首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 296 毫秒
1.
W形金属密封环回弹与密封性能研究   总被引:1,自引:0,他引:1  
利用ANSYS分析W形金属密封环的压缩回弹性能和密封性能,得出W形金属密封环的压缩量与压紧力的关系;讨论加卸载过程中合金基体与银层的等效塑性应变分布情况并分析密封机制。通过正交试验,分析壁厚、波高、波峰半径、波谷半径等结构参数对密封环回弹性能和密封性能的影响规律。结果表明:W形环具有高回弹量和良好的自紧密封功能;加载压缩量达到10%时,合金基体的波谷区域开始出现塑性应变;镀银层在加载时的塑性流动,是能够实现密封的必要条件;壁厚和波高是对W形环综合性能影响最主要的参数;波谷半径过大将导致W形环密封性能难以保证,在改进设计中应避免。  相似文献   

2.
姜旸 《润滑与密封》2018,43(3):31-36
建立W形金属密封环的有限元模型,计算其不同工况下的静力学状态,并以此为基础探究W形环最大Von Mises应力与最大接触应力的影响因素。运用ANSYS模拟W形环在不同工况下加载卸载的全过程,探究W形环回弹率的各种影响因素。结果表明:在计算范围内,壁厚和压缩量的增加使最大接触应力平稳增大,密封性能提高,波高和温度的增加使最大接触应力下降,密封性能下降;壁厚和压缩量的增加使回弹率降低,波高与介质压力的增加使回弹率升高。  相似文献   

3.
为对比不同结构弹性金属密封环的力学特性,建立弹性金属密封环力学特性数值模型,在验证数值模型准确性的基础上,对比分析O形、C形、U形和W形4种结构密封环的变形特性、轴向刚度和回弹性能,并分析进出口压差、温度和结构形式对轴向刚度的影响。研究结果表明:在压缩复位工况下,U形和W形环具有良好的回弹性能,C形环的回弹性能适中,而O形环的回弹性能较差;在高温高压工况下,弹性金属密封环轴向刚度随着温度的增加而减小,进出口压差对弹性金属密封环轴向刚度的影响不大,4种结构密封环的轴向刚度由大至小依次为O形、C形、W形和U形;在相同压缩量条件下,高温高压工况相比于压缩复位工况,弹性金属密封环的最大应力值更小,但应力值超过屈服强度的区域更大,结构更容易失效。通过对比4种结构密封环发现,O形环适用于高载荷低回弹的工况,U形和W形环适用于低载荷高回弹的工况,而C形环的性能适中。  相似文献   

4.
针对汽车排气管密封问题,设计一种适合汽车排气系统密封的V形金属密封环。该密封环采用平面接触、小接触压力方式,在满足密封要求的同时避免了较大的预紧力;在波谷处采用圆弧过渡,降低了密封环的整体刚度,侧边倾斜一定角度以增大密封环的回弹性能。利用ANSYS Workbench软件对V形金属密封环常温预紧和高温工况下的密封性能进行分析,在保证密封强度要求下确定安装时合适的轴向压缩量;分析密封环结构参数对密封性能的影响,发现壁厚、环宽、波谷半径、接触圆半径、开口角度对密封性能影响较大。基于Design-Expert软件对密封环结构参数进行多目标优化,从而降低了密封环最大等效应力,提高了最大接触压力,减小了密封环质量,并通过相关实验验证有限元模型的可靠性。  相似文献   

5.
低温U形金属密封环密封性能有限元分析   总被引:3,自引:0,他引:3  
为了研究U形金属密封环在不同工作条件下的密封性能,利用ABAQUS软件建立某U形金属密封环的二维轴对称模型,在静密封条件下计算分析U形密封环初始压缩量、工作压力及工作温度等操作参数对密封环最大Von Mises应力、接触压力大小及其分布以及接触宽度的影响。结果表明,在工作工况下,U形密封环上最大Von Mises应力小于材料屈服极限,最大接触压力满足密封要求,且在低温条件下适当增大工作压力可以提高其密封性能。根据计算结果,提出此U形密封环的极限工作条件,对该U形金属密封环的设计和使用有一定的指导意义。  相似文献   

