首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 609 毫秒
1.
离心风机叶片型线的一种二维逆命题简便设计方法   总被引:4,自引:0,他引:4  
由于加工工艺和生产成本等因素的影响,离心风机中至今仍普遍采用二维叶片。本文方法通过控制叶轮内相对速度W沿平均流线m的分布(W-m分布),使气流相对速度在流动过程中按照设计要求的规律均匀变化,在叶轮回转面上设计出前向或后向叶片型线。为提高设计质量,可将叶轮子午面盘盖型线的设计与回转面上叶片型线的设计联系起来,使二者共同满足控制W-m分布的需要。设计过程中可同时计算出叶片负荷供修改W-m分布时参考。本  相似文献   

2.
离心式渣浆泵叶轮磨损规律研究   总被引:7,自引:3,他引:7  
在实验室条件下对离心式渣浆泵叶轮的磨损规律进行了研究,并对泵轮叶片间流道的颗粒运动轨迹进行数值模拟。探讨了磨粒浓度、泵转速、叶片几何参数、运行时间及磨粒粒径对泵轮磨损的影响。研究表明:叶片的磨损强度与泵轮转速呈5次方关系,叶片进口角对磨损强度影响明显,出口角对磨损强度影响不大,研究结果对渣浆泵的设计具有重要的参考价值。  相似文献   

3.
级环境下叶片扩压器流场的实验与数值研究   总被引:6,自引:0,他引:6  
高丽敏  席光  周莉  王尚锦 《力学学报》2005,37(1):110-119
为了研究离心压缩机级环境下的非定常干扰的基本流动现象,并验证多级叶轮机械的CFD软件的分析能力, 对一大尺度离心压缩机的叶片扩压器流场进行了实验测量和数值计算. 实验采用了固定热线、相位锁定------系综平均技术,用常温热线风速仪对叶轮后的叶片扩压器通道内不同周向、径向和轴向位置处的非定常速度进行了测量,同时提出了非定常强度的概念,以定量考核非定常的影响.实验结果表明, 叶片扩压器内的非定常流动非常复杂,其时间周期并非叶轮叶片通过时间,随着与离心叶轮之间的距离增大,非定常扰动逐渐减弱,但一直延续到叶片扩压器的出口.另外,对该实验压缩机级开展了两个不同的数值计算,并与实验数据进行了比较:定常数值计算软件采用了作者发展的确定应力模型,非定常数值计算是用商业软件NUMECA实现的,计算采用了滑移界面技术. 两个计算结果与实验在扩压器的进口截面处吻合得很好.  相似文献   

4.
给出了离心泵叶片近壁表面流体粘性流动的分析方法,通过对叶片压力面边界层参数的计算和边界层分离的判断,确定分离型和流线型叶片型线,又通过对测试泵的性能对比试验,验证了叶片型线对水动力特性的影响,明确了这种影响主要体现在离心泵的水力效率、动力性能方面,并指出叶片形状的变化是导致其表面流体边界层分离点位置移动的主要原因,它决定了边界层是否分离,而过大的分离将使测试泵的性能下降,振动剧烈、噪声增大,并强调应重视边界层分析在叶片水力设计中的作用,同时给出了叶片型线水力设计的评价依据。所得结论对低比转速离心泵水动力特性的改善有参考价值。  相似文献   

5.
离心压缩机蜗壳型线的一种二维逆命题计算方法   总被引:2,自引:1,他引:2  
本文提出一个蜗壳型线的二维逆命题计算方法。该方法考虑了蜗壳进口流动参数沿圆周方向分布不均匀和蜗壳周向平面内损失分布的影响;改进蜗壳与叶轮或扩压器之间的匹配关系,改善离心压缩机和风机的性能,提高蜗壳的设计质量。  相似文献   

