首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota.  相似文献   

2.
The aim of this study was to compare and assess the dissolved concentrations of trace elements (As, Zn, Hg, Cd, Cr, Ni, Pb and Cu) in surface water of Marcal River before and after the red mud spill that occurred in Ajka, western Hungary, in October 2010. The caustic sludge flooded the surrounding settlements and polluted the nearby Torna Creek, which flows through the Marcal and Raba rivers into the Danube. A total of 92 surface water samples were collected from the Marcal River in the period of 2007–2012 and analysed for dissolved trace metal(loid)s by atomic absorption spectroscopy method. After the spill, the water management authority initially focused on acid dosing of surface waters to lower pH and was effective in lowering both pH and metal(loid) concentrations. Among the dissolved trace metal(loid)s, arsenic and nickel levels were moderately higher in the Marcal River 2 years since the spill compared to that observed in the pre-disaster period. The concentrations of dissolved trace metal(loid)s did not exceed the European water quality standards and the US Environmental Protection Agency aquatic life criteria values (excluding one sample for cadmium).  相似文献   

3.
The oral bioaccessibility and the human health risks of As, Hg and other metals (Cu, Pb, Zn, Ni, Co, Cd, Cr, Mn, V and Fe) in urban street dusts from different land use districts in Nanjing (a mega-city), China were investigated. Both the total contents and the oral bioaccessibility estimated by the Simple Bioaccessibility Extraction Test (SBET) of the studied elements varied with street dusts from different land use districts. Cd, Zn, Mn, Pb, Hg and As showed high bioaccessibility. SBET-extractable contents of elements were significantly correlated with their total contents and the dust properties (pH, organic matter contents). The carcinogenic risk probability for As and Cr to children and adults were under the acceptable level (<1 × 10−4). Hazard Quotient values for single elements and Hazard Index values for all studied elements suggested potential non-carcinogenic health risk to children, but not to adults.  相似文献   

4.
The Guadiamar river basin has traditionally received pollutants from two main sources: in its northern section of mining origin, and in its southern section (next to Do?ana National Park) from urban-industrial and agricultural sources. In April 1998, the spill of 6 million m3 of mining wastes (acidic waters and sludge) severely polluted the Guadiamar river basin with heavy metals, which caused serious damage to the local ecosystem. There is a direct association between the physicochemical speciation of an element and its toxicity, biological activity, bioavailability, solubility, etc. This work describes a distribution study of the metals Zn, Cd, Pb and Cu by speciation analysis of surface waters in eleven sampling points of the Guadiamar river basin. Four metal fractions were determined using anodic stripping voltammetry: labile metal forms, H+ exchangeable metal forms, strongly inert forms (associated with organic and inorganic matter in solution), and forms associated with suspended matter. Total concentrations in surface waters followed the trend Zn > Cu > Pb > Cd. The speciation study showed that Zn and Cd were present to a large extent in available forms (labile and H+ exchangeable), while Pb and Cu were found mostly in the less available forms (strongly inert). Moreover, the available forms were found in the northern section (mining pollution) and the strongly inert forms in the southern section (urban, industrial and agricultural pollution). These results can illustrate the potential value of speciation to discern between different sources of pollution.  相似文献   

5.
Remediation by means of soil leaching with ethylenediaminetetraacetic acid (EDTA) is capable of extracting the most labile soil fractions, leaving the residual metals in biologically non-available forms. We evaluated the feasibility of the standardized earthworm (Eisenia fetida) avoidance test for assessing the efficiency of soil remediation of Pb, Zn and Cd polluted soil. Chemical extraction tests (six-step sequential extraction, toxicity characteristic leaching procedure, physiologically based extraction test, diethylenediaminepentaacetic acid extraction) indicated that the mobility, oral bioaccessibility and phytoavailability of Pb, Zn and Cd were consistently reduced. However, the avoidance test showed no significant avoidance of polluted soil in favor of that which had been remediated. Pb, Zn and Cd accumulation in E. fetida mirrored the decreasing pattern of metal potential bioavailability gained by leaching the soil with increasing EDTA concentrations. The calculated bioaccumulation factors indicated the possibility of underestimating the metal bioavailability in soil using chemical extraction tests.  相似文献   

