首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
(1)参照已报道方法,从鸟苷合成了N,N-二甲基鸟苷(m_2~2G)。(2)N、2′、5′-O-三苯甲酰胞苷酸[_(Bz)C~(Bz)(OBz)p],与2′、3′-O-二乙酰基-N,N-二甲基鸟苷[m_2~2G(OAc)_2]经DCC 缩合,脱去保护基后可分离出胞苷酰-(3′→5′)-N,N-二甲基鸟苷(Cpm_2~2G)。(3)_(Bz)C~(Bz)(OBz)p 与N-二甲基氨基甲叉鸟苷酸(G_p~(DMM)),用DCC 缩合,脱保护基后可得到胞苷酰-(3′→5′)-鸟苷-2′,3′-环状磷酸(CpG>p)。(4)用RNase N_1(E.C.2.7.7.26)催化CpG>p 与Cpm_2~2G 反应生成26%产率的CpGpCpm_2~2G。经纯化后产物不含酶,用RNasc N_1水解得到等克分子的CpGp CpG>p 和Cpm_2~2G,碱解可分离出Cp(2′ 3′),Gp(2′ 3′)及m_2~2G,克分子比为2.07:1.0:1.1。  相似文献   

2.
本文报道了酵母丙氨酸转移核糖核酸3’-端茎区顺序中CpUpCpGpUp五核苷五磷酸的合成。_(HO)U(OBz)-p-NHC_6H_5同_(MMT)GA~(AC)(OAc)-p或_(MMT)G~(iBu)(OiBu)-p用DCC缩合再脱去5’-MMT后可分别得到_(HO)G~(Ac)(OAc)-p-U(OBz)-p-NHC_6H_5和_(HO)G~(iBu)(OiBu)-U(OBz)-p-NHC_6H_(50) _(HO)U(OBz)-p-NHC_6H_5同_(Bz)C~(Bz)(OBz)-p用DCC缩合再脱去3’-末端磷酸的苯胺保护基得到_(Bz)C~(Bz)(OBz)-pU(OBz)-p,此保护二核苷酸再同_(Ho)C~(Bz)(OBz)-p-NHC_6H_5用DCC缩合,然后再脱去3’-末端磷酸的苯胺保护基得到_(Bz)C~(Bz)(OBz)-p-U(OBz)-p-C~(Bz)(OBz)-p。此保护的三核苷酸同_(Ho)G~(Ac)(OAC)-p-U(OBz)-p-NHC_6H_5用DCC缩合,然后脱去3’-末端磷酸的苯胺保护基和全部酰基保护基并经7M尿素柱层析纯化,最后得到自由的五核苷酸CpUpCpGpUp。产物经纸电泳、薄板层析鉴定为均一,用牛胰核糖核酸酶水解后得到预期的核苷酸组成比例。  相似文献   

3.
本文报道了酵母丙氨酸转移核糖核酸3′-端茎区顺序中CpUpCpGpUp五核苷五磷酸的合成。Hou(OBz)-p-NHC_6H_5同_(MMT)G~(Ac)(OAc)-p或_(MMT)G~(iHu)(OiBu)-p用DCC缩合再脱去5′-MMT后可分别得到_(HO)G~(Ac)(OAc)-p-U(OBz)-p-NHC_6H_5和_(HO)G~(iBu)(OiBu)-U(OBz)-p-NHC_6H_5。_(HO)U(OBz)p-NHC_6H_5同_(Bz)C~(Bz)(OBz)-p用DCC缩合再脱去3′-末端磷酸的苯胺保护基得到_(Bz)C~(Bz)(OBz)-pU(OBz)-p,此保护二核苷酸再同_(HO)C~(Bz)(OBz)-p-NHC_6H_5用DCC缩合,然后再脱去3′-末端磷酸的苯胺保护基得到_(Bz)C~(Bz)(OBz)-p-U(OBz)-p-C~(Bz)(OBz)-p。此保护的三核苷酸同_(HO)G~(Ac)(OAc)-p-U(OBz)-p-NHC_6H_5用DCC缩合,然后脱去3′-末端磷酸的苯胺保护基和全部酰基保护基并经7世尿素柱层析纯化,最后得到自由的五核苷酸CpUpCp--GpUp0产物经纸电泳、薄板层析鉴定为均一,用牛胰核糖核酸酶水解后得到预期的核苷酸组成比例。  相似文献   

