首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对电机轴承密封可靠性差的问题,提出一种适用于电机的枞树型槽上游泵送机械密封。在MATLAB环境下求解液膜稳态雷诺方程,得到枞树型槽上游泵送机械密封端面液膜压力分布,分析端面结构参数如槽深比、螺旋角、槽坝比对密封稳态特性的影响规律,并给出枞树型槽结构参数的设计优选范围。结果表明:该机械密封具有较好的动压效应;随着槽深比的增加,开启力、泵送量和液膜刚度均先增大后迅速减小,摩擦因数则缓慢增大;随着螺旋角的增大,开启力和泵送量逐渐减小,刚度先增大后减小;随着槽坝比的增大,开启力和泵送量增加,摩擦因数增大,刚度先逐渐增大而趋于稳定;槽深比和螺旋角对枞树型槽上游泵送机械密封的稳态特性影响较大,而槽坝比的影响较小;取槽深比1. 0~4. 0、螺旋角15°~25°、槽坝比1. 5~2. 5时,机械密封可获得较大开启力和液膜刚度、较小摩擦因数等较好的综合性能。  相似文献   

2.
以螺旋槽液膜密封为研究对象,求解考虑流量因子的平均雷诺方程,研究工况参数和结构参数对密封端面润滑状态转变规律的影响。结果表明:随着转速升高,液膜厚度与液膜承载系数逐渐增加,粗糙峰接触力不断减小至消失,实现摩擦副分离;低黏度介质对临界转速的影响显著;随着压差的增大,临界转速与闭合力均呈线性增大的趋势;临界转速随槽深、螺旋角增大而增大,随槽数、槽坝比增大而减小,结构参数中槽深对其影响最为显著,为提高润滑状态转变能力,建议取槽深3~7μm,螺旋角14°~18°,槽数16~24,槽坝比2/3~5/6。  相似文献   

3.
采用有限差分方法,基于对螺旋槽端面气膜压力分布、流速分布和泄漏率变化的数值计算分析,探讨低压上游泵送螺旋槽气体端面密封实现被密封介质零泄漏的作用机制和变化规律。结果表明,螺旋槽上游泵送作用可在高压侧形成周向封闭的高于密封压力的高压流体环带,阻止被密封介质进入密封间隙,实现被密封高压介质的零泄漏,形成密封介质的完全的反向泄漏;泄漏率随转速、槽数和膜厚的增加先减小后增大,随槽深、螺旋角和槽台宽比的增加先增大后减小,随槽根半径增加而减小;当转速、膜厚和槽数达到一定值时,泄漏方向会发生改变;开启力随转速和槽数增加而增大,随着膜厚的增大而减小,随槽深、螺旋角、槽台宽比和槽根半径的增加呈先增大后减小的趋势。  相似文献   

4.
基于唇形油封的反向泵送作用密封原理,提出了一种轴表面矩形微螺旋槽织构,以提升油封密封性能;建立了油封唇口稳态的符合质量守恒的流体润滑理论模型,考虑了油封唇口表面粗糙形貌和弹性变形的影响,采用有限元法求解流体压力控制方程,获得了泵送率和摩擦扭矩等性能参数,研究了矩形微螺旋槽织构参数和轴转速对油封密封性能的影响规律。结果表明:泵送率具有随微螺旋槽角度的增大而呈先缓慢增大后逐渐减小,且螺旋角最佳值约25°,随微螺旋槽深度、线数和轴转速的增大而增大等变化规律;摩擦扭矩具有随微螺旋槽角度、深度的增大而减小,随微螺旋槽线数的增大而增大,随轴转速的增大而呈先增大后减小以至趋于稳定等变化规律。研究结果为轴表面微槽织构提高油封密封性能的设计与应用提供了参考。  相似文献   

5.
螺旋槽上游泵送机械密封摩擦特性试验研究   总被引:1,自引:0,他引:1  
冯秀 《流体机械》2012,(9):9-13
上游泵送机械密封是一种具有环保、长寿命、低能耗的高新密封技术,其应用前景将十分广阔。端面摩擦特性是决定上游泵送机械密封工作寿命和密封性能好坏的关键因素。对螺旋槽上游泵送机械密封的端面摩擦系数进行了试验研究,结果表明,随着端面比压的增大,摩擦系数快速减小,当端面比压增加到0.3 MPa之后,变成缓慢减小。当端面比压较小时,随着转速的增大,摩擦系数缓慢减小。当弹簧比压达到0.15 MPa左右后,转速对摩擦系数的影响非常小,可近似认为此时摩擦系数不随转速而变化。在槽型参数中槽深、螺旋角对端面摩擦系数影响较大,而槽数、槽宽比和槽长比对于端面摩擦系数影响较小。此研究结果为上游泵送机械密封的正确使用和设计提供依据。  相似文献   