6.
为满足航空航天领域严苛工况下的密封要求,对W形金属密封环综合性能进行研究,提出从回弹性能、密封性能、稳定性能3个方面对W形金属密封环工作状态下的综合性能进行优化;建立W形环静态工况计算模型和准静态压缩回弹计算模型,分别计算塑形变形区域占比、最大接触应力和回弹率来描述其稳定性、密封性和回弹性;建立一套W形金属密封环的优化方法,应用分层求解和加权平均构造目标函数的方法,在给定工作条件下完成可行域内W形环最优综合性能设计的求解。优化结果与国外某公司产品契合度较高,验证了整个优化方法的正确性。  相似文献   

7.
柏汉松  曹航  李洋  杨利宁 《润滑与密封》2018,43(10):127-131
为解决某型航空发动机试车过程中W形金属密封环剥落失效问题,在完成断口分析的基础上,对W形金属密封环装配应力、工作应力进行分析。结果表明,初始装配时的压缩量偏大、工作环境压差较高是造成密封环剥落的主要原因。对W形密封环各参数的影响进行分析,提出合理控制初始装配压缩量范围、增加壁厚的改进措施。发动机长试验证了W形密封环改进措施的有效性。  相似文献   

8.
黄发  马健  吴正洪 《润滑与密封》2020,45(7):128-135
针对某型发动机高压转子连接结构的密封问题,设计一种U形金属密封环,分析研究密封环的密封和强度性能,探究结构参数(包括根部倒圆、壁厚、环高、接触面曲率半径、密封环接触面角度、密封环配合件角度)对密封环最大等效应力、最大接触应力的影响,基于ANSYS Workbench优化设计模块,采用代理模型结合遗传算法的优化技术对密封环结构进行优化。结果表明:安装压缩率范围为3.56%~6.33%时,可保证安装和工作2种工况下密封和强度的要求;最大等效应力与壁厚成正比关系,而与根部倒圆和环高成反比关系;接触面曲率半径对最大等效应力影响较小,但最大接触应力随着接触面曲率半径的增加而增加;选择合适的角度范围时,密封环接触面角度和密封环配合件角度对最大等效应力、最大接触应力影响均较小。密封环结构优化后,最大等效应力在安装和工作2种工况下分别减小了34.3%和30.4%,同时密封环质量减少了6.1%。对设计的U形金属密封环随整机进行了试验,结果表明U形金属密封环密封性能良好,验证了设计的合理性。  相似文献   

9.
冉振  傅波  李世伟  满斌 《润滑与密封》2018,43(12):33-37
为了解决高压自紧密封法兰在特定环境下泄漏的问题,利用SolidWorks建立高压自紧密封式法兰的三维模型,从法兰密封环应力分布均匀性的角度,利用有限元分析软件ANSYS和图像处理软件MATLAB,分析法兰密封环尺寸、螺栓预紧力和法兰刚度对密封性能的影响。结果表明:密封环外径对法兰密封环的应力分布均匀性有显著影响,密封环外径存在一个最佳区间;考虑到整个法兰系统的结构紧凑性以及密封分布均匀性,建议对外半径为47. 15 mm的法兰系统的密封环取最佳半径为56. 9 mm;法兰刚度、螺栓预紧力对法兰密封环的应力分布均匀性无显著影响。  相似文献   

10.
金属O形环的力学性能对于密封系统的强度设计、密封性、可靠性等有着直接影响。为研究金属O形环的力学性能,以核反应堆压力容器用金属O形环为研究对象,考虑密封环的复合结构、材料弹塑性特征和工况条件,采用有限元方法建立O形环力学性能仿真模型,分析密封环的压缩回弹特性、应力应变特征、接触特性以及银层的作用,并进行相关试验验证。结果表明:该有限元模型计算结果与试验结果具有良好的一致性;压缩率过大或过小都将导致其密封性能下降;整个压缩回弹过程可分为弹性变形、塑性变形、法兰接触及回弹4个阶段,O形环的回弹补偿性能由其压缩率决定;镀银层对于O形环接触压力分布起到了均化作用,而对总体的压缩回弹特性影响不大。  相似文献   

