首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The adsorption of Ca(Ⅱ) ions from aqueous solution by chitosan α-ketoglutaric acid(KCTS) and hydroxamated chitosan α-ketoglutaric acid(HKCTS) was studied in a batch adsorption system.The Langmuir and Freundlich adsorption models were applied to describing the equilibrium isotherms,and isotherm constants were determined.The kinetics of the adsorption with respect to the initial Ca(Ⅱ) ions concentration,temperature and pH was investigated.The pseudo-first-order and second-order kinetic models were used to describe the kinetic data and the rate constants were evaluated.The results show that the experimental data fit well to the Langmuir isotherms with a high correlation coefficient(R2).The pseudo-second-order rate expression provides the best fitting kinetic model.The pseudo second-order kinetic model is indicated with the activation energy of 26.22 kJ/mol and 6.16 kJ/mol for KCTS and HKCTS,respectively.It is suggested that the overall rate of adsorption of Ca(Ⅱ) ions is likely to be controlled by the chemical process.  相似文献   

2.
A novel adsorbent named magnetic humic acid/chitosan composite(M-HA/Cs) was synthesized by decorating humic acid/chitosan composites with Fe_3O_4 nanoparticles. The adsorption capacity of M-HA/Cs was 1.5 times that of MCs. The effects of solution p H, initial concentration of Pb(Ⅱ) ions and adsorption temperature on Pb(Ⅱ) removal were examined in a batch system and further optimized using Box-Behnken analysis. The recommended optimum conditions are initial Pb(Ⅱ) concentration of 139.90 mg/L, initial pH of 4.98, and temperature of 43.97 oC. The adsorption processes could be well described by pseudo-second-order and Elovich models. Isotherm studies reveal that the adsorption process follows Sips and Temkin models. The thermodynamic study indicats that the adsorption process is spontaneous and exothermic. The potential mechanism of Pb(Ⅱ) on M-HA/Cs at pH 5 may be surface electrostatic attraction, coordination and hydrogen bonding.  相似文献   

3.
To improve the adsorption properties of chemically modified chitosan, the chelating resin of salicylal chitosan Schiff bases was prepared by the template cross-linking method using Cu(Ⅱ) as template ion and ethylene glycol bisglycidyl ether as cross-linking agent in microwave, and was characterized by IR. The adsorption capacity and selectivity coefficient of the chemically modified chitosan for Cu(Ⅱ), Fe(Ⅲ) and Zn(Ⅱ) were investigated, respectively. The results show that the adsorption capacity of the resin 2.73 mmol/g for Cu(Ⅱ) is bigger than that for other two metal ions, 0.22 mmol/g for Fe(Ⅲ), and 0.42 mmol/g for Zn(Ⅱ), and the selectivity coefficients are as follows: KCu(Ⅱ)/Fe(Ⅲ)=12.4, KCu(Ⅱ)/Zn(Ⅱ)=6.5.  相似文献   

4.
Toxic Cu(Ⅱ) and Ni(Ⅱ) ions in aqueous solutions were adsorbed by microporous activated carbon(AC). The adsorption isotherm and kinetics correlation coefficients indicate that the adsorption of Cu(Ⅱ) and Ni(Ⅱ) ions on the AC fits the pseudo second-order rate model and Langmuir adsorption model. The used AC adsorbents containing the adsorbed Cu and Ni ions were used as colorant in glass preparation. The coloration effect of Cu ions was influenced by the carbon absorbent included in the glass batch due to the reduction phenomenon, while the coloration of Ni ions was not affected.  相似文献   

5.
A novel magnetic chelating adsorbent (CPMS) with iminodiacetate functionality was prepared by polymerization of glycidyl methacrylate-iminodiacetic acid (GMA-IDA) monomer with N, N-methylenebisacrylamide as crosslinker in the presence of monodisperse magnetic silica microspheres (MS). CPMS was characterized by IR, SEM, VSM and TGA. The experimental results revealed that MS was embedded in the gel polymer, but the morphology of CPMS was irregular. The saturation magnetization for CPMS was found to be 28.4 emu/g, and the percentage of GMA-IDA polymer grafted on MS was about 46.5%. CPMS were shown to be efficient for the removal of Pb(II) ions at pH 3.0 - 6.0, and the adsorption data obeyed the Langmuir equation with a maximum adsorption capacity of 54.4 mg?g?1 at pH 5.0. Moreover, the adsorption rate of CPMS was fast and it took about 5 minutes to achieve adsorption equilibrium in aqueous solution of lower lead ions concentration.  相似文献   