4.
本文报道用化学方法合成了酵母丙氯酸转移核糖核酸5′-半分子中反密码区的CUCC和cuuI两个四核苷酸片段。CUUI的合成路线是由(HO)I~(Bz)(OBz)_2开始,先同_(MMT)U(OBz)-p缩合并脱去5′-MMT后得到_(HO)U(OBz)-p-I_(Bz)(OBz)_2,然后与_(Bz)C~(Bz)(OBz)-p-U(OBz)-p缩合或者与_(MMT)U(OBz)-p和_(Bz)C_(Bz)(OBz)-p依次缩合得到全保护的四核苷三磷酸,最后用NH_3-甲醇溶液脱去保护基并分离纯化得到CUUI。而用_(Bz)C~(Bz)(OBz)-p-U(OBz)-p同_(HO)C_(Bz)(OBz)-p-C_(Bz)(OBz)_2缩合然后脱去保护基并分离纯化则可得到CUCC。反应缩合剂均采用DCC。合成的CUCC和CUUI均能为牛胰核糖核酸酶完全水解得到预期的碱基组成比例。  相似文献   

5.
本文报道用化学方法合成酵母丙氨酸转移核糖核酸3′-端半分子反密码区中的GpCp-m~1IpΨ*四核苷三磷酸片段。合成路线是由_(HO)Ψ~(Bz)(OBz)_2开始,采用逐个伸长的方式,依次同保护单核苷酸_(MMT)m_1I(OBz)-p,_(MMT)C~(Bz)(OBz)-p和_(1Bu)G_(iBu)(OiBu)-p缩合得到全酰化的保护四核苷三磷酸,最后用NH_3/甲醇溶液脱去全部酰基保护基并经柱层析分离纯化得GpCpm~1IpΨ。所用缩合剂均为DCC。纯化后的GpCpm_1IpΨ层析电泳鉴定均一,碱解和酶解得到预期的核苷酸组成比例。  相似文献   

6.
本文报道用化学方法合成了酵母丙氨酸转移核糖核酸5'-半分子中反密码区的CUCC和CUUI两个四核苷酸片段。CUUI的合成路线是由_(HO)I~(OBz)_2开始,先同_(MMT)U(OBz)-p缩合并脱去5'-MMT后得到_(HO)U(0Bz)-p-I~(Bz)(OBz)_2,然后与_(B(?))C~(Bz)(OBz)-p-U(OBz)一p缩合或者与_(MMT)U(OBz)-p和_(Bz)C~(Bz)(OBz)-p依次缩合得至4全保护的四核苷三磷酸,最后用NH_3-甲醇溶液脱去保护基并分离纯化得到CUUI。而用_(Bz)C~(Bz)(OBz)-p-U(0Bz)-p同_(HO)C~(Bz)(OBz)-p-C~(Bz)(OBz)_2缩合然后脱去保护基并分离纯化则可得到CUCC。反应缩合剂均采用DCC。合成的CUCC和CUUI均能为牛胰核糖核酸酶完全水解得到预期的碱基组成比例。  相似文献   

7.
本文报道了利用酶促合成的方法(RNase N_1和T_4 RNA连接酶)合成了酵母丙氨酸转移核糖核酸分子中第23位到第35位的十三核苷酸的类似物CpGpCpGpCpUpCpCpCpUpUpIp-Gp(天然酵母丙氨酸tRNA中第26位是m_2~2G)。CpGpCpG是由CpG>p和CpG经RNase N_1酶催化合成的,产率为20%。十三核苷酸CpGpCpGpCpUpCpCpCpUpUpIpGp的合成是由T_4 RNA连接酶催化CpGpCpG与pCpUpCpCpCpUpUpIpGp之间的连接反应实现的,产率为80%。产物经双向电泳层析分析为一点,用蛇毒磷酸二酯酶部分酶解后的双向图谱分析证明十三核苷酸的核苷酸排列顺序正确。  相似文献   

8.
本文报导了一种制备甲基乙烯基醚(MVE)的简易方法,其合成反应途径是: 在三氟乙酸催化作用下,MVE与各种5′-核苷二磷酸(ppN)反应,用纤维素柱层析方法分离反应产物,制备了五种2′(3′)-O-甲氧乙基-5′核苷二磷酸(ppN-2′(3′)-O-ME):ppA-2′(3′)-O-ME,ppG-2′(3′)-O-ME,ppC-2′(3′)-O-ME,ppU-2′(3′)-O-ME,以及ppΨ-2′(3′)-O-ME,产率一般为50~70%。  相似文献   