6.
Heavy metal pollution in China: Origin,pattern and control   总被引:21,自引:2,他引:21  
GOAL, SCOPE AND BACKGROUND: Heavy metal is among one of the pollutants, which cause severe threats to humans and the environment in China. The aim of the present review is to make information on the source of heavy metal pollution, distribution of heavy metals in the environment, and measures of pollution control accessible internationally, which are mostly published in Chinese. METHODS: Information from scientific journals, university journals and governmental releases are compiled focusing mainly on Cd, Cu, Pb and Zn. Partly Al, As, Cr, Fe, Hg, Mn and Ni a included also in part as well. RESULTS AND DISCUSSION: In soil, the average contents of Cd, Cu, Pb and Zn are 0.097, 22.6, 26.0 and 74.2 mg/kg, respectively. In the water of the Yangtze River Basin, the concentrations of Cd, Cu, Pb and Zn are 0.080, 7.91, 15.7 and 18.7 microg/L, respectively. In reference to human activities, the heavy metal pollution comes from three sources: industrial emission, wastewater and solid waste. The environment such as soil, water and air were polluted by heavy metals in some cases. The contents of Cd, Cu, Pb and Zn even reach 3.16, 99.3, 84.1 and 147 mg/kg, respectively, in the soils of a wastewater irrigation zone. These contaminants pollute drinking water and food, and threaten human health. Some diseases resulting from pollution of geological and environmental origin, were observed with long-term and non-reversible effects. CONCLUSIONS: In China, the geological background level of heavy metal is low, but with the activity of humans, soil, water, air, and plants are polluted by heavy metals in some cases and even affect human health through the food chain. RECOMMENDATIONS AND OUTLOOK: To remediate and improve environmental quality is a long strategy for the polluted area to keep humans and animals healthy. Phytoremediation would be an effective technique to remediate the heavy metal pollutions.  相似文献   

7.
Trace metal speciation and bioavailability in urban soils   总被引:19,自引:0,他引:19  
Urban soils often contain concentrations of trace metals that exceed regulatory levels. However, the threat posed by trace metals to human health and the environment is thought to be dependent on their speciation in the soil solution rather than the total concentration. Three inactive railway yards in Montréal, Québec, were sampled to investigate the speciation and bioavailability of Cd, Cu, Ni, Pb and Zn. Soil solutions were obtained by centrifuging saturated soil pastes. In the soil solutions, up to 59% of the dissolved Cd was in its free ionic form. For Cu, Pb and Zn, organic complexes were the predominant species. Over 40% of Ni was present as inorganic complexes if the solution pH exceeded 8.1. Multiple regression analyses showed that pH and total metals in soil were significantly correlated with the activities of free metal ions, except for Cd(2+), which only had a weak correlation with soil pH. Free, dissolved and total soil metals were tested for their ability to predict metal uptake by plants in the field. However, none of these metal pools were satisfactory predictors. The results indicated that in these urban soils, trace metals were mainly in stable forms and bioavailability was extremely low.  相似文献   

8.
Polluted soils can present a significant health risk especially in an urban environment. Most current legislation and health risk frameworks are based on pseudototal metal content. However, only a fraction of these concentrations is available for plant and human uptake. The aim of this work was to study the diffuse metal contamination in the soils of a municipality in Northern Italy in terms of: (i) metal availability, and (ii) metal accessibility to the human body and its relationship to soil properties, considering lead, copper, zinc, nickel, and chromium. Soil metal content was measured simulating availability conditions. Human bioaccessibility was derived from a modified physiologically-based extraction test. The human bioaccessible content was then estimated taking into account the relationships between pseudototal content and selected soil parameters. For the case study, the prediction of human bioaccessibility based on pseudototal content, organic matter and soil texture produced statistically significant models, with r2 = 0.60 for Cu, r2 = 0.53 for Pb and r2 = 0.42 for Zn.  相似文献   