6.
The crosslinked chitosan was grafted by 4′-formal benzo-15-crown-5 to obtaine crosslinked chitosan with 4′-formal benzo-15-crown-5(CCTS-N=CH-B-15-C-5). Then it was loaded with palldium chloride to gain the heterogeneous catalyst, which was easily isolated from the reaction system. The influences of the Pd content of the catalyst, solvent, and temperature on asymmetric hydrogenation of α-phenylethanone have been studied. The catalyst has been found to catalyze the hydrogenation of α-phenylethanone into the chiral alcohol, α-phenyl ethanol under the mild condition. The optical yield of (R)-1-phenylethanol could be obtained as 97.1% under the following conditions: temperature, 30 ℃; solvent, ethanol; Pd content, 1.43 mmol/g; substrate concentration, 0.02 g /mL due to the cooperative effect of crown ether and chitosan polymer. The stability of this catalyst was also studied at the same time. This chiral natural crosslinked chitosan-palladium complex catalyst could be reused without appreciable change in optical catalytic activity, which will be useful for designing crosslinked-chitosan-based adsorption for metal ions for asymmetric hydrogenation.  相似文献   

7.
The adsorption behavior of Pb^2+ and Cd^2+ ions on bauxite flotation tailings was investigated to demonstrate the adsorptivity of the bauxite flotation tailings. The adsorption percentage of Pb^2+ and Cd^2+ ions as a function of adsorbent dosage, solution pH value and shaking time were determined by batch experiments. The maximum adsorption percentage of 99.93% for Pb^2+ ions and 99.75% for Cd^2+ ions were obtained by using bauxite flotation tailings as adsorbent. The methods, such as zeta potentials, specific surface area measurements and the analysis of adsorption kinetics, were introduced to analyze the adsorption mechanisms of the Pb^2+ ions on bauxite flotation tailings. The isoelectric point of bauxite flotation tailings shifts from 3.6 to 5.6 in the presence of Pb^2+ ions. The specific surface area of bauxite flotation tailings changes from 12.57 to 20.63 m^2/g after the adsorption of Pb^2+ ions. These results indicate that a specific adsorption of the cation species happens on the surface of bauxite flotation tailings. Adsorption data of Pb^2+ ions on the surface of bauxite flotation tailings can be well described by Langmuir model, and the pseudo-second-order kinetic model provides the best correlation for the adsorption data of Pb^2+ and Cd^2+ ions on bauxite flotation tailings.  相似文献   

8.
To establish a theoretical foundation for simultaneous removal of multi-heavy metals,the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from their single and binary systems by Ca-alginate immobilized activated carbon and Saccharomyces cerevisiae (CAS) was investigated.The CAS beads were characterized by Scanning electron microscope (SEM) and Fourier transformed infrared spectroscopy (FTTR).The effect of initial pH,adsorbent dosage,contact time and initial metal ions concentration on the adsorption process was systematically investigated.The experimental maximum contents of Cu(Ⅱ) and Pb(Ⅱ) uptake capacity were determined as 64.90 and 166.31 mg/g,respectively.The pseudo-second-order rate equation and Langmuir isotherm model could explain respectively the kinetic and isotherm experimental data of Cu(Ⅱ) and Pb(Ⅱ) ions in single-component systems with much satisfaction.The experimental adsorption data of Cu(Ⅱ) and Pb(Ⅱ) ions in binary system were best described by the extended Freundlich isotherm and the extended Langmuir isotherm,respectively.The removal of Cu(lⅡ) ions was more significantly influenced by the presence of the coexistent Pb(Ⅱ) species,while the Pb(Ⅱ) removal was affected slightly by varying the initial concentration of Cu(Ⅱ).The CAS was successfully regenerated using 1 mol/L HNO3 solution.  相似文献   

9.
The adsorption of sulfate in aqueous solutions onto organo-nano-clay prepared by natural zeolite and cationic surfactant cetyltrimethylammonium bromide (CTAB) was studied.Parameters such as adsorbent dosage,contact time and temperature were investigated using batch adsorption studies.The results show that the uptake of sulfate increases with the increase of contact time and temperature,and decreases with the increase of dosage.The Freundlich isotherm model is fit to explain the sulfate adsorption onto organo-nano-clay.The maximum adsorption capacity is found to be 38.02 mg/g at 40 ℃.The kinetic data fit well the pseudo-second-order and Elovich models with a R2 more than 0.98.It is suggested that chemisorption is the rate-controlling step for adsorption of sulfate onto organo-nano-clay,meanwhile both intraparticle diffusion and boundary layer diffusion also contribute as well.Ion-exchange between sulfate anions and bromide ions and complexation between sulfate anions and CTAB cations are responsible for the mechanism of sulfate adsorption.
Keywords:organo-nano-clay; cetyltrimethylammonium bromide (CTAB); modification; sulfate; adsorption  相似文献   