9.
本文报道用化学方法合成酵母丙氨酸转移核糖核酸3’-端半分子反密码区中的GpCpm~1IpΨ四核苷三磷酸片段。合成路线是由_(Ho)Ψ~(Bz)(OBz)_2开始,采用逐个伸长的方式,依次同保护单核苷酸_(MMT)m~1I(OBz)-p,_(MMT)C~(Bz)(OBz)-p和_(iBu)G~(iBu)(OiBu)-p缩合得到全酰化的保护四核苷三磷酸,最后用NH_3/甲醇溶液脱去全部酰基保护基并经柱层析分离纯化得GpCpm~1IpΨ。所用缩合剂均为DCC。纯化后的GpCpm~1IpΨ层析电泳鉴定均一,碱解和酶解得到预期的核苷酸组成比例。  相似文献   

10.
本文报道了酵母tRNA~(ala)分子中第42—45核苷酸片段——四核苷酸AGAGp的合成。首先我们化学合成了N,2′,5′-全乙酰化腺苷-3′-磷酸N,N-二甲氨基甲叉鸟苷-3′-磷酸的二环己基码啉胍盐,经DCC缩合、脱保护得到Ap Gp,然后通过氯甲酸乙酯环化形成ApG>p,再经RNaseN_1酶促合成为四核苷酸AGAGp。  相似文献   

11.
利用Tomlinson和Tener的DEAE-纤维素柱层析方法,我们从酵母SRNA的碱水解产物分得抗碱二核苷酸的层析峰。将抗碱二核苷酸混合物用大肠杆菌碱性磷酸单酯酶处理后,纸层析分离可得到四个部分,分别称A_1,A_2,A_3及A_4。经鉴定A_1为2′-O-甲基鸟便嘌呤核苷-3′-磷酸-5′-鸟便嘌呤核苷(G'pG),A_2主要为2′-O-甲基胞嘧啶核苷-3′-磷酸-5′-鸟便嘌呤核苷(C'pG,纯度约为87%),A_3则至少合2′-O-甲基胞嘧啶核苷-3′-磷酸-5′-腺嘌呤核苷(C'pA)和2′-O-甲基鸟便嘌呤核苷-3′-磷酸-5′-腺嘌呤核苷(G'pA),A_4较为复杂,未最后鉴定。因此酵母SRNA中至少含有下列四种抗碱二核苷酸:2′-O-甲基鸟便嘌呤核苷-3′-磷酸-5′-鸟便嘌呤核苷酸(G'pGp),2′-O-甲基胞嘧啶核苷-3′-磷酸-5′-鸟便嘌呤核苷酸(C'pGp),2′-O-甲基胞嘧啶核苷-3′-磷酸-5′-腺嘌呤核苷酸(C'pAp)及2′-O-甲基鸟便嘌呤核苷-3′-磷酸-5′-腺嘌呤核苷酸(G'pAp)。除此以外,还得到核苷二磷酸的层析峰,其中主要为鸟便嘌呤核苷-2′(3′),5′-二磷酸,只有少量的腺嘌呤核苷-2′(3′),5′-二磷酸。  相似文献   

12.
GpUpCpU是酵母丙氨酸转移核糖核酸额外区的一个四核苷酸片段。我们采用的合成路线为: _(MMT)C~(Bz)(OBz)-p _(HO)U(OBz)_2_(HO)C~(OBz)-p-U(OBz)_2UpCpU G>p  相似文献   

13.
本文报告了两种萤光试剂的制备方法并用一种萤光试剂标记了四种核苷二醛和四种5′-次甲基核苷二醛。萤光试剂Ⅰ,1-二甲氨基萘-5-磺酰-甘氨酰肼(DNS-Gly-NHNH_2)的制备方法:1-二甲氨基萘-5-磺酰氯(DNS-Cl)与甘氨酸乙酯(Gly-OC_2H_5)反应,得1-二甲氨基萘-5-磺酰-甘氨酸乙酯(DNS-Gly-OC_2H_5),DNS-Gly-OC_2H_5经肼解得DNS-Gly-NHNH_2。萤光试剂Ⅱ,1-二甲氨基萘-5-磺酰肼(DNs-NHNH_2)的制备方法:1-二甲氨基萘-5-磺酰氯直接肼解得1-二甲氨基萘-5-磺酰肼(DNs-NHNH_2)。DNs-GIy-NHNH_2与腺苷二醛,鸟苷二醛,胞苷二醛以及尿苷二醛反应,分别得到四种萤光标记的核苷腙:DNs-GlY-_(Ho)A_R,DNS-Gly-_(Ho)G_R,DNs-Gly-_(Ho)C_R,以及DNS-Gly-_(HO)U_R。DNS-Gly-NHNH_2与5′-次甲基腺苷二醛,5′-次甲基鸟苷二醛,5′-次甲基胞苷二醛以及5′-次甲基苷二醛反应,分别得到四种萤光标记的5′-次甲基核苷腙:DNS-Gly-_[H(?)]A_R,DNS-Gly-_[H(?)]G_R,DNS-Gly-_[H(?)]C_R 以及DNS-Gly-_[H(?)]U_R。  相似文献   