6.
上游泵送机械密封是一种具有环保、长寿命、低能耗的高新密封技术,其应用前景将十分广阔。端面液膜特性是决定上游泵送机械密封工作寿命和密封性能好坏的关键因素。主要依据流体雷诺方程和Muijderman无限窄槽理论,再用端面槽型因子对其进行修正,推导了螺旋槽上游泵送机械密封端面间液膜的径向压力分布、泄漏率、承载力、摩擦力、摩擦系数等液膜特性参数的计算公式,并重点分析了操作参数与槽型参数对端面摩擦系数的影响。研究表明,摩擦系数随转速和粘度增加而增加,随压力增加而减小。槽深H'=2.5、槽数Ng=10~18、槽宽比B=0.6~0.8、槽长比l=0.6~0.7时,密封环端面间摩擦系数较小,液膜特性较好,这时端面间间隙对摩擦系数几乎没有影响。此研究结果可为上游泵送机械密封的正确使用和设计提供依据。  相似文献   

7.
建立了螺旋槽机械密封瞬态启动过程润滑特性的计算模型,耦合求解了含流量因子、接触因子及质量守恒空化边界的雷诺方程、弹塑性粗糙峰接触方程及动力学方程,比较了不同运行工况及结构参数的润滑状态转变过程。结果表明:增速阶段流体承载力与液膜厚度不断增大,粗糙峰承载力逐渐减小至消失;相比较于流体动压润滑状态,混合摩擦状态的液膜刚度较大且振荡幅值明显,在到达脱开转速时刻有较大的轴向速度突变。受挤压效应影响,较小的启动加速度可以在低转速下进入流体润滑状态,较高的外压和较低的内压均有利于润滑状态的转变。随槽数的增加,脱开转速呈先增大后减小趋势,螺旋角与槽深的减小或槽坝比的增大均对润滑状态转变能力起促进作用。  相似文献   

8.
冯秀  何小元 《流体机械》2015,(12):17-21
上游泵送机械密封是一种具有环保、长寿命、低能耗的高新密封技术,其应用前景将十分广阔。端面液膜特性是决定上游泵送机械密封工作寿命和密封性能好坏的关键因素。主要依据流体雷诺方程和Muijderman无限窄槽理论,再用端面槽型因子对其进行修正,推导了螺旋槽上游泵送机械密封端面间液膜的径向压力分布、泄漏率、承载力、摩擦力、摩擦系数等液膜特性参数的计算公式,并重点分析了操作参数与槽型参数对端面摩擦系数的影响。研究表明,摩擦系数随转速和粘度增加而增加,随压力增加而减小。槽深H'=2.5、槽数Ng=10~18、槽宽比B=0.6~0.8、槽长比l=0.6~0.7时,密封环端面间摩擦系数较小,液膜特性较好,这时端面间间隙对摩擦系数几乎没有影响。此研究结果可为上游泵送机械密封的正确使用和设计提供依据。  相似文献   

9.
螺旋槽上游泵送机械密封密封特性数值计算   总被引:7,自引:1,他引:6  
建立考虑机械密封端面径向锥度的理论模型。采用有限元法求解修正的雷诺方程,得出螺旋槽上游泵送机械密封端面间液体的压力分布,分析不同黏度下膜厚、端面径向锥度对密封特性参数的影响规律。结果表明,螺旋槽上游泵送机械密封端面间液膜压力呈三维凸形曲面;液膜厚度越大,开启力越小,液膜刚度系数在某点取得峰值;径向锥度越大,径向压力峰值、开启力和摩擦因数越小,泄漏率在某点取得最小值;综合考虑较小密封泄漏量和较小摩擦因数,径向锥度取值范围为-1.5×10-4β-0.5×10-4较适宜。  相似文献   