10.
The crosslinked chitosan was grafted by 4'-formal benzo-15-crown-5 to obtaine crosslinked chitosan with 4'-formal benzo- 15-crown-5(CCTS-N=CH-B- 15-C-5). Then it was loaded with palldium chloride to gain the heterogeneous catalyst, which was easily isolated from the reaction system. The influences of the Pd content of the catalyst, solvent, and temperature on asymmetric hydrogenation of a-phenylethanone have been studied. The catalyst has been found to catalyze the hydrogenation ofa-phenylethanone into the chiral alcohol, α-phenyl ethanol under the mild condition. The optical yield of (R)- 1-phenylethanol could be obtained as 97.1% under the following conditions: temperature, 30℃; solvent, ethanol; Pd content, 1.43 mmol/g; substrate concentration, 0.02 g/mL due to the cooperative effect of crown ether and chitosan polymer. The stability of this catalyst was also studied at the same time. This chiral natural crosslinked chitosan-palladium complex catalyst could be reused without appreciable change in optical catalytic activity, which will be useful for designing crosslinked-chitosan-based adsorption for metal ions for asymmetric hydrogenation.  相似文献   

11.
研究了十六烷基三甲基溴化铵(CTAB)改性SAPO-44分子筛对模拟油中的碱性氮化物吡啶的吸附特性。考察了CTAB物质的量对SAPO-44分子筛吸附碱性氮化物性能的影响,并对吸附脱碱性氮的吸附等温线、动力学、热力学进行了研究。结果表明,当添加的CTAB物质的量配比数值为0.06时,最大平衡吸附量达到7.24 mg/g;与未改性SAPO-44分子筛相比,改性SAPO-44分子筛对碱性氮的吸附效果更好。改性SAPO-44分子筛对碱性氮的吸附等温线更符合Freundlich方程,该吸附过程符合拟二级动力学模型,吸附活化能为48.25kJ/mol。  相似文献   

12.
通过交联壳聚糖微球树脂对Cu(Ⅱ)的静态吸附实验,研究树脂对cu(Ⅱ)的吸附特性.结果表明,pH5—6时,树脂对Cu(Ⅱ)的吸附量较高;Cu(Ⅱ)在交联壳聚糖树脂上的吸附动力学过程符合Lagergren一级动力学吸附方程;吸附速率常数随吸附温度的增加而增大;表观吸附活化能为20.702kJ/mol.  相似文献   

13.
运用低温等离子体改性技术将壳聚糖(CTS)接枝到凹凸棒土(ATP)表面(ATP-g-CTS),并将其应用于含2,3,3'-三氯联苯(2,3,3'-TCB)废水溶液的吸附研究。实验中应用假一级速率方程、假二级速率方程、动力学方程、Langmuir、Freundlich和D-R等动力学及热力学模型对实验数据进行模拟。实验结果表明,假二级速率方程和Langmuir模型能更好地模拟相关实验数据,ATP-g-CTS对2,3,3'-TCB主要是化学吸附,是一个吸热的过程,ATP-g-CTS对多氯联苯是一种较好的吸附剂。  相似文献   

14.
以自制的壳聚糖树脂生成装置,采用改进的滴加成球法,以环氧氯丙烷做交联剂,合成新型壳聚糖交联树脂.研究树脂对Pb(Ⅱ)的吸附效果,探讨了溶液pH、吸附时间、温度、初始浓度等因素对其吸附性能的影响及吸附热力学和动力学.结果表明,pH对树脂吸附Pb(Ⅱ)的影响较大;在pH=6,温度30℃,吸附4.5 h时,最大吸附容量可达105.0 mg/g;用Temkin等温线模型和Pseudo second-order动力学模型对树脂的吸附过程进行线性拟合,相关系数R2分别为0.999 5和0.992 6,表明新型交联树脂对Pb(Ⅱ)的吸附是物理吸附和化学吸附共同作用的结果.  相似文献   