6.
串列叶片式前向离心风机气动与噪声特性的优化研究   总被引:2,自引:0,他引:2  
对采用串列叶片的某前向离心风机内部三维非定常流动进行了数值计算,重点研究了串列叶片不同叶片相对长度和不同叶片相对周向位置两个参数对风机气动性能及气动噪声的影响.通过响应面方法对数值结果进行二次回归拟合,得到两个参数与风机效率和A声级间的函数关系,并进行了优化分析.数值结果表明:两个参数对串列叶片式前向离心风机效率和A声级均有较大影响,合理的串列叶片设计能够在保持气动性能基本不变的情况下降低风机的气动噪声.将可靠的CFD数值技术与响应面方法结合起来用于指导离心风机的改进及试验设计是可行的,本文的研究结果可为串列式离心风机在节能与降噪的总体设计方面提供参考.  相似文献   

7.
将理论推导和数值模拟相结合,对典型离心压缩机Eckardt叶轮流场进行分析,探讨了不同进气预旋对叶轮气动性能的影响;从叶片进口攻角、叶尖相对马赫数和流向压力变化的角度,阐述了预旋对内部流动以及气动性能的影响机理。结果表明:预旋角对进口攻角和叶尖相对马赫数同时产生显著影响,正预旋会降低进口来流的攻角及相对马赫数,使叶片前缘载荷降低、叶轮效率及稳定性提升;负预旋会提升叶轮的做功能力,使总压比上升;正预旋由于降低了叶片前部做功能力,使低压流体堆积到叶片中后部,导致总压比下降;叶轮最高效率受叶尖相对马赫数与进口攻角共同影响,若提升效率必须合理协调预旋对二者的影响。  相似文献   

8.
王企鲲  陈康民 《力学季刊》2008,29(1):92-101
本文利用"径向平衡"原理,建立了轴流叶轮出口通流速度沿叶高的分布方程,并基于此提出了一种新的扭叶片设计方法.将该方法运用于某微型风扇的设计,并采用CFD技术,数值研究了不同扭曲形式下该型风扇的气动特点.通过与用传统方法设计的扭叶片及原始直叶片的气动性能的对比发现,按本文提出的方法所设计的扭叶片不仅能扩大微型风扇小流量稳定工况范围,而且其风压明显增加,有助于提高微型风扇的气动性能.  相似文献   

9.
李松涛  许庆余  张小龙 《应用力学学报》2005,22(2):169-174,i002
以离心压缩机叶轮为例,建立三维有限元模型,采用循环对称CN群算法计算了它的动力特性,详细讨论离心力作用下叶轮的应力状态,分析与轴连接的不同方式对叶轮应力的影响。应用循环对称算法能大大减少建模与计算的工作量,有很好的实用价值。计算结果表明,离心压缩机叶轮在旋转中,叶轮外缘应力比较高,轮盖上的应力较轮盘上的应力大,叶片根部容易产生应力集中,应采用适当的园角避免应力集中,过盈配合的叶轮内孔处应力比较大,需要确定合理的过盈量,既要保证叶轮不松动也要保证叶轮内孔处的强度条件。  相似文献   

10.
固粒直径对含尘风机磨损恶化规律的影响   总被引:3,自引:0,他引:3  
本文对含尘离心风机内粒子的直径与叶轮磨损的关系进行了计算与分析,用Lagrange法计算了固粒在叶轮中的运动轨迹和不同粒径时叶片的磨损状况。发现小粒径粒子对叶片磨损较均匀,而大粒径粒子使叶片磨损恶化;存在一个临界粒径D_cr,当粒径d_p<D_cr时,随着粒径的增长,粒子对叶片磨损急剧恶化,而d_p>D_cr时,叶片磨损随粒径增长的变化趋于平缓;固相浓度对叶轮磨损的影响也与粒子直径有关。  相似文献   

11.
Detailed particle-image velocimetry (PIV) measurements of flow fields inside semi-open impellers have been performed to understand better the internal flow patterns that are responsible for the unique performance of these centrifugal pumps operated in the range of very low specific speed. Two impellers, one equipped with six radial blades (impeller A) and the other with four conventional backward-swept blades (impeller B), are tested in a centrifugal pump designed to be operated at a non-dimensional specific speed of ns=0.24. Complex flow patterns captured by PIV are discussed in conjunction with the overall pump performance measured separately. It is revealed that impeller A achieves higher effective head than impeller B even though the flow patterns in impeller A are more complex, exhibiting secondary flows and reverse flows in the impeller passage. It is shown that both the localized strong outward flow at the pressure side of each blade outlet and the strong outward through-flow along the suction side of each blade are responsible for the better head performance of impeller A.  相似文献   