10.
以非接触式机械密封为原型,建立磁流体端面动压润滑试验装置,研究转速、被密封介质压力、磁场强度对液膜润滑特性的规律;同时基于Muijderman窄槽理论,建立磁流体动压润滑特性的解析计算方法,并将解析计算结果与试验结果进行对比分析。结果表明:随转速和被密封介质压力增大,摩擦扭矩、泵送量均增大,而膜厚均减小;随着磁场强度增大,摩擦扭矩增大,泵送量和膜厚减小;相比于转速和密封介质压力,磁场强度对磁流体的动压润滑性能的影响尤为显著,因而当工况变化时可以通过调节磁场强度使密封性能始终保持在最佳工作范围。解析计算方法得到的结果与试验结果基本趋势一致,即验证了试验方法的可靠性,也表明提出的解析计算方法可用于流体动压润滑性能的预测。  相似文献   

11.
基于满足质量守恒的空化模型,利用CFD FLUNET软件建立螺旋槽液膜密封端面三维模型,探讨螺旋槽结构参数对密封端面空化产生的影响规律,分析端面空化对密封端面间流体膜的开启力、液膜刚度、泵送率等的影响。结果表明:以液膜中气相体积分数变化为判据,空化效应随槽深和槽数的增加而增强,随槽径宽径比的增加呈现先增强后减弱的趋势,但随螺旋角的增加而减弱;考虑空化效应后,液膜开启力和泵送量的数值与未考虑时有所降低,但变化趋势基本一致,而液膜刚度在一定的螺旋槽结构参数范围内波动较大,影响液膜的稳定性。因此,端面空化易导致密封失效。  相似文献   

12.
以超高速涡轮泵用机械密封为研究对象,针对超高速工况下密封界面多场耦合变形行为和热弹流润滑特性不明等问题,建立密封动静环和润滑液膜的耦合数学模型,研究不同转速和密封压力下的密封界面润滑特性和端面变形行为,分析相应的密封性能变化规律。结果表明:超高速工况下密封端面产生沿泄漏方向收敛的液膜间隙,密封动环的高温热变形是主因;随密封压力的增大,液膜间隙的收敛角减小,最大膜厚和泄漏率增大,端面温升明显减小;随着转速的增大,液膜间隙的收敛角、端面温升和泄漏率增大,摩擦扭矩减小。建立的流固热力耦合模型可为超高速涡轮泵用机械密封端面的优化设计提供理论指导。  相似文献   

13.
通过有限元法对动态雷诺方程和液膜能量方程进行推导求解,建立了考虑流体热效应和空化效应的液膜密封动态特性模型,分析了槽数、槽深、转速以及压力对液膜密封动态特性参数的影响。结果表明:在考虑空化及热黏的条件下,各角向之间的相互影响较弱,耦合角向系数小于正角向及轴向系数;刚度系数的绝对值会随着槽数、槽深、转速和压力的增加而增加;阻尼系数的绝对值会随着转速和压力的增加而增加,随着槽数和槽深的增加而略有减少;槽数、槽深、转速和压力的增加均会使液膜的抗干扰能力增强。  相似文献   

14.
基于质量守恒边界条件建立Y形槽液膜密封性能分析数学模型,采用有限差分法对广义Reynolds方程进行离散,通过SOR迭代方法对离散方程进行求解,得到液膜承载能力、液膜刚度、摩擦扭矩以及泄漏量等性能参数,并探讨Y形槽液膜密封结构参数对密封性能的影响。结果表明:槽数、周向槽台比和径向槽宽比等结构参数对密封性能有显著影响,液膜承载能力和液膜刚度随着这些结构参数的增大均呈现先增大后减小的趋势,摩擦扭矩随着这些结构参数的增大而增大;泄漏量随着槽数的增加先增大后趋于平稳,随着周向槽台比的增大先增大后减小,随着径向槽宽比的增大而减小;在文中计算条件下,槽数取12~14,槽深取30~35μm,螺旋角取12°~16°,周向槽台比取0.7~1.1,径向槽宽比取0.8~1.0时,Y形槽液膜密封具有较好的稳定性和密封性能。  相似文献   

15.
气液混输条件下,密封腔内的含气率较高将会使得密封液膜中有气体进入,从而导致密封环出现“失稳”现象。为探讨含气介质对机械密封性能的影响,通过建立端面螺旋槽型液膜模型,基于Mixture多相流模型,对端面液膜中气液两相分布及机械密封密封性能进行研究。结果表明:液膜内气相体积分数随气泡直径的减小而增大;不同入口含气率下密封端面两相分布规律相近,含气率较高的位置出现在槽根半径处;随着含气率、转速、压差的升高,〖JP2〗槽根处的压力随之升高,从而影响密封性能;在相同含气率、转速及压差下,随膜厚的增加,泄漏量增大,开启力减小,且较小的膜厚对工况参数的改变更为敏感,槽深与膜厚的相关性较强,优化机械密封结构时需综合考虑两者的影响。  相似文献   