9.
This work presents the conclusions of a speciation study concerning Zn, Cd, Pb and Cu in groundwater from ten wells in the alluvial aquifers of the Guadiamar river, affected by Aznalcollar mine tailing spill (April 1998). The sampling campaign took place in January 2000, almost two years after the mining accident. Four metal fractions were determined: labile metal forms, H+ exchangeable metal forms, strongly inert forms (associated with organic and inorganic matter in solution), and forms associated with suspended matter. Total metal concentration in groundwater followed the trend Cd < Pb < Cu < Zn. The speciation study showed that Zn and Cd were present to a great extent in available forms (labile and H+ exchangeable), while Pb and Cu were found mostly in the less available forms (strongly inert). These results can illustrate the potential value of the speciation tool for the follow-up of spill-induced pollution in the area.  相似文献   

10.

The effect of industrial activities on trace metals in farmland of rapidly industrializing regions in developing countries has increasingly been a concern to the public. Here, soils were collected from 13 greenhouse vegetable production (GVP) farms or bases near industrial areas in the Yangtze River Delta of China to investigate the occurrence, speciation, and risks of Cr, Cu, Zn, Cd, Ni, and Pb in GVP soil. The results revealed that the main metal elements causing GVP soil pollution were Cd, Zn, Ni, and Cu, of which contamination levels were generally unpolluted to moderately polluted. Zinc pollution was mainly attributed to heavy fertilization, while Cd, Ni, and Cu pollution may be greatly ascribed to industrial effluents and coal combustion. Metal speciation studies showed that most of Cr, Ni, Cu, and Zn was present in residual fraction while more than half of Cd and Pb was present in non-residual fractions. Additionally, pollution of Cd, Cu, Ni, and Zn in GVP soil increased their corresponding mobile fractions. Risk assessment using potential ecological risk index and risk assessment code showed that Cd was the major risk contributor. Specifically, Cd generally posed moderate or considerable ecological risk as well as displayed medium or high mobility risk in GVP soil. Thus, great attention should be paid to the contribution of both industrial discharges and intensive farming to soil pollution by trace metals, especially Cd, because of its high mobility risk.

  相似文献   

11.
In vitro digestion test can be applied to evaluate the bioaccessibility of soil metals by measuring the solubility of the metals in synthetic human digestive tract. Physiologically based extraction test (PBET), composed of sequential digestion of gastric and intestinal phase, is one of the frequently used in vitro digestion tests. In this study, the PBET was chosen to determine the bioaccessibility of Cu, Zn, and Pb in 14 mildly acidic and alkali (pH 5.87–8.30) soils. The phytoavailability of Cu, Zn, and Pb in the same soils was also measured using six single-extraction methods (0.1 M HNO3, 0.4 M HOAc, 0.1 M NaNO3, 0.01 M CaCl2, 0.05 M EDTA, and 0.5 M DTPA). The extraction efficiencies of the methods were compared. The PBET had a strong ability to extract metals from soil, which was much greater than neutral salt extraction and close to dilute acid and complex extraction in spite of the last 2 h neutral intestinal digestion. The amounts of bioaccessible Cu, Zn, and Pb in the gastric phase and in the gastrointestinal phase were both largely determined by the total content of soil Cu, Zn, and Pb. But the results of gastrointestinal digestion reflected more differences resulting from element and soil types than those of gastric digestion did. It was noticed that most of variations in the amounts of soil Cu, Zn, and Pb extracted by EDTA were well explained by the total soil Cu, Zn, and Pb, as same as the PBET. Moreover, the solubility of Cu, Zn, and Pb in the gastric phase and gastrointestinal phase were all positively linearly correlated with the results of EDTA. It was suggested that EDTA extraction can be used to predict the bioaccessibility of Cu, Zn, and Pb in mildly acidic and alkali (pH?>?5.8) soils, and the PBET and EDTA could be applied to measure, in a certain extent, the bioaccessibility and phytoavailability of Cu, Zn, and Pb in mildly acidic and alkali (pH?>?5.8) soils at the same time.  相似文献   

12.