11.
为满足井下流量控制阀在高温高压、强腐蚀工况下的密封要求,提出一种可用于径向密封的U形金属密封环;利用Abaqus软件建立密封环的二维有限元分析模型,计算在预紧和井下实际工况条件下的最大Mises应力和接触压力的分布情况,分析初始压缩量、密封环厚度和井下压力对密封性能的影响。结果表明:随着初始压缩量的增加,最大接触压力先增大后减小再增大;随密封环厚度增加,最大接触压力先减小后增大;随井下压力增加,最大接触压力波动增加。初压缩量为0.4 mm、密封环厚度为3.7 mm时密封效果最优;在井下工作压力为30 MPa时,U形金属密封环能够满足密封条件,实现紧密密封。  相似文献   

12.
针对传统圆柱形液压活塞承载力不足问题,提出一种矩形异形活塞,研究其在不同工况下的密封性能。基于Abaqus软件建立异形活塞有限元模型,研究介质压力、密封间隙、活塞运动状态以及摩擦因数对密封性能的影响,并分析异形密封环不同位置处的应力分布和翻转情况。结果显示:静密封时,介质压力越大,密封环的最大Mises应力和最大接触应力越大;密封间隙越小,最大Mises应力与最大接触应力越大;相比静密封,内行程过程中最大Mises应力和最大接触应力都有明显增加,且随摩擦因数增加而增加,而外行程中最大Mises应力和最大接触应力相比静密封差异较小;各工况下应力最大值均出现在密封环圆弧段;在活塞运动过程中密封圈并未发生翻转,只是存在位置的平移情况。研究结果证明了异形活塞的可行性以及良好的密封性能,为活塞结构设计与优化提供了依据。  相似文献   

13.
全回转推进器桨毂动密封采用O形密封,其实际间隙的改变直接导致压缩率变化,从而对密封性能产生影响。从设计角度和工作角度对桨毂密封端面的实际间隙进行分析,研究服役过程中的装配误差、实际工况和摩擦磨损导致的间隙变化规律以及相互耦合。基于该实际间隙,在ABAQUS软件中建立桨毂动密封有限元模型,分析不同压缩率和介质压力下动密封的密封性能,如Mises应力、润滑脂油膜厚度和压力等,揭示了不同间隙下桨毂动密封性能的变化规律。结果表明:随着压缩率增大,最大Von-Mises应力和最大油膜压力增加,最小油膜厚度略微减小,最大Von-Mises应力由O形密封圈与桨叶法兰主接触区和桨毂体侧壁渐渐向主接触区过渡;随着介质压力增大,最大Von-Mises应力和最大油膜压力增加,最小油膜厚度略微减小,最大Von-Mises应力由O形密封圈与桨叶法兰主接触区和桨毂体底部逐渐向法兰低压接触区过渡;最大油膜压力始终大于油压值,动密封不会发生失效;通过适当增加装配间隙和介质压力有利于密封圈在自密封作用下获得更好的密封性能。  相似文献   

14.
凿岩机水封在工作过程中承受旋转和冲击复合作用,易造成Y形圈密封失效和疲劳失效。为提高凿岩机水封性能,综合考虑旋转和冲击2种运动形式,对不同结构参数下的Y形密封圈性能进行有限元仿真;基于正交试验法,以最大接触应力和最大von Mises应力作为密封性能评价指标,通过极差分析得出影响密封性能的主、次要因素,并对Y形密封圈结构参数进行优化改进。结果表明:对最大接触应力有显著影响的因素是唇厚、倒角长度和唇长度,最大接触应力随唇厚和倒角长度的增加呈上升趋势,随唇长度的增加呈下降趋势;对最大von Mises应力有显著影响的因素是唇厚、唇口深度和唇与钎尾夹角,最大von Mises应力随唇口深度和唇与钎尾夹角的增加呈上升趋势,随唇厚的增加呈下降趋势。经过优化改进后,Y形密封圈的最大接触应力和最大von Mises应力分别下降了15%和45%。在保证密封效果的条件上,最大接触应力的下降减少了Y形密封圈的磨损,而最大von Mises应力的大幅下降,大大提高了Y形密封圈的寿命。  相似文献   