16.
建立沿螺旋线排列的端面微造型机械密封液膜模型,基于质量守恒方程,考虑槽区深度、槽区半径、非槽区深度、螺旋角等几何参数及压差、转速等工况参数对开启力、泄漏量的影响;并基于高速实验台,测量了端面间的摩擦扭矩,同时与模拟结果对比。结果表明:固定压差时,随着槽区深度增加,开启力和泄漏量增加,固定转速时,泄漏量增加,开启力先增加后减小;随着槽区半径或螺旋角的增加,开启力和泄漏量减小;压差和转速的增加使得端面间摩擦扭矩增加,且实验值大于模拟值。  相似文献   

17.
提出一种斜线槽上游泵送机械密封,运用正交试验法设计上游泵送机械密封试验方案,基于Fluent软件进行数值模拟试验,分析各个试验参数对密封端面开启力和泄漏量的影响。结果表明:在试验参数的取值范围内,对开启力有显著影响的因素是槽数、径向夹角、槽深、液膜厚度、转速和压差,具体表现为开启力随着径向夹角、槽深、液膜厚度、转速和进出口压差的增大呈上升趋势,随着槽数的增多呈下降趋势;对泄漏量有显著影响的因素是槽深、槽宽比、液膜厚度、转速和压差,具体表现为泄漏量槽宽比、液膜厚度、转速和进出口压差的增大呈上升趋势,随着槽数的增多而呈下降趋势。依据正交试验分析结果,提出初步优化的密封端面结构参数。  相似文献   

18.
为了研究动压型机械密封液膜汽化特性和密封性能,建立了涉及水的饱和温度与压力的关系、黏温效应以及牛顿流体内摩擦效应的密封间隙液膜汽化计算模型,以螺旋槽机械密封为例分析了工况变化对液膜汽化特性及密封性能的影响规律。研究结果表明:介质温度升高时,存在平均气相体积分数突增的临界温度值,且随转速的增大临界温度值增大;介质压力和转速的增大对汽化有抑制作用,转速增大易使较高的汽化程度迅速降低且在某转速值处出现突变点,介质温度升高使得突变转速值增大;密封性能受工况变化的影响明显,特别是在汽化临界温度值、突变转速值处性能的变化速率迅速增大;液膜汽化首先发生在螺旋槽背风侧堰区,且随介质温度升高快速覆盖槽堰区并向坝区推进;随着转速的增大,润滑膜气相的周向分布更加均匀且高汽化区域会向外径侧移动。  相似文献   

19.
为进一步改善小孔节流动静压气体轴承的稳定性,对螺旋槽小孔节流动静压气体轴承的动态特性进行了研究。建立不定常工况下的动态雷诺方程,采用偏导数积分法求解动态特性系数。研究有无螺旋槽、涡动比、转速、供气压力以及槽宽和槽深对轴承动态特性的影响规律。结果表明:螺旋槽可以显著提高轴承的动态特性,增加轴承的稳定性;随涡动比的增大,直接刚度系数增加,交叉刚度系数和各阻尼系数都减小;随转速的增大,各刚度系数增加,而各阻尼系数减小;随供气压力的增大,各刚度和阻尼系数均增加;随槽宽的增大,直接刚度系数和阻尼系数呈先增加后减小趋势,交叉刚度系数和阻尼系数变化较小;随槽深的增大,直接刚度系数增加,交叉刚度系数和各阻尼系数先增加后减小。  相似文献   

20.
动压密封端面间液膜发生汽化相变,直接改变了端面间的流体润滑方式,对密封的稳定性产生重要影响。建立了液膜汽化相变数值计算模型,研究了不同工况和结构参数对液膜汽化相变程度和区域的影响,分析了液膜汽化相变后密封性能的变化规律。结果表明:工况和结构参数对液膜的汽化相变有着不同程度的影响,随着转速、压力和槽深的增加,液膜的汽化相变被抑制。当转速高于3×10~4 r/min、压力高于0.6 MPa、螺旋角大于20°、槽深大于7 μm时,液膜会发生逆汽化现象。液膜的汽化相变对密封性能产生直接的影响。合理选择密封结构参数,可有效利用和控制相变,提高密封性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号