12.
Essentially, performance of centrifugal pumps is affected when pumping viscous fluids. In this paper a new idea is proposed to overcome the undesirable effects of viscosity on the pump performance parameters. This idea based on this matter that one specific impeller can be designed, made and installed on the pump for pumping of one fluid with specific viscosity. Therefore a specific pump can be used for pumping of different fluids with different viscosity, by replacement of pump impeller. Replacement of the impeller is more cost effective in comparison to the replacement of the whole of the pump. Passage width and outlet angle of impeller are considered as design variables and the effects of such variables investigated using experimentally validated numerical model. The H–Q, P–Q and η–Q graphs are extracted experimentally for the improved impeller, which show good improvement in comparison with original impeller.  相似文献   

13.
以船用轴流式喷水推进泵为对象,探索了轴流泵参数化设计、水动力性能、静强度和结构声学特征分析的数值途径。轴流泵叶轮采用升力法设计,导叶采用流线法设计,叶片三维造型在NUMECA参数化设计平台中完成。轴流泵水动力性能校核由粘性CFD计算完成,CFD计算同时提取得到叶片分布式水动力载荷。叶片静强度校核由ANSYS有限元计算叶片应力和应变特征完成,应力分析时同时考虑水动力载荷、重力载荷和离心力载荷。叶片结构声学特征分析由NASTRAN有限元计算叶片模态振型和振型频率完成。计算结果表明,轴流泵扬程和功率满足设计指标,效率达87.13%;叶轮叶片形变相对于叶顶间隙来说为极小量,可忽略不计,叶片存在局部应力集中现象,最大应力小于许用应力,满足静强度要求;叶片前四阶振型特征与分析经验一致,且振型频率远离轴频、叶频及其谐频特征频率,能够避免共振产生。  相似文献   

14.
With the aim of constructing a comprehensive design optimization procedure of axial flow hydraulic turbine, an improved quasi‐three‐dimensional inverse method has been proposed from the viewpoint of system and a set of rotational flow governing equations as well as a blade geometry design equation has been derived. The computation domain is firstly taken from the inlet of guide vane to the far outlet of runner blade in the inverse method and flows in different regions are solved simultaneously. So the influence of wicket gate parameters on the runner blade design can be considered and the difficulty to define the flow condition at the runner blade inlet is surmounted. As a pre‐computation of initial blade design on S2m surface is newly adopted, the iteration of S1 and S2m surfaces has been reduced greatly and the convergence of inverse computation has been improved. The present model has been applied to the inverse computation of a Kaplan turbine runner. Experimental results and the direct flow analysis have proved the validation of inverse computation. Numerical investigations show that a proper enlargement of guide vane distribution diameter is advantageous to improve the performance of axial hydraulic turbine runner. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

15.
Investigation of fluid dynamics within a miniature mixed flow blood pump   总被引:2,自引:0,他引:2  
An oil dot flow visualization method was utilized in conjunction with a traditional light sheet particle tracer method to investigate internal flow dynamics of a miniature mixed-flow blood pump. The effects of the operating condition and impeller design on the internal fluid dynamics and hydrodynamic performance were studied. The oil dot method enabled analysis of separated and disturbed flow within the highly wrapped rotating-blade passages – previously imperceptible with light sheet methods. The blade wrap was found to be critical to providing a favorable fluid dynamics for blood pumping over a range of off-design conditions. The low flow operating conditions were found to have a detrimental effect on blood flow. Received: 13 september 2000 / Accepted: 3 April 2001  相似文献   