A pot experiment and a leaching experiment were conducted to investigate the effects of earthworms and pig manure on heavy metals (Cd, Pb, and Zn) immobility, in vitro bioaccessibility and leachability under simulated acid rain (SAR). Results showed manure significantly increased soil organic carbon (SOC), dissolved organic carbon (DOC), available phosphorus (AP), total N, total P and pH, and decreased CaCl2-extractable metals and total heavy metals in water and SAR leachate. The addition of earthworms significantly increased AP (from 0.38 to 1.7 mg kg?1), and a downward trend in CaCl2-extractable and total leaching loss of heavy metals were observed. The combined earthworm and manure treatment decreased CaCl2-extractable Zn, Cd, and Pb. For Na4P2O7-extractable metals, Cd and Pb were decreased with increasing manure application rate. Application of earthworm alone did not contribute to the remediation of heavy metal polluted soils. Considering the effects on heavy metal immobilization and cost, the application of 6% manure was an alternative approach for treating contaminated soils. These findings provide valuable information for risk management during immobilization of heavy metals in contaminated soils.

  相似文献   

13.
The concentration and loading distribution of trace metals (Cu, Zn, Pb, Co, Ni, Cr, and Mn) and major elements (Al, Ca, Fe, and Mg) in different particle size fractions (2000-280, 280-100, 100-50, 50-10, 10-2, and <2 μm) of surface soils from highly urbanized areas in Hong Kong were studied. The enrichment of Pb, Cu, and Zn in the urban soils was strongly influenced by anthropogenic activities, and Pb accumulated in fine particles was mainly derived from past vehicular emissions as shown by Pb isotopic signatures. Trace metals primarily accumulated in clay, fine silt, and very fine sand fractions, and might pose potential health risks via the inhalation of resuspended soil particles in the air (PM10 or PM2.5), and ingestion of adhered soils through the hand-to-mouth pathway. The mobility, bioavailability, and human bioaccessibility of Pb and Zn in bulk soils correlated significantly with metal concentrations in fine silt and/or very fine sand fractions.  相似文献   

14.
General assessments of orebody types and associated mine wastes with regard to their environmental signature and human health hazards are needed to help in managing present and historical mine waste facilities. Bioaccessibility tests and mineralogical analysis were carried out on mine waste from a systematic sampling of mine sites from the Central Wales orefield, UK. The bioaccessible Pb widely ranged from 270 to 20,300 mg/kg (mean 7,250 mg/kg, median 4,890 mg/kg), and the bioaccessible fraction from 4.53 to >100 % (mean 33.2 %, median 32.2 %), with significant (p?=?0.001) differences among the mine sites. This implies sensitivity of bioaccessibility to site-specific conditions and suggests caution in the use of models to assess human health impacts generalised on the basis of the mineral deposit type. Mineralogical similarities of the oxidation products of primary galena provided a better control over the observed Pb bioaccessibility range. The higher Pb bioaccessibility (%) was related to samples containing cerussite, irrespective of the presence of other Pb minerals in the mineral assemblage; lower Pb bioaccessibility resulted where anglesite was the main Pb mineral phase and cerussite was absent. A solubility diagram for the various Pb minerals in the waste was derived using PHREEQC model, and the experimental Pb concentrations, measured in the simulated gastric solution, were compared with the equilibrium modelling results. For samples containing cerussite, the model well predicted the soluble Pb concentrations measured in the gastric solution, indicative of the carbonate mineral phase control on the Pb in solution for these samples and little kinetic control on the dissolution of cerussite. On the contrary, most mine waste samples containing dominant anglesite and or plumbojarosite (no cerussite) had lower solution Pb values, falling at or below the anglesite and plumbojarosite solubility equilibrium concentrations, implying kinetic or textural factors hindering the dissolution.  相似文献   

