和算子T∈M且T+T*=λI,以及线性映射h:M→CI,且对所有的A,B∈M有h(AB*-B*A)=0,使得对任意A∈M,有Ф(A)=AT-TA+h(A)。  相似文献   

20.
令B (H)是复Hilbert空间H上所有有界线性算子组成的代数,k是一个正整数且满足kk(A)表示算子A∈B (H)的k-维数值域。假设φ:B (H)→B (H)是满射。文章证明了φ满足Wk(AB-ξBA)=Wk(φ(A)φ(B)-ξφ(B)φ(A))(ξ为不等于±1的复数)对所有A,B∈B (H)成立当且仅当存在酉算子U∈B (H)以及常数η∈{-1,1}使得φ(A)=ηUAU*对所有A∈B (H)成立;φ满足Wk(BA*B)=Wk(φ(B)φ(A)*φ(B))对任意A,B∈B (H)成立当且仅当或者存在酉算子U:H→H使得φ(A)=UAU*对所有A∈B(H)成立,或者存在共轭酉算子U:H→H使得φ(A)=UA*U*对所有A∈B(H)成立。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号