16.
The purpose of this paper is to investigate the flow patterns in a centrifugal pump when it works as a centripetal turbine, with special interest in the unsteady behavior in order to explain the shape of the performance curves. Also, we focus on the determination of the radial thrust and other mechanical loads over a pump‐designed machine. The pump studied is commercial, with single axial suction and a vaneless spiral volute casing. A numerical study has been carried out in order to obtain more information about the flow into the volute and the impeller. A numerical three‐dimensional unsteady simulation has been developed using a commercial code that solves the URANS set of equations with a standard k–ε turbulence model. The results show the non‐axisymmetric flow developed in the volute, responsible for a significant radial thrust; the interaction between the tongue and the impeller, generating force fluctuations; the velocity and pressure distributions inside the impeller; and the exit flow, characterized with post‐rotation and low‐pressure. These flow results allow us to understand the behavior of the machine by comparing it with the pump mode. Complementarily, an experimental study was conducted to validate the numerical model and characterize the pump‐turbine performance curves at constant head. Fast‐response pressure taps and a three‐hole pneumatic pressure probe were employed to obtain a complete data set of non‐stationary and stationary measurements throughout the centrifugal machine. As a result, loss of efficiency or susceptibility to cavitation, detected numerically, was confirmed experimentally. The study demonstrates that the numerical methodology presented here has shown its reliability and possibilities to predict the unsteady flow and time‐mean characteristics of centrifugal pumps working as turbines. In particular, it is shown that the commercial design of the pump allows a reasonable use of the impeller as a turbine runner, due to the suitable adaptation of the inflow distributions to the volute casing. Moreover, the efficiency for the inverse mode is shown to be as high as achieved for the pumping operational mode. In addition, it is concluded that both axial and radial thrusts are controlled, though important unsteady fluctuations—up to 25%—clocked with the blade passing frequency appear beyond the nominal conditions. In that case, a moderate use of the pump as a turbine is recommended in order to minimize risks of fatigue failure of the bearings. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
本文用有限差分法计算混流式可逆水力机械水泵工况叶片表面的三维边界层。水泵叶轮中主流区的三维势流由直接边界元法计算。对于叶片面附近的粘性流动。用三维半正交坐标系中的边界层方程表示。为了提高计算精度采用贴体坐标技术生成边界层区域的计算网格。并利用Cebeci等变换函数及Keller差分格式离散方程。用分块解法求解。计算叶轮叶片表面的压力分布与相应试验结果进行了对比。  相似文献   

18.
Genetic algorithm (GA) is a widely used method for numerical optimisation owing to their good global search ability; however, their local search ability has an obvious shortcoming. To improve local search ability, this paper introduces a simplex method and combines it with a GA to form an improved genetic algorithm (IGA). In the IGA, at each generation of the original GA, high‐fitness individuals are selected as vertices of a simplex, and then a one‐dimensional search within the simplex is conducted to obtain the most‐fit individuals while replacing the inferior ones. Typical test functions show that the IGA can effectively improve the optimisation effect over that of the original GA. To further verify the IGA's practicability, an aspirated compressor profile is optimised with profile, suction flow rate and suction flow location as coupled design parameters. The results again show that the IGA has a better optimising effect than the GA. In addition, it is also verified that coupling the profile and suction flow parameters results in a design that outperforms the uncoupled design; therefore, designing an aspirated compressor blade by arranging suction flow on a conventional blade without considering suction flow is not a good method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Abstract According to the three key elements in blade design process, i.e., aerodynamic design, structure design, and load prediction, the independent research and development (R&D) progress of blade design is summarized and analyzed. The calculational fluid dynamics (CFD) method, the vortex method, and the blade element momentum method (BEM) are described. Based on the widely used BEM method, the solutions for the blade design in low-speed wind area are obtained. A brief overview of the traditional design and analysis methods based on beam models is given. The defects of these methods used for simulating the structure of large-scale composite blade are analyzed. The application progress of the finite element method (FEM) used in the blade structure analysis is shown. The effects of load prediction on the blades and entire wind turbine are introduced. The progress in load forecasting is described. With the analysis of the relationship among these three key elements, it is concluded that developing a blade optimization design system with coordinated aerodynamics, structure, and load will truly meet the requirement of high efficiency and low cost. The main directions for further study are pointed out, e.g., high efficiency and low load airfoils, structural nonlinear finite element analysis, aerodynamic structure coupling research, and establishing different design standards. The aim is to establish a blade R&D system suitable for the conditions of wind resources in China and promote the development of wind power in the country.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号