14.
本文采用酸稳定性氨基可逆保护基甲基磺酰乙氧羰酰基(MSC)对猪胰岛素氨基进行选择性保护后,经Edman降解两次制得[MSC]_2~(A_1B_(20))desB~(1-2)INS,以此作为半合成起始物,在有N-乙基吗啉存在的二甲亚砜溶液中与甲基磺酰乙氧羰酰色氨酸对硝基苯酯(MSC·Trp·ONP)缩合,中间产物经SP-Sephadex C-25分离后脱保护、纯化,所得最终产物经醋酸纤维薄膜电泳,萤光光谱,氨基酸组成及N-末端分析确证为desB~1[Trp]~(B_2)INS。小白鼠惊厥活力和肝细胞膜受体活力分别为原料胰岛素的60%和52%,放射免疫活力低于原料胰岛素但高于去B_1胰岛素。  相似文献   

15.
本文为研究刺五加(Acanthopanax senticosus Harms)的化学成分及其抑制二酰基甘油酰基转移酶(DGAT)活性。刺五加用75%乙醇提取,经硅胶、ODS、半制备HPLC进行分离纯化,结合理化性质、波谱数据鉴定化合物的结构。得到12个化合物分别鉴定为赤式-愈创木基丙三醇-β-O-4′-二羟基松柏醇(1)、(E)-3-(2,2-dimethyl-2H-chromen-6-yl)prop-2-enal(2)、7′E-4,9-dihydroxy-3,3′,5′-trimethoxy-8,4′-oxyneolign-7′-en-9′-al(3)、5-甲氧基去氧双松柏醇(4)、去氧双松柏醇(5)、5,5′-二甲氧基落叶松脂素(6)、5,5′-二甲氧基开环异落叶松树脂酚(7)、(7′S,8′S)-4′-O-甲基黄花菜木脂素(8)、(+)-9′-O-(Z)-阿魏酰-5,5′-二甲氧基落叶松脂素(9)、(+)-9′-O-(E)阿魏酰-5,5′-二甲氧基落叶松脂素(10)、大豆苷(11)和3′-甲氧基大豆苷(12)。其中化合物1~3和8~10为首次从该植物中分离得到。化合物1、3~7、9和10对DGAT1活性具有抑制作用,其IC_(50)值范围在81.5±1.2到123.2±1.1μM之间。  相似文献   

16.
用均三甲基苯磺酰氯(M8)作缩合剂,合成了二个六脱氧核糖核苷酸(d-_(MMTr)G_p~(Bz)A_p~(Bz)C_p~(An)G_p~(Bz)A_p~(Bz)G_p~(Bz)和d-_(MMTr)C_p~(An)G_p~(Bz)A_p~(Bz)A_p~(Bz)C_p~(An))*,脱去保护基后经双向同系层析测定核苷酸排列顺序,完全符合实验设计要求(d-G_pA_pC_pG_pA_pG和d-T_pC_pG_pA_pA_pC)。上述二个带保护基的六脱氧核糖核苷酸合成的每一步,都是采用溶剂抽提方法分离的,大大简化了分离的步骤和缩短了分离的时间,便于脱氧寡核苷酸的大量制备。此法也适用于其他带保护基寡核苷酸的制备,不论其三苯甲基衍生物基团在5′端或3′端(例如d-_pG_p~(Bz)A_(ODMTr)~(Bz))。  相似文献   