15.
利用ANSYS Workbench软件建立了一个航空液压作动器O形圈静密封数值仿真模型,研究了O形圈在不同压合量、油液压力、温度等条件下的接触压力分布和Mises应力分布,以此得到压合量、油液压力、温度等因素对O形圈静密封性能和使用寿命的影响。结果表明:随压合量、油液压力的增大或者温度的升高,O形圈的最大接触压力和最大Mises应力都增大,密封性能良好但是使用寿命下降。计算了各压合量和油液压力下O形圈的有效密封宽度,并利用有效密封宽度来评价O形圈静密封的可靠性。  相似文献   

16.
以发动机出水口处螺栓预紧橡胶密封结构为例,分别建立橡胶密封圈在三孔和四孔螺栓装配结构下的有限元模型,利用有限元软件ABAQUS对比分析橡胶密封圈在不同螺栓装配结构下在不同工作温度下的密封性能和应力状态。结果表明:随着温度的升高,三、四孔螺栓预紧结构下密封圈的von Mises应力、接触应力、最大真实应变及接触宽度均逐渐增大;各工况下采用三孔和四孔螺栓装配结构时密封圈的密封性能相差不大且均满足密封要求,但采用三孔结构时密封圈具有更小的von Mises应力,有利于提高密封圈的使用寿命。  相似文献   

17.
为了将矩形橡胶密封圈应用于叶片式液压摆动油缸的旋转密封,利用大型有限元软件ABAQUS,求解矩形密封圈在配合挡圈使用前后,不同介质压力和预压缩量下应力与接触面压力分布情况;探讨相应的接触压力与介质压力、预压缩量的关系;并利用MATLAB绘制了分析结果曲线图。结果表明:矩形密封圈的最大范·米塞斯应力随预压缩量和介质压力的增长呈线性增长,随密封间隙的增加呈指数增长;矩形密封圈配合挡圈使用既能保证密封能力,又可以明显优化其内部的应力分布情况,防止密封挤出,延长密封圈的使用寿命。  相似文献   

18.
为提高纯水介质下液压缸活塞用鼓形密封的性能,以ZY10000-20-40DB型掩护式液压支架的活塞密封为研究对象,利用Ansys有限元软件建立鼓形密封结构二维轴对称模型,通过正交试验的方法,分析活塞内外行程情况下,不同密封沟槽结构参数和密封圈结构参数的鼓形密封的密封性能以及破损特性,并对鼓形密封结构进行优化。结果表明:相比于密封圈结构参数,密封沟槽结构参数对密封性能的影响较小,沟槽内倒角的尺寸变化对密封性能没有影响;密封圈边长尺寸过大或过小都会引起应力的集中;最大von Mises应力和接触应力都随着密封圈外凸圆弧半径的增大而增大,随着密封圈内凹圆弧半径的增大而减小。优化后的鼓形密封的最大接触应力增大18%~20%,密封性能显著提升。  相似文献   

19.
针对传统的螺旋槽型不能满足旋转设备反向运转的密封要求的问题,根据双向槽型机械密封结构特点,提出一种双向连通槽型,通过建立热流固耦合模型,确立传热边界条件,采用ANSYS Workbench对几何模型进行单向耦合计算,讨论密封环在转速、压力作用下热变形规律.结果表明:双向连通槽泄漏量整体比螺旋槽型泄漏量小,且双向连通槽由...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号