15.
Ninety-eight surface soils were sampled from the uplands of England and Wales, and analysed for loss-on-ignition (LOI), and total and dissolved base cations, Al, Fe, and trace heavy metals (Cu, Zn, Cd, Pb). The samples covered wide ranges of pH (3.4-8.3) and LOI (9-98%). Soil metal contents measured by extraction with 0.43 mol l-1 HNO3 and 0.1 mol l-1 EDTA were very similar, and generally lower than values obtained by extraction with a mixture of concentrated nitric and perchloric acids. Total heavy metal concentrations in soil solution depend positively upon soil metal content and [DOC], and negatively upon pH and LOI, values of r2 ranging from 0.39 (Cu) to 0.81 (Pb). Stronger correlations (r2=0.76-0.95) were obtained by multiple regression analysis involving free metal ion (Cu2+, Zn2+, Cd2+, Pb2+) concentrations calculated with the equilibrium speciation model WHAM/Model VI. The free metal ion concentrations depend positively upon MHNO3 and negatively upon pH and LOI. The data were also analysed by using WHAM/Model VI to describe solid-solution interactions as well as solution speciation; this involved calibrating each soil sample by adjusting the content of "active" humic matter to match the observed soil pH. The calibrated model provided fair predictions of total heavy metal concentrations in soil solution, and predicted free metal ion concentrations were in reasonable agreement with the values obtained from solution-only speciation calculations.  相似文献   

16.
A field survey was conducted to investigate the present situation and health risk of arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and zinc (Zn) in soils and vegetables in a multi-metal mining area, Gejiu, China. Furthermore, three vegetables (water spinach, potato, and summer squash) containing high metal concentrations were selected to further analyze metal speciation. The results showed that the average concentrations of five metals in soil exceeded the limiting values, and their bioavailable concentrations were significantly positively correlated to the total ones. Heavy metals in the edible parts of vegetables also exceeded the corresponding standards. The leaves of pakchoi, peppermint, and coriander had a strong metal-accumulative ability and they were not suitable for planting. Except the residue forms, the main forms of metals in the edible parts of three selected vegetables were ethanol-, NaCl-, and HAc-extractable fractions for As, Pb, and Cd, respectively; however, Cu was mainly presented as NaCl-extractable and Zn as HAc-extractable fractions. A high proportion of ethanol-extractable As showed that As bioactivity and toxic effects were the highest. Although the total and bioavailable Cd were high in soil, its speciation in vegetables was mainly presented as HAc-extractable fraction, which has a relatively low bioactivity. Lead and arsenic were imposing a serious threat on the local residents via vegetable consumption.  相似文献   

17.
Significant hyperaccumulation of Zn, Cd and Pb in field samples of Thlaspi praecox Wulf. collected from a heavy metal polluted area in Slovenia was found, with maximal shoot concentrations of 14,590 mg kg(-1) Zn, 5960 mg kg(-1) Cd and 3500 mg kg(-1) Pb. Shoot/root ratios of 9.6 for Zn and 5.6 for Cd show that the metals were preferentially transported to the shoots. Shoot bioaccumulation factors exceeded total soil Cd levels 75-fold and total soil Zn levels 20-fold, further supporting the hyperaccumulation of Cd and Zn. Eighty percent of Pb was retained in roots, thus indicating exclusion as a tolerance strategy for Pb. Low level colonisation with arbuscular mycorrhizal fungi (AMF) of a Paris type was observed at the polluted site, whereas at the non-polluted site Arum type colonisation was more common. To our knowledge this is the first report of Cd hyperaccumulation and AMF colonisation in metal hyperaccumulating T. praecox.  相似文献   