17.
本文报道了用RNase N_1(核糖核酸酶、鸟嘌呤核苷酸-2′-移换酶,Neurospora Crassa,E.C.2·7·7·26)连接CpUpCpG>p与UpCpCpA合成酵母丙氨酸转移核糖核酸3′-端接受茎区八核苷七磷酸CpUpCpGpUpCpCpA。反应条件包括:供体(CpUpCpG>p),0.07~0.09M;受体(UpCpCpA)浓度为供体浓度的三至七倍;RNase N_1,每毫升250单位;pH7.5磷酸缓冲液,0.1M;0°±2℃反应48小时。在这一反应中,CpUpCpGpUpCpCpA的产率随着受体与供体的克分子比例的增大而升高,当这一比例超过6,产率超过30%。本方法一次可得到纯的CpUpCpGpUpCpCpA数毫克。关于从最终产物中除去RNaseN_1的问题,我们发现在pH3.5条件下进行DEAMSephadexA-25(Cl~-型)柱层析或用pH2.7条件下的纸电泳法均可得到较满意的效果。当把反应物在6M NH_4OH,0.04M DTP,37℃保温15分钟,或者在pH7.4 Tris-HCl缓冲液和0.04M DTPJ 0℃保温7小时以后,RNase N_1即完全失活。可是,一旦除去上述DTP等抑制条件以后,失活后的RNase N_1在空气中可以逐步恢复其大部分活力。在我们的实验中没有向反应物中加入0.1%的明胶蛋白,很可能底物本身对RNase N_1具有一定的保护作用。在合成CpUpCpGpUpCpCpA的同时,我们还用RNase N_1合成了GpC,GpΨ,GpU,GpUp,GpUpCpC及CpUp(UpGpUpCpC等寡核苷酸,并且都得到了较好的产率。对RNase N_1酶促合成CpUpCpGpUpCpCpA反应中产生的几个付产物进行了分离纯化和初步鉴定。  相似文献   

18.
在干扰素的功能表达中,2′-5′寡聚腺苷酸是一类重要的媒介物。本文研究了T_4-RNA连接酶的专一性及其用于2′-5′寡聚腺苷酸衍生物合成的可能性。1980年,我们曾发现2′-5′寡聚腺苷酸可以作为RNA连接酶的受体。本文对此作了进一步的研究,证实了T_4-RNA连接酶可以将pNp(N=A,G,C,U)、pCpUpC、pCpm_2~2G等供体连到2′-5′P_3A_3受体上去,生成各种相应产物。2′-5′磷酸二酯键连接的寡核苷酸能否作为T_4-RNA连接酶的供体,有人估计不大可能。本文也证实了T_4-RNA连接酶能将供体pA~(2′)p~(5′)A连接到CpUpC、UpCpCpA、Cpm′IpψpG等受体上面去。从而说明T_4-RNA连接酶也可使用2′-5′磷酸二酯键连接的寡核苷酸作为供体。应用T_4-RNA连接酶,可以合成既含有2′-5′又含有3′-5′磷酸二酯键的寡核苷酸。本工作还证明A~(2′)p~(5′)A也可以作为T_4-多核苷酸激酶的底物。  相似文献   

19.
云南红豆杉 (TaxusyunnanensisChengetL .K .Fu)的一株紫杉醇高产细胞系经过 8年多的继代培养 ,仍保持较稳定的紫杉烷类化合物的生物合成能力。从此株紫杉醇高产细胞系的悬浮培养物中分离到 8个紫杉烷类化合物 ,经核磁共振光谱和质谱数据分析 ,它们的化学结构分别是 2 ,5 ,10_三乙酰氧基_14_丙酰氧基紫杉二烯 (1)、2 ,5 ,10_三乙酰氧基_14_(2′_甲基丙酰氧基 )紫杉二烯 (2 )、2 ,5 ,10 ,14_四乙酰氧基紫杉二烯 (3)、2 ,5 ,10_三乙酰氧基_14_(2′_甲基_3′_羟基丁酰氧基 )紫杉二烯及其差向异构体 (4和 5 )、巴卡亭Ⅳ (6 )、巴卡亭Ⅲ (7)和紫杉醇 (8)。化合物 3、5 - 7为首次从云南红豆杉细胞培养物中分离到。定性分析表明 ,云南红豆杉细胞悬浮培养液中的化学成分与培养细胞中的相似。另外 ,此株紫杉醇高产细胞系的紫杉醇含量可高达 0 .3% ,可用来进行大规模培养  相似文献   

20.
用均三甲基苯磺酰氯(MS)作缩合剂,d-_(MMT_r)G~(Bz)_pA~(Bz)_pC~(An)_pG~(Bz)_pA~(Bz)_pG~(Bz)先后同d-_pT_pC~(An)_pC~(An)_(-CA(?))和d-_pG~(Bz)_pG~(Bz)_pA~(Bz)_pA~(Bz)_(OAc)反应,脱去保护基后,在7M尿素柱上分离纯化,最后得到产物脱氧核糖十三核苷酸(d-GpApCpGpApGpTpCpCpG_pGpApA)。因上述两步缩合反应所得到的中间产物带有大量芳香族保护基,增强了寡聚核苷酸对离子交换树脂的吸附,给分离纯化工作造成一定困难。我们发现这些带有保护基的寡聚核苷酸在DEAE-葡聚糖A-25(Cl~-型)柱上,用含有3M尿素和40%乙醇的氯化锂溶液洗脱,可以克服这一困难。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号