15.
尾矿坝的废水中含有大量的Ca2+ ,易与碳酸根离子、氢氧根离子形成淤堵物质,堵塞尾矿坝的排渗管,严重时导致溃坝。为处理废水中的钙离子,以壳聚糖为原料,采用乙二胺四乙酸(EDTA)进行接枝共聚反应,制备了一种离子吸附剂。采用傅里叶变换红外光谱仪对样品进行结构分析,确定了该离子吸附剂含有大量EDTA基团。通过模拟实验和络合滴定实验研究了原料配比、样品用量及吸附时间对吸附量的影响。结果表明,该吸附剂的饱和吸附量达到4.3 mmol/g,有着很好的吸附效果。研究为尾矿坝废水中的Ca2+安全处理提供理论依据。  相似文献   

16.
以松树锯末为吸附剂,研究其对水中Pb(II)和Ni(II)的吸附性能,研究了锯末用量、搅拌速度、溶液初始pH值等对吸附效果的影响及其吸附动力学和热力学性能。研究结果表明,锯末对Pb(II)和Ni(II)具有良好的吸附能力。锯末对Pb(II)和Ni(II)吸附过程均符合拟二级吸附动力学模型(R2≥0.997 7),锯末吸附Pb(II)和Ni(II)的活化能分别为9.808 7 kJ/mol和2.859 4 kJ/mol;锯末对Pb(II)和Ni(II)等温吸附符合Langmuir模型(R2≥0.999 2)。热力学研究表明,锯末对Pb(II)和Ni(II)的吸附是自发的放热过程。  相似文献   

17.
研究了改性交联壳聚糖羧基成盐和络合吸附Cu2+、Ni2+的特性.结果表明:改性交联壳聚糖对Cu2+、Ni2+的吸附具有Langmuir吸附特征,吸附量与离子核电荷数和络合物的配位相关.该吸附剂对两种相同浓度混合离子的吸附中具有选择性,即优先选择吸附Cu2+,2 h时,吸附选择系数为19.5.  相似文献   

18.
采用原位共沉淀法制备了氧化石墨/壳聚糖磁性复合吸附剂,研究了氧化石墨/壳聚糖磁性复合吸附剂对活性艳红的吸附行为,发现壳聚糖与氧化石墨的加入量为重量比在200:1时对活性艳红的吸附量最大.考察了氧化石墨/壳聚糖磁性复合吸附剂在不同pH值、不同时间下对活性艳红的吸附性能.实验结果表明,该吸附剂吸附活性艳红的最佳pH值为2,饱和吸附量为706mg/g,吸附速度快,对活性艳红的吸附在30min内达吸附平衡.吸附过程可用Langmuir吸附等温线描述,符合二级动力学方程.经10次吸附后,对活性艳红仍保留了初次吸附量的61%,具有一定的重复使用性.  相似文献   

19.
采用反相悬浮法,通过环氧氯丙烷交联制备β-环糊精改性交联壳聚糖微球(CDS),用FTIR和SEM进行表征,研究其对甲基橙(MO)的吸附和缓释性能。考察吸附时间、溶液p H值、MO浓度、温度等因素对CDS微球吸附的影响,并与交联壳聚糖(CTS)微球进行比较。结果表明,在p H 4.0、交联CTS微球1h可达吸附平衡,而CDS 2 h达到平衡;吸附数据均符合Freundlich等温方程和二级动力学方程。  相似文献   

20.
以磷酸锡晶体作为吸附剂,应用批量吸附法,研究了pH值、吸附时间、初始浓度、温度、离子强度等因素对去除水溶液中Cu2+的影响,通过热力学分析及电位滴定实验探讨了吸附机理.结果表明:磷酸锡对Cu2+的吸附量随着pH(3~6.5)以及吸附时间的增加而增大,吸附动力学过程符合准二级动力学模型.等温吸附数据用Langmuir方程拟合效果最好,20℃时饱和吸附量达到48.69mg/g.根据吸附自由能Es(kJ/mol)可知,吸附机理属于化学离子交换,即磷酸锡中的H+与溶液中的Cu2+发生了离子交换反应.该反应是一个自发的、吸热的过程,升温有利于吸附.在模拟海水中,高盐强度对磷酸锡吸附Cu2+有一定的不利影响,但幅度不大.当NaCl浓度达到0.6mol/L时,吸附量为21.87mg/g,是淡水介质时的93.3%,表明磷酸锡适用于去除养殖海水中的Cu2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号