18.
The fast-flowing and highly turbid Lagaip River (0.5–10 g/L suspended solids) in the central highlands of Papua New Guinea receives mine-derived metal inputs in both dissolved and particulate forms. Nearest the mine, metal concentrations in suspended solids were 360, 9, 90, 740 and 1,300 mg/kg for As, Cd, Cu, Pb and Zn, while dissolved concentrations were 2.7, 0.6, 3.1, 0.1 and 25 μg/L, respectively. This creates a significant metal exposure source for organisms nearer the mine. However, because the Lagaip River is diluted by a large number of tributaries, the extent to which mine-derived metals may affect biota in the lower catchments is uncertain. To improve our understanding of the forms of potentially bioavailable metals entering the lower river system, we studied the partitioning and speciation of metals within the Lagaip River system. Dissolved and particulate metal concentrations decreased rapidly downstream of the mine due to dilution from tributaries. As a portion of the particulate metal concentrations, the more labile dilute acid-extractable forms typically comprised 10–30 % for As and Pb, 50–75 % for Cu and Zn, and 50–100 % for Cd. Only dissolved Cd, Cu and Zn remained elevated relative to the non-mine-impacted tributaries (<0.03, 0.5 and 0.3 μg/L), but the concentrations did not appreciably change with increasing dilution downriver. This indicated that release of Cd, Cu and Zn was likely occurring from the more labile metal phases of the mine-derived particulates. Chelex-labile metal analyses and speciation modelling indicated that dissolved copper and lead were largely non-labile and likely complexed by naturally occurring organic ligands, while dissolved cadmium and zinc were predominantly present in labile forms. The study confirmed that mine-derived particulates may represent a significant source of dissolved metals in the lower river system; however, comparison with water quality guidelines indicates the low concentrations would not adversely affect aquatic life.  相似文献   

19.
Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics.  相似文献   

20.
Information about heavy metal concentrations in food products and their dietary intake are essential for assessing the health risk of local inhabitants. The main purposes of the present study were (1) to investigate the concentrations of Zn, Cu, Pb, and Cd in several vegetables and fruits cultivated in Baia Mare mining area (Romania); (2) to assess the human health risk associated with the ingestion of contaminated vegetables and fruits by calculating the daily intake rate (DIR) and the target hazard quotient (THQ); and (3) to establish some recommendations on human diet in order to assure an improvement in food safety. The concentration order of heavy metals in the analyzed vegetable and fruit samples was Zn?>?Cu?>?Pb?>?Cd. The results showed the heavy metals are more likely to accumulate in vegetables (10.8–630.6 mg/kg dw for Zn, 1.4–196.6 mg/kg dw for Cu, 0.2–155.7 mg/kg dw for Pb, and 0.03–6.61 mg/kg dw for Cd) than in fruits (4.9–55.9 mg/kg dw for Zn, 1.9–24.7 mg/kg dw for Cu, 0.04–8.82 mg/kg dw for Pb, and 0.01–0.81 mg/kg dw for Cd). Parsley, kohlrabi, and lettuce proved to be high heavy metal accumulators. By calculating DIR and THQ, the data indicated that consumption of parsley, kohlrabi, and lettuce from the area on a regular basis may pose high potential health risks to local inhabitants, especially in the area located close to non-ferrous metallurgical plants (Romplumb SA and Cuprom SA) and close to T?u?ii de Sus tailings ponds. The DIR for Zn (85.3–231.6 μg/day kg body weight) and Cu (25.0–44.6 μg/day kg body weight) were higher in rural areas, while for Pb (0.6–3.1 μg/day kg body weight) and Cd (0.22–0.82 μg/day kg body weight), the DIR were higher in urban areas, close to the non-ferrous metallurgical plants SC Romplumb SA and SC Cuprom SA. The THQ for Zn, Cu, Pb, and Cd was higher than 5 for <1, <1, 12, and 6 % of samples which indicates that those consumers may experience